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Abstract

In this paper we consider the following problem: Given a Hamiltonian graph G, and a Hamil-
tonian cycle C' of G, can we compute a second Hamiltonian cycle C’' # C of G, and if yes, how
quickly? If the input graph G satisfies certain conditions (e.g. if every vertex of G is odd, or if
the minimum degree is large enough), it is known that such a second Hamiltonian cycle always
exists. Despite substantial efforts, no subexponential-time algorithm is known for this problem. In
this paper we relax the problem of computing a second Hamiltonian cycle in two ways. First, we
consider approximating the length of a second cycle on n-vertex graphs with minimum degree § and

maximum degree A. We provide a linear-time algorithm for computing a cycle C’ # C of length at

least n — 4da(y/n + 2a) + 8, where o = %. Our second relaxation of the problem is probabilistic.

We propose a randomized algorithm which computes a second Hamiltonian cycle with high prob-
ability, given that the input graph G has a large enough minimum degree. More specifically, we
prove that for every 0 < p < 0.02, if the minimum degree of G is at least %log2 V/8n + 4, then a

second Hamiltonian cycle can be computed with probability at least 1 — 7% (2—2 + 1) in poly(n)- 24P

time. Our results imply that, when the minimum degree § is sufficiently large, we can compute
with high probability a second Hamiltonian cycle faster than any known deterministic algorithm.
In particular, when ¢ = w(log, n), our probabilistic algorithm works in 20(") time.

1 Introduction

A classical fact published by W. Tutte [25] and accredited to C. Smith states that, in a cubic
(i.e. degree-3 regular) graph, every edge is contained in an even number of Hamiltonian cycles. The
theorem of Smith was later generalized by A. Thomason [21] to all graphs in which every vertex has
an odd degree. Therefore, every Hamiltonian graph with odd-degree vertices has at least one further
Hamiltonian cycle; actually it is not hard to derive that also a third Hamiltonian cycle exists. How-
ever, if we allow vertices of even degree, the existence of a second Hamiltonian cycle is not guaranteed.
More specifically, Entringer and Swart [13] constructed uniquely Hamiltonian graphs (i.e. graphs with
a unique Hamiltonian cycle), in which all vertices have degree 3, except only two of them which have
degree 4. Fleischner [15] also constructed two infinite families of uniquely Hamiltonian graphs, one
with minimum degree 4 and maximum degree 14, and one with arbitrarily high maximum degree.
On the other hand, for reqular graphs it is known that uniquely Hamiltonian graphs cannot have
high degree. More specifically, Thomassen [24] proved that, for every r > 300, every Hamiltonian
r-regular graph has a second Hamiltonian cycle. This was subsequently improved to every r > 23 [17].
It still remains unknown whether every r-regular Hamiltonian graph has a second Hamiltonian cycle,
where 4 < r < 22 is an even number. Shechan conjectured in 1975 that this is true for r = 4 [20]. If
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Sheehan’s conjecture is true, then this will imply that, for every r > 4, every r-regular Hamiltonian
graph has a second Hamiltonian cycle. For non-regular graphs, it is known that a second Hamiltonian
cycle is guaranteed to exist also in graphs with large minimum degree. Bondy and Jackson proved
this for graphs with n vertices and minimum degree at least 2.411logy 8n + 3 [9]. This bound was later
improved to 1.752logy n [17] and to 1.71logy n + 2 [1]. All the above results have been proved with
the probabilistic method using non-constructive arguments.

Our focus in this paper is to devise algorithms which, given a graph G and a Hamiltonian cycle C'
of G, actually compute a second Hamiltonian cycle C' # C' in G, instead of just proving the existence
of C'. For cubic (or, more generally, for odd-degree) Hamiltonian graphs, several exponential-time
algorithms are known for computing C’ [3-8, 10-12, 14, 18, 19, 27]; however, it remains open whether C’
can be computed in polynomial, or even subexponential time. One possible relaxation of the problem
is, given a Hamiltonian cycle C, to efficiently compute a second cycle C' # C which is large enough
(not necessarily Hamiltonian). For cubic Hamiltonian graphs, Bazgan, Santha, and Tuza [2] showed
that the knowledge of the first Hamiltonian cycle C' algorithmically strictly helps to approximate the
length of a second cycle. In fact, if C is not given along with the input, there is no polynomial-time
constant-factor approximation algorithm for finding a long cycle in cubic graphs, unless P=NP. In
contrast, if C' is given, then for every € > 0 a cycle C’ # C of length at least (1 — )n can be found in
20(1/e%) . time, i.e. there is a linear-time PTAS for approximating the second Hamiltonian cycle [2].
The main ingredient in the proof of the latter result is an O(n% log n)-time algorithm which, given G
and C, computes a cycle C’ # C of length at least n — 4y/n [2]. In wide contrast to cubic graphs, for
graphs of minimum degree at least three, only existential proofs are known for a second large cycle.
In particular, Girao, Kittipassorn, and Narayanan recently proved with a non-constructive argument
that any n-vertex Hamiltonian graph with minimum degree at least 3 contains another cycle of length
at least n — o(n) [16].

Our Contribution. In this paper we consider two relaxations of the problem of computing a second
Hamiltonian cycle. First, we consider approximating the length of a second cycle on n-vertex graphs
with minimum degree § and maximum degree A. We provide in Section 2 a linear-time algorithm
for computing a cycle C' # C of length at least n — 4a(y/n + 2a) + 8, where a = %. On the one
hand, this improves the results of Bazgan et al. [2] in two ways: (i) it provides a generalization from
cubic Hamiltonian graphs to arbitrary Hamiltonian graphs of degree at least 3; (ii) our algorithm
works in linear time in n for all constant-degree regular graphs. In particular it works in time O(n) on
cubic graphs (see Corollary 6). On the other hand, we complement the results of [16] as we provide
a constructive proof for their result in case where 0 and A are o(y/n)-factor away from each other.
Formally, our algorithm constructs in linear time another cycle of length n—o(n) whenever % = o(y/n)
(see Corollary 7).

Our second relaxation of the problem is probabilistic. We propose in Section 3 a randomized
algorithm which computes a second Hamiltonian cycle with high probability, given that the input
graph G has a large enough minimum degree. More specifically, we prove that for every 0 < p < 0.02,
if the minimum degree of G is at least % logs v/8n+44, then a second Hamiltonian cycle can be computed

with probability at least 1 — % (2—40 + 1) in poly(n) - 247" time. Thus, by appropriately choosing the
value of the parameter p, we can achieve different trade-offs between the minimum degree and the
resulting running time, as it is illustrated in Table 1 (see Corollary 15). These results imply that,
when the minimum degree ¢ is sufficiently large, we can compute with high probability a second
Hamiltonian cycle faster than any known deterministic algorithm. In particular, when § = w(log, n),

our probabilistic algorithm works in 2°(®) time.

2 Computing another long cycle in a Hamiltonian graph in linear
time
Since the complexity status of finding a second Hamiltonian cycle in a given cubic Hamiltonian graph

is illusive at the moment, we consider a simpler problem of finding another almost Hamiltonian cycle
in a given Hamiltonian graph of minimum degree 3. Our main result in this section provides a O(m)



mininum degree § at least running time probability at least
32c - logy V/8n + 4 poly(n) - 27/¢ 1-0(2)
64 loggJrl n poly(n) - 27/ logsn 1-0 (%)
32n° - logy v/8n + 4 poly(n) - 2" ° 1-0 (1)

Table 1: Summary of our probabilistic results for computing a second Hamiltonian cycle in a Hamil-
tonian graph of large minimum degree §.

time algorithm for finding a n — o(n) cycle in a given Hamiltonian graph of minimum degree at least
3 when the maximum and the minimum degrees of the graph are in certain relation.

In [2] Bazgan, Santha, and Tuza studied an optimization problem that can be seen as a relaxation
of the problem of finding another Hamiltonian cycle in a cubic Hamiltonian graph. Namely, they
considered the following problem.

SECOND LARGEST CYCLE
Input: A cubic Hamiltonian graph G and a Hamiltonian cycle C.

Solution: A cycle different from C.
Value: The length of the cycle.

The authors showed that SECOND LARGEST CYCLE has an efficient polynomial-time approximation
scheme (EPTAS) by proving

Theorem 1 ([2]). Let G be an n-vertex cubic Hamiltonian graph and let C' be a Hamiltonian cycle in

G. Given G and C, for every e > 0, a cycle C' # C of length at least (1 — e)n can be found in time
20(1/2%) % .

The main ingredient of the proof of Theorem 1 is a polynomial-time procedure that finds in G a
cycle €’ different from C of length at least n — 4,/n. This result is formalized in the following

Theorem 2 ([2]). Let G be an n-vertex cubic Hamiltonian graph and let C' be a Hamiltonian cycle in
G. There is an algorithm that given G and C finds in G a cycle C' # C of length at least n — 4/n in
time O(n3/?logn).

Our main result of this section improves Theorem 2 in two ways. First, it implies a generalization
of Theorem 2 to arbitrary regular Hamiltonian graphs of degree at least 3. Second, our algorithm
works in linear time in n for constant degree regular graphs. In particular, it works in time O(n) on
cubic graphs (see Corollary 6).

Recently, Girao, Kittipassorn, and Narayanan proved in [16] with a non-constructive argument
that any n-vertex Hamiltonian graph with minimum degree at least 3 and a fixed Hamiltonian cycle
contains another cycle of length n — o(n). Our main theorem provides a constructive proof for the
latter result in case when the maximum and minimum degree are o(y/n)-fractor away from each
other. Formally, we give a O(m) time algorithm for finding another cycle of length n — o(n) whenever
% = o(y/n), where A and ¢ are the maximum and the minimum degrees of G, respectively (see
Corollary 7).

2.1 Notation and auxiliary results

Before we proceed to the main result of the section, we introduce preliminary notation and state
auxiliary results. Let G be a graph with a designated Hamiltonian cycle C' = vivs ... v,. Any edge of
G that is not in C' is called a chord. Two chords are independent if they do not share an endpoint.
The length of a chord v;v; with i < j is defined as min{j —i,n + 4 — j}. We say that two vertices
u,v € V(G) are chord-adjacent if they are connected by a chord of G. Two independent chords e;



(1) A short chord (2) A pair of crossing chords (3) Crossing pairs of parallel chords

Figure 1: Illustration of Lemma 4

and ey are called crossing if their endpoints appear in alternating order around C'; otherwise e; and
eo are parallel.

For z,y € V(G), we denote by dco(x,y) the length of the path from z to y around C. Note that
do(z,y) # do(y, z) in general. We define the distance between two independent chords zy and ab as
follows:

1. if zy and ab are crossing, then dist(zy, ab) = min{dc(x, a) + dc(y,b),dc(z,b) + do(y,a)};

2. if xy and ab are parallel such that neither y nor b lie on the path the path from x to a around
C, then dist(zy, ab) = d¢(z,a) + dc(y, b).

In the proof of our main result we use the following two lemmas. The first is a basic fact from
graph theory and the second is straightforward to check (see Fig. 1 for illustration).

Lemma 3. [[26], Exercise 3.1.29] Let G = (V, E) be a bipartite graph of mazximum degree A. Then
G has a matching of size at least %.

Lemma 4. Let G = (V, E) be an n-vertex graph with a Hamiltonian cycle C = vivy ... vp,.
(1) if G has a chord of length ¢, then G contains a cycle C" # C of length at least n — 0 + 1;

(2) if G has two crossing chords e1, es and dist(e1,ez) = d, then G contains a cycle C' # C of
length at least n — d + 2;

(3) if G has four pairwise independent chords ey, e, fi, and fo such that

(a) e1, ex are parallel and f1, fo are parallel,
(b) e and f; are crossing for every i,j € {1,2},
(c) dist(er, ea) = dy and dist(f1, f2) = da,

then G contains a cycle C' # C of length at least n — dy — dg + 4.

2.2 Long cycles in Hamiltonian graphs

Theorem 5. Let G = (V, E) be an n-vertex Hamiltonian graph of minimum degree 6 = §(G) > 3. Let
C =vv2...v, be a Hamiltonian cycle in G and let A denote the mazimum degree of G. Then G has
a cycle C" # C of length at least n — 4a(y/n + 2a) + 8, where o = % Moreover, given C a cycle C'
can be computed in O(m) time, where m = |E|.



Proof. We start by showing the existence of the desired cycle C”.
NG

Without loss of generality we assume that o < 5=, as otherwise any cycle C' # C' in G satisfies
the theorem. Furthermore, we assume that the length of every chord in G is at least 4a(y/n+ 2a) — 6,
as otherwise the existence of C’ follows from Lemma 4 (1).

Let ¢ = ay/n. We partition arbitrarily the vertices of the Hamiltonian cycle C' into r consecutive
intervals By, B1,...,B,_1, such that r € {{@J, L%J + 1} and |q] < |B;| < |q] + 2a? for every

«
i€{0,1,...,7 —1}. It is a routine task to check that such a partition exists.

For every i € {0,1,...,r — 1} we denote by W; the set of vertices that are chord-adjacent to a
vertex in B; and by E; we denote the set of chords that are incident with a vertex in B;. Furthermore,
we denote by H; the graph with vertex set B; U W; and the edges set E;. Since the length of every
chord in G is at least 4a(y/n + 2a) — 6, we observe that for every i € {0,1,...,r—1} set Wj is disjoint
from B;_1 U B; U B;;1 (where the arithmetic operations with indices are modulo r). The latter, in
particular, implies that H; is a bipartite graph with color classes B; and W;.

Let i,7 € {0,1,...,7— 1} be two distinct indices, we say that the intervals B; and B; are matched
if there exist two independent chords such that each of them has one endpoint in B; and the other
endpoint in B;. We claim that every interval B; is matched to another interval B; for some j €
{0,1,...,7 =1} \ {i — 1,4,7 + 1}. Indeed, by Lemma 3, graph H; has a matching M; of size at least

l9J0-2) _ lavn] _a n—lz\/ﬁ_D{@J_er_g,

A -2 o «

and therefore, by the pigeonhole principle, there exists j € {0,1,...,r —1}\ {i — 1,4,7 + 1} such that
at least two edges in M; have their endpoints in B;, meaning that B; is matched to B;.

Let 0 : {0,1,...,7 — 1} — {0,1,...,7 — 1} be a function such that B; is matched to B,;), and
denote by f;1 and f;2 some fixed pair of independent chords between B; and Bg(;). We observe that
dist(fin1, fi2) < Q(qu +2a%— 1) < 2a(y/n+2a) —2, as the endpoints of f; 1 and f; 2 lie in the intervals
B; and Bg(;) each of length at most |q| + 202

Let now R be an auxiliary graph with a Hamiltonian cycle zgz; ...x,—1 and the chord set being
{7irei) 1= 0,1,...,7 — 1}. Let x;z; be a chord in R of the minimum length, where j = o(i).
Without loss of generality, we assume that ¢ < j and j —i < r + i — j. Let xp be a vertex of R such
that i < k < j and let s = o(k). Since x;x; is of minimum length, the chords z;x; and zjx, are
crossing, and hence each of f;; and f; 2 crosses both fi; and f 2.

Finally, if fi1, fi2 or fi1, fr2 are crossing, then by Lemma 4 (2) there exists a cycle C' # C of
length at least n — 2a(y/n + 2a) + 4. Otherwise, f;1, fi2 are parallel and fy 1, fi2 are parallel, and
hence by Lemma 4 (3) there exists a cycle C” # C of length at least n —4a(y/n+2a) + 8, which proves
the first part of the theorem.

The above proof is constructive. We now explain at a high level how the proof can be turned
into the desired algorithm. First, if o > 4, then we output any cycle formed by a chord and the
longer path of C' connecting the endpoints of the chord. Otherwise, we partition the vertices of C'
into intervals Bi,...,B,_1 and assign to each vertex the index of its interval. Clearly, this can be
done in O(n) time. Next, we traverse the vertices of G along the cycle C' and for every vertex v
of an interval B; we check the chords incident to v. If we encounter a chord f of length less than
4da(/n + 2a) — 6, then we output the cycle formed by f and the longer path of C' connecting the
endpoints of f. Otherwise, for the interval B; we keep the information of how many and which vertices
of W; belong to other intervals B; for j € {0,1,...,7 —1}\ {¢ — 1,4,% + 1}. When we find an interval
B; that has at least two elements from W;, we set (i) to j and proceed to the first vertex of the next
interval B;11. By doing this, we also keep the information of the current shortest chord in the graph
R (defined in the proof above). After finishing this procedure: (1) we have a function o(-); (2) for
every ¢ € {0,1,...,7 — 1} we know a pair f;1, fi2 of independent edges between B; and B (iy; and
(3) we know k such that x324(;) is @ minimum length chord in R. Clearly, this information is enough
to identify the desired cycle in constant time. In total, we spent O(n) time to compute the partition
of the vertices into the intervals and we visited every chord at most twice, which implies the claimed
O(m) running time. O



By noticing that in the above theorem parameter « is equal to 1 for any regular graph, we obtain
the following corollary.

Corollary 6. Let G = (V, E) be an n-vertex Hamiltonian d-regular graph with § > 3, and let C' be a
Hamiltonian cycle in G. Then G has a cycle C' # C of length at least n—4y/n, which can be computed
in O(dn) time.

Corollary 7. Let G = (V, E) be an n-vertex Hamiltonian graph of minimum degree § = §(G) > 3.
Let C' be a Hamiltonian cycle in G and let A denote the mazimum degree of G. If % = o(y/n), then
G has a cycle C' # C of length at least n — o(n), which can be computed in O(m) time.

3 Second Hamiltonian cycle in graphs of large minimum degree

In this section we provide an algorithm (see Theorem 14) which, given a Hamiltonian cycle C' in an
arbitrary Hamiltonian graph G with n vertices and with large minimum degree § = Q(logn), computes
a second Hamiltonian cycle C' # C faster than the best known algorithms (cf. the discussion in the
introduction).

3.1 Second Hamiltonian cycle via red-independent and green-dominating sets

Let G be a graph with a Hamiltonian cycle C. Co lour the edges of C red and the chords green. A
neighbor u of a vertex v is a red (resp. green) neighbor of v if uv is a red (resp. green) edge. A set
X of vertices of G is red-independent if the subgraph G[X] of G induced by X contains no red edges,
and X is green-dominating if every vertex outside X is adjacent to a vertex in X via green edge. The
following lemma is a classical result of Thomassen [23] proved via Thomason’s lollipop argument [22].

Lemma 8 (Thomassen’s lemma, [23]). If G has a red-independent and green-dominating set of ver-
tices, then G contains a Hamiltonian cycle C' # C.

Motivated by Thomassen’s lemma, it is natural to ask whether the knowledge of a red-independent
and green-dominating set X in G can improve the time complexity of finding a second Hamiltonian
cycle. The proof of Lemma 8 is reduced to the application of Thomason’s lollipop argument and
therefore does not immediately imply an efficient algorithm for finding a second Hamiltonian cycle.
However, if X is not too large, it can in fact be used to speed up the computation of a second
Hamiltonian cycle. To explain this, we need to state another lemma, which can be easily extracted
from Thomassen’s proof. Following the terminology of Bondy and Jackson [9], a set of vertices X of
G is weakly green-dominating if every red neighbor of a vertex in X is also a green neighbor of some
vertex in X.

Lemma 9 ([23]). If G has a red-independent and weakly green-dominating set of vertices, then G
contains a Hamiltonian cycle C' # C.

Clearly, any green-dominating set X in G is also weakly green-dominating. Let X be a red-independent
and green-dominating set of size k, and let Py, P, ..., P; be the k paths obtained from C by removing
the vertices of X. Let G’ be the graph obtained from G by removing all chords connecting two
vertices not in X and all chords connecting a vertex in X and an internal vertex of any of the paths
P, P,..., P, Clearly, X is red-independent and weakly green-dominating in G’, and therefore, by
Lemma 9, G’ contains a Hamiltonian cycle C’ # C, which is also a Hamiltonian cycle in G.

A simple, but important observation is that all internal vertices of the paths P;, P ..., P, have
degree two in G’, and hence all edges incident with these vertices belong to every Hamiltonian cycle
of G'. Note here that the extreme vertices of these paths Py, P; ..., P, might have a higher degree.
Let H be the graph obtained from G’ by removing, for every path P € {Py, P, ..., P} with at least
four vertices, all its internal vertices and adding one new vertex and two new edges connecting the new
vertex with the endpoints of P. Then, there is an obvious bijection between the Hamiltonian cycles
of G’ and the Hamiltonian cycles of H. Denote by C'y the Hamiltonian cycle of H corresponding to
the Hamiltonian cycle C of G’. We observe that X is a red-independent and weakly green-dominating



set (with respect to Cpr) in H. Therefore, by Lemma 9, H contains a Hamiltonian cycle C; # Cp,
which in turn corresponds to a cycle C" # C of G’ and can be efficiently computed from C},. We
call the graph H shrunken and observe that the number of vertices in H is at most k + 3k = 4k. If
k is small enough, then applying a best known algorithm A for finding a Hamiltonian cycle to every
graph H — e, where e is a red edge in H that is incident to a vertex in X, one can find a Hamiltonian
cycle Cpy # Cp in H, and therefore a Hamiltonian cycle €’ # C' in G, faster than applying n times
the best known algorithm A directly to G. The above implies the correctness and running time of
Algorithm 1, which is formally given in Theorem 10.

Algorithm 1 Second Hamiltonian Cycle via red-independent and green-dominating set

Input: A graph G = (V, E); a Hamiltonian cycle C' of G; a red-independent and green-dominating
set X C V in G; an algorithm A with running time f4(n) that, given an input n-vertex graph,
either computes a Hamiltonian cycle or concludes that no Hamiltonian cycle exists.

Output: A Hamiltonian cycle C’ in G such that C’ # C.

1: Using set X, construct from G the shrunken graph H

2: for every red edge e in H that is incident to a vertex in X do

3:  Check using algorithm A whether H — e admits a Hamiltonian cycle

4:  If such a Hamiltonian cycle exists then denote it by C; {C; exists for at least one edge e}
5: Reconstruct from C; a Hamiltonian cycle C’ in G such that C" # C

6: return C’

Theorem 10. Let G = (V, E) be an n-vertex graph, let C be a Hamiltonian cycle in G, and let X be
a red-independent and green-dominating set in G, where |X| = k. Let A be an algorithm that, given
an input n-vertex graph, computes a Hamiltonian cycle in time f4(n). Then Algorithm 1 computes a
second Hamiltonian cycle in time at most poly(n) - fa(4k).

Using the above approach, we develop in the subsequent sections a randomized algorithm that
computes a second Hamiltonian cycle in Hamiltonian graphs of large minimum degree.

3.2 Finding sparse red-independent green-dominating sets in graphs of large min-
imum degree

In this section we give a procedure that with high probability produces a red-independent and green-
dominating set in graphs of large minimum degree. The procedure is a generalization of a random
process used by Bondy and Jackson [9] to show that every n-vertex Hamiltonian graph of minimum
degree at least clogn, for some constant ¢ and large enough n, has a red-independent and green-
dominating set, and hence a second Hamiltonian cycle.

For convenience, we reuse most of the notation and terminology from [9]. Let G = (V, E)), where
V ={0,1,...,n — 1}, be a graph on n vertices and let C' = (0,1,2,...,n — 1,0) be a Hamiltonian
cycle in G. Let p € (0,1) be a fixed number. We define a random subset X of V' by the following
procedure:

Algorithm 2 Bondy and Jackson’s procedure
Input: A graph G = (V, E'); a Hamiltonian cycle C = (0,1,2,...,n—1,0) of G; a number p € (0,1).
Output: A red-independent set X C V.

: X ={0}
:fori=1ton—2do
if ¢ — 1 does not belong to X then
Add 7 to X with probability p and skip with probability 1 — p

5. return X

For p = % this is exactly the procedure used by Bondy and Jackson [9] to show that if every vertex
in G has degree at least clog8n + 4, where ¢ = (2 — log 3)~!, then with non-zero probability the set



X produced by the procedure is red-independent and green-dominating. This implies that any such
graph contains at least one red-independent and green-dominating set and therefore contains a second
Hamiltonian cycle.

We will generalize and complement the arguments of Bondy and Jackson to show that for any
small enough p, if every vertex in G has degree at least %10g2 V/8n + 4, then, with high probability,
X is red-independent and green-dominating and also has size at most pn. In Section 3.3, we will
combine this result with the general approach from Section 3.1 to obtain faster exponential and
subexponential algorithms that find a second Hamiltonian cycle in graphs of large minimum degree
with high probability. We proceed with some notation and an auxiliary lemma.

Let d € N. A k-part composition of d is an ordered k-tuple (di,ds,...,dy) of positive integers
summing up to d. We call each d; a part of this composition of the number d. Denote by C(k,d) the
set of all k-part compositions of d, in which d; > 2 for every i € {2,...,k — 1}. We write

c(k,d) =|C(k,d)]  and C(d) =] C(k,d).
k>1
Similarly, we denote by C*(k,d) the set of all k-part compositions of d, in which d; > 2 for every i,
except possibly at most one of the two parts dy or di. We write
c*(k,d) = |C*(k,d)| and C*(d) = U C*(k,d).
k>1
Lemma 11. Let k,d € N and let p € (0,2]. Then

(a) kgl IUkal . C(k‘,d) — riﬁ(ﬁd+1 + (_1)dad+1) < (4?;-_&2)) Bd;

(b) Z 'uk—l . C*(]C, d) — Bd_l 4 (_1)d—1ad—1 < 2ﬂd_1,
k>1

where o = YET 22 4“;171, B =TT 4“;1“.

Proof. In both cases we will count weighted compositions of d in which each composition into k parts
is given weight z*~!. This is done by assigning weight one to the first part d; and weight ; to each
of the remaining parts. For a polynomial f(z) we denote by [z%] f(z) the coefficient of 2¢ in f(x). We
will also make use of the following equation, which is a routine task to verify:

29 (x4 2% +...) Z(,ua:Q + o+ )| (pr 4 pa? )
1>0

() () ()

xT

a1 B a+ a (1)
_[x]a+ﬁ(lﬂx_1a:+1+am>
1
— m (5d+1 . (OZ—F,B) + (_1)dad+1)
_ 1 d d_d
—m(5+1+(—1)a+1)—1.

We proceed now by proving item (a).

S ek, d) = 14> pF ek, d)

k>1 k>2
=142z +22+..) Z(umz—i—,ua:‘g—i—...)i (px + pa® +...) (2)
i>0
o 1 d+1 | [ 1\d, . d+1
2 o (07 tat).



Now, since p < 2, we have 3 < 5, and therefore

Z“k_l ok, d) @ 1 (6d+1 n (_1)dad+1>

= a+p
_ 1 ﬁ—ﬁ-(—l)d <a>d ﬁd
T a+p “\5
1 d a4+ 46 d
< s+ g)e= <4<a+5>>5'

To prove item (b) we first notice that by the inclusion-exclusion principle

Sk d) = 143 ! (2c (k, d)— (k,d)) = 1423 @k d) =Y k), (3)

k>1 k>2 k>2 k>2

where ¢/(k,d) is the number of k-part compositions of d in which all parts are at least two, except
possibly the first one; and ¢”’(k, d) is the number of k-part compositions of d in which all parts are at

least two. Now,
Zuk—l . C/(k d

k>2
= [z¥)(x + 22+ ..)) Z(qu 4 pxd 4 ) (pa? 4 pad )
i>0
p (4)
= [T (@ +a®+..) Z(,uxQ +pxd ) (p + opa® )
i>0
@
+5(6d (—1)d-1 d) 1
Similarly,
Z'uk:—l ‘C”(k' d)
k>2
= [ (2® + 23+ ..) Z(qu 4 pd )] (a4 pd L)
- (5)
=[x+ 2% +..) Z(qu +pxd 4 ) (pr 4 op 4
>0
o 1 d=1 4 -2, d-1
= (T e

Plugging in (4) and (5) to (3) and using the fact that —28 + 1 = —(2a + 1) = —(a + ) we obtain

Zlukfl . C*(k d

E>1

-1 d d—1,d d-1 2, d—1 1
+a+ﬁ<ﬂ (=1) ) a+ﬁ(ﬁ +(=1) >+
1 d d-1,d d-1 4 d—1,d-1
o (282 el - () )

_ 1 _qyd—1,d—1 _ pd—1

_(Hﬁ(( 1) a1 (20 + 1) — B 25+1))

Bd 1 ( )d 1 d 1
where in the latter inequality we used the fact that o < . O



Green-dominating. Clearly, the set X produced by Algorithm 2 is always red-independent. We
show next that, if the minimum degree of G is large enough, then X is also green-dominating with
high probability.

Lemma 12. Let p € (0,0.2]. If every vertex in G has degree at least %logQ V8n + 4, then the set X
produced by Algorithm 2 is green-dominating with probability at least 1 — %

Proof. Let m € {0,1,...,n— 1} be a fixed vertex of G. The green neighborhood ]V(m) of m is the set
Fm) = Nm)\ {m — Lom + 1} = {my.ma, ... me}.

where 0 < my < mo < ... < m; and the arithmetic operations are modulo n.

If my = 0, then 0 € N(m)NX. We shall show that in all other cases N(m)NX = () with probability
less than n~2, which implies by the union bound that with probability at least 1 — % the set X is
green-dominating.

Denote by A the set of all sequences A = (ag,a1,...,a,), where 0 =ag < a1 <...<a, <n-—1,
and aj4+1 —a; >2,0<i<r—1. For A= (ap,a1,...,a,) € A,

le_ a;—a;—1 2<Zp ar+n 1+’L) )
=p" (1 —p)n 3 Z(l —p)’
=0

_ p'r(l o p)n—Qr—S

_ o n—3 p "
=t ((1—19)2)
= (1—p)" 7,

where we denote p = ﬁ.
Let now dy = mq, d; = m; —my—1, 2 <1 <t, and diy1 = n — my, and

C=C"(dy) x C(d2) x -+ x C(dg) x C*(dy41)-

There is a natural bijection between C and the subset A of A consisting of those sequences which are
disjoint from N (m). Moreover, for A = (ag,ay,...,a,) € A,

t+1
P(X =A)= (1 =p)"u = (1 =p)" [T (6)

where k; is the number of parts in the corresponding composition of d;, 1 <7 <t + 1.
Note that

C=| U C*kr,d) | x | | Clhasda) | x---x | | Clhed) | x | | C*(kugr,disr)

k1>1 ko>1 ke>1 kiy12>1 (7)
= J (€ (k1) x Clha,dz) x -+ x Clhy,dy) x C* (ks i) ),

where the union is taken over all (¢t 4+ 1)-tuples (ki, ke, ..., ki+1) of positive integers. Therefore (6)
implies that

P(X € A) = )" 32[ c*(k1,dy) (HN it kud)> pFe T (ke diyr) |

where the summation is taken over all (¢t + 1)-tuples (kq, ko, ..., k1) of positive integers. Thus, by
Lemma 11,
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t
— o S e ) | (TS b ehnd) | [ S0 a e g, de)
k1>1 1=2k;>1 kty12>1

oo () (11G5) 7)) ()

2\ 2 48 \ 11
—a- (5) (555)
B 4(a+p)
Now, since p = ﬁ and B = 7V4“2+1+1 (cf. Lemma 11), it follows that 1 +p < 8 < ﬁ for every
p € (0,1). Therefore, for p < 0.2, we have

~

P(X € A)
. 9 t—1
g(l—@”ﬁ<11p> <1ip> Qﬁjfg>

3 4 ( a+4p )H
- (1-pPA+p)? \d(a+p)

o448\
§8<4(a+ﬁ)> |

Therefore, if deg(m) = t + 2 > clog, V/8n + 4, where ¢ > 2log271 4&%:1?, then P(X € .,Zl\) < # To
conclude the proof, it is enough to show that % > 2logy ! 4&:&2) or, equivalently, log, 4((5‘:41? > % for
any p € (0,0.2].
First, using series expansions one can derive p(1 +p) < a < a fp)Q and1+p< < I(If;)%? in the
target interval p € (0,0.2]. Therefore,
log, 20+ 0) o A tp) +(A+p) ) A+ 1)?(1 - p)?
2 a2 =108 3y — 1082 .
o+ 4 P 4(1—p+p?) +4(1 — p + p?
g T T pral=ptr)

Let us denote the latter function by f(p). One can check that f(p) is concave in the interval [0,0.2]
and f(p) > % in the extreme points of the interval. Consequently, f(p) > % holds in all points of the
interval, which gives the desired conclusion and completes the proof. O

In the remainder of this section we are going to show that the size of X is at most pn with high
probability. To this end, we formalize Algorithm 2 as a Markov chain with two states: State 0 and
State 1. At time point t = 0 the Markov chain is in State 1, and for ¢t > 1

1. if at time point ¢t — 1 the Markov chain is in State 0, then at time point ¢ it is in State 1 with
probability p and in State 0 with probability 1 — p;

2. if at time point ¢ — 1 the Markov chain is in State 1, then at time point ¢ it is in State 0.

Let N=n—1. Fori € {0,1,..., N — 1} we denote by &; the random variable which is equal to
a € {0,1} if the Markov chain is in State « at time point i. We interpret the Markov chain as follows:
a vertex ¢ is included in X if and only if the Markov chain is in State 1 at time point i, i.e. & = 1. In
particular, X = {i | & =1,i=0,1,...,N -1}, |X| =2V ¢.

11



Denote by IT = (0, 1) the vector of initial distribution of the Markov chain, which means that at
time point 0 the Markov chain is in State 1 with probability 1 (this corresponds to inclusion of 0 to
X). Let also T' denote the transition matrix

_(1—-p p
r=("1"1)

of the Markov chain. Then the probability distribution of &; is defined by the vector II¥) = II - T".
It can be shown by induction that

rio L (e, (p -p
1+p\1 p 1+p\—-1 1)°

IO =T = —— (1 — (—p) —p)i
1er( (-p)', p+(-p)),

that is, Pl¢; = 0] = '5G2° and P[g; = 1] = 2502

and hence

Lemma 13. For n large enough, the size of the set X produced by Algorithm 2 is at most pn with
probability at least 1 — =%

np4
Proof. As before, let N =n — 1. To prove the statement, we first show that for ¢ > 0

Xl p 34
pl|lal_ P <2 8
HN 1+p|”°) =N ®

By Chebyshev’s inequality we have

X p |?
SIIX_ p <EUN il
-2

1+p g2
2
Therefore, in order to prove (8), we only need to show that E “ %‘ — 1%},) } < %.
Let m = £ and P =Pl =1] = erl(Jr 2" Then
X » SNl 2 1 N—1 2 | No1N-1
=0 5? — . — .
E[N_H—p o N e (ZWW)) E=T=R
i=0 i=0 k=0
where 0;;, = E[§:&k] — TE[&;] — ﬂ'E[fk] + 72
Observe that |p1) —7| < 1+ , and hence for i,k € {0,...,N}
8ir, = El¢i&y) — nE[&] — nE[&] + 7
pgs)pgt) (Z) 7Tp( ) 4 g2 (10)

2
< ——@ +p +p +p),
_1+p(p P+ +p")

where s = min{i, k} and ¢ = |i — k|. Therefore, by plunging in (10) to (9) we obtain
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['|X| D 2 1 N—-1N-1
== | |== )
2 Z ik
N 1+p N 1=0 k=0
9 N—-1N-1
S t i k
< — [p* +p" +p" +p"]
N (1+ ) =0 k=0
N—-1N-1
8 pmin{s,t}
— 2
N (1+p) =0 k=0
g [N/2]-1
P [2(N —2i — 1) + 2(N — 2i)]
2
N*(1+p) =
8 4N 34

where in the latter inequality we used the assumption p < 0.2. This proves (8).

Now, by setting € = %, we deduce from (8)
2 2
P Xl »p L P <34(1+p) - 49’
N 1+p| 1+p|= Npt — Npt
which implies ]P’UX\ < pN} >1 - 1\%4 and therefore ]P’UX\ < pn] >1-— anQl for all n > 50. O

3.3 Faster algorithms for Second Hamiltonian Cycle

In this section we combine Algorithm 2 with the general procedure from Section 3.1 to obtain ran-
domized algorithms for finding a second Hamiltonian cycle in graphs of large minimum degree.

Algorithm 3 Randomized algorithm for Second Hamiltonian Cycle
Input: A graph G = (V, E); a Hamiltonian cycle C of G; a p € (0,1).
Output: A Hamiltonian cycle C’ in G such that C’ # C, or a “fail” announcement.

[y

: Given G, C, and p, construct a set X using Algorithm 2

if X is a red-independent and green-dominating set of size at most pn then

3:  Find a second Hamiltonian cycle C’ in G using Algorithm 1 with input parameters: G, C, X
and the Bellman-Held-Karp algorithm
return C’

else

6: return Fail

B

Theorem 14. Let G = (V, E) be an n-vertex graph, C' be a Hamiltonian cycle in G, and p € (0,0.2].
If every vertex of G has degree at least %logQ V8n + 4, then given G, C, and p, Algorithm 3 succeeds

with probability at least 1 — % (2—2 + 1), Furthermore, the algorithm works in poly(n) - 2*P™ time.
Proof. Algorithm 3 fails if and only if Algorithm 2 outputs a non-green-dominating set or the size of
the set exceeds pn. The former happens with probability at most %, by Lemma 12, and the latter

happens with probability at most n%, by Lemma 13. Hence, the algorithm succeeds with probability

at least 1 — % (2—9 + 1).
Now, if Algorithm 3 does not fail, by Theorem 10, it constructs a second Hamiltonian cycle in G
in time not exceeding poly(n) - f(4pn), where f(k) = O(k?2¥) is the time complexity of the Bellman-

Held-Karp algorithm [3, 18]. Hence the theorem. O

13



The next corollary follows by Theorem 14, when replacing the factor % by either (i) a constant
32¢, or (ii) a polylogarithmic factor 321log§ n, or (iii) a polynomial factor 32n° (where ¢ < 0.25). Note
that the second case of the corollary is implied by the fact that 64 logg+1 n > 32log$n - logy V8n + 4,
for large enough n.

Corollary 15. Let ¢,e be a positive constant, where ¢ < 0.25. Let G = (V, E) be an n-vertex graph
and C be a Hamiltonian cycle in G. Then:

1. If every vertex of G has degree at least 32c - logy v/8n + 4, then Algorithm 3 finds a second
Hamiltonian cycle in G in time poly(n) - /¢ with probability at least 1 — O (%)

2. If every vertex of G has degree at least 64 log§+1 n, then Algorithm 3 finds a second Hamiltonian

¢ 4c
cycle in G in time poly(n) - on/ 10851 wyith probability at least 1 — O (Lgfl n)

3. If every vertex of G has degree at least 32n° - logy v/8n + 4, then Algorithm 3 finds a second
Hamiltonian cycle in G in time poly(n) - 27 % with probability at least 1 — O (ﬁ)
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