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a b s t r a c t

Trapezoid graphs are the intersection graphs of trapezoids,where every trapezoid has a pair
of opposite sides lying on two parallel lines L1 and L2 of the plane. This subclass of perfect
graphs has received considerable attention as it generalizes in a natural way both interval
and permutation graphs. In particular, trapezoid graphs have been introduced in order to
generalize some well known applications of these graphs on channel routing in integrated
circuits. Strictly between permutation and trapezoid graphs lie the triangle graphs – also
known as PI∗ graphs (for Point-Interval) – where the intersecting objects are triangles with
one point of the triangle on the one line and the other two points (i.e. interval) of the
triangle on the other line. Note that there is no restriction on which line between L1 and
L2 contains one point of the triangle and which line contains the other two. Due to both
their interesting structure and their practical applications, several efficient algorithms for
optimization problems that areNP-hard in general graphs have beendesigned for trapezoid
graphs – which also apply to triangle graphs. In spite of this, the complexity status of
the triangle graph recognition problem (namely, the problem of deciding whether a given
graph is a triangle graph) has been the most fundamental open problem on this class of
graphs since its introduction two decades ago. Moreover, since triangle graphs lie naturally
between permutation and trapezoid graphs, and since they share a very similar structure
with them, it was expected that the recognition of triangle graphs is polynomial, as it is
also the case for permutation and trapezoid graphs. In this article we surprisingly prove
that the recognition of triangle graphs is NP-complete, even in the case where the input
graph is known to be a trapezoid graph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A graph G = (V , E) with n vertices is the intersection graph of a family F = {S1, . . . , Sn} of subsets of a set S if there exists
a bijectionµ : V → F such that for any two distinct vertices u, v ∈ V , uv ∈ E if and only ifµ(u)∩µ(v) ≠ ∅. Then, F is called
an intersectionmodel of G. Note that every graph has a trivial intersectionmodel based on adjacency relations [18]. However,
some intersection models provide a natural and intuitive understanding of the structure of a class of graphs, and turn out to
be very helpful to obtain structural results, as well as to find efficient algorithms to solve optimization problems [18]. Many
important graph classes can be described as intersection graphs of set families that are derived from some kind of geometric
configuration.

Consider two parallel horizontal lines on the plane, L1 (the upper line) and L2 (the lower line). Various intersection graphs
can be defined on objects formed with respect to these two lines. In particular, for permutation graphs, the objects are line
segments that have one endpoint on L1 and the other one on L2. Generalizing to objects that are trapezoids with one interval
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on L1 and the opposite interval on L2, trapezoid graphs have been introduced independently in [5], [6]. Given a trapezoid
graph G, an intersection model of G with trapezoids between L1 and L2 is called a trapezoid representation of G. Trapezoid
graphs are perfect graphs [3,9] and generalize in a natural way both interval graphs (when the trapezoids are rectangles)
and permutation graphs (when the trapezoids are trivial, i.e. lines). In particular, the main motivation for the introduction
of trapezoid graphs was to generalize somewell known applications of interval and permutation graphs on channel routing
in integrated circuits [6].

Moreover, two interesting subclasses of trapezoid graphs have been introduced in [5]. A trapezoid graph G is a simple-
triangle graph if it admits a trapezoid representation, in which every trapezoid is a triangle with one point on L1 and the
other two points (i.e. interval) on L2. Similarly, G is a triangle graph if it admits a trapezoid representation, in which every
trapezoid is a triangle, but now there is no restriction on which line between L1 and L2 contains one point of the triangle
and which one contains the other two points (i.e. the interval) of the triangle. Such an intersection model of a simple-
triangle (resp. triangle) graph G with triangles between L1 and L2 is called a simple-triangle (resp. triangle representation
of G). Simple-triangle and triangle graphs are also known as PI and PI∗ graphs, respectively [3,5,4,15], where PI stands for
‘‘Point-Interval’’; note that, using this notation, permutation graphs are PP (for ‘‘Point–Point’’) graphs,while trapezoid graphs
are II (for ‘‘Interval–Interval’’) graphs [5]. In particular, both interval and permutation graphs are strictly contained in simple-
triangle graphs, which are strictly contained in triangle graphs, which are strictly contained in trapezoid graphs [5,3]. For
instance, it is easy to see that every interval graph G is also a simple-triangle graph: given an interval representation of G,
replace every interval Iv in this representation by an isosceles triangle Tv of unit height, which has the interval Iv as its base.
The resulting representation is a simple-triangle representation of G, since for any two vertices u and v of G, the intervals Iu
and Iv intersect if and only if Tu and Tv intersect.

Due to both their interesting structure and their practical applications, trapezoid graphs have attracted many research
efforts. In particular, efficient algorithms for several optimization problems that are NP-hard in general graphs have been
designed for trapezoid graphs [13,16,12,2,7,24,11], which also apply to triangle and simple-triangle graphs. Furthermore,
several efficient algorithms appeared for the recognition problems of both permutation [17,9] and trapezoid graphs
[16,20,14]; see [25] for an overview.

In spite of this, the complexity status of both triangle and simple-triangle recognition problems have been the most
fundamental open problems on these classes of graphs since their introduction two decades ago [3]. Since, on the one hand,
very few subclasses of perfect graphs are known to be NP-hard to recognize (for instance, perfectly orderable graphs [22], EPT
graphs [10], and recently tolerance and bounded tolerance graphs [21]) and, on the other hand, triangle and simple-triangle
graphs lie naturally between permutation and trapezoid graphs, while they share a very similar structure with them, it was
plausible that the recognition of triangle and simple-triangle graphs was polynomial.

Our contribution. In this article we establish the complexity of recognizing triangle graphs. Namely, we prove that this
problem is surprisingly NP-hard, by providing a reduction from the 3SAT problem. Specifically, given a boolean formula
formula φ in conjunctive normal form with three literals in every clause (3-CNF), we construct a trapezoid graph Gφ , which
is a triangle graph if and only if φ is satisfiable. Therefore, as the recognition problems for both triangle and simple-triangle
graphs are in the complexity class NP, it follows in particular that the triangle graph recognition problem is NP-complete.
This complements the recent surprising result that the recognition of parallelogram graphs (i.e. the intersection graphs of
parallelograms between two parallel lines L1 and L2), which coincides with bounded tolerance graphs, is NP-complete [21].

Organization of the paper. Background definitions and properties of trapezoid graphs and their representations are
presented in Section 2. In Section 3 we introduce the notion of a standard trapezoid representation, the existence of which is
a sufficient condition for a trapezoid graph to be a triangle graph. In Sections 4 and 5, we investigate the structure of some
specific trapezoid and triangle graphs, respectively, and prove special properties of them. We use these graphs as parts of
the gadgets in our reduction of 3SAT to the recognition problem of triangle graphs, which we present in Section 6. Finally,
we discuss the presented results and further research in Section 7.

2. Triangle and simple-triangle graphs

In this section we provide some notation and properties of trapezoid graphs and their representations, which will be
mainly applied in the sequel to triangle and simple-triangle graphs.

Notation. We consider in this article simple undirected and directed graphs with no loops or multiple edges. In an
undirected graph G, the edge between vertices u and v is denoted by uv, and in this case u and v are said to be adjacent in G.
Given a graph G = (V , E) and a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S. Furthermore, we
denote for simplicity by G − S the induced subgraph G[V \ S] of G. Moreover, given a graph G, we denote its vertex set by
V (G). A connected graph G = (V , E) is called k-connected, where k ≥ 1, if k is the smallest number of vertices that have to
be removed from G such that the resulting graph is disconnected. Furthermore, a vertex v of a 1-connected graph G is called
a cut vertex of G, if G − {v} is disconnected. By possibly performing a small shift of the endpoints, we assume throughout
the article without loss of generality that all endpoints of the trapezoids (resp. triangles) in a trapezoid (resp. triangle or
simple-triangle) representation are distinct [8,11,12]. Given a trapezoid (resp. triangle or simple-triangle) graph G along
with a trapezoid (resp. triangle or simple-triangle) representation R, we may not distinguish in the following between a
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Fig. 1. (a) A simple-triangle representation R1 and (b) a triangle representation R2 .

Fig. 2. A standard trapezoid representation R, in which the trapezoid Tv is left-closed, upper-right-closed, and lower-right-open.

vertex of G and the corresponding trapezoid (resp. triangle) in R, whenever it is clear from the context. Moreover, given an
induced subgraph H of G, we denote by R[H] the restriction of the representation R on the trapezoids (resp. triangles) of H .

Consider a trapezoid graph G = (V , E) and a trapezoid representation R of G, where for any vertex u ∈ V the trapezoid
corresponding to u in R is denoted by Tu. Since trapezoid graphs are also cocomparability graphs (there is a transitive
orientation of the complement) [9], we can define the partial order (V , ≪R), such that u ≪R v, or equivalently Tu ≪R Tv , if
and only if Tu lies completely to the left of Tv in R (and thus also uv /∈ E). Otherwise, if neither Tu ≪R Tv nor Tv ≪R Tu, we
will say that Tu intersects Tv in R (and thus also uv ∈ E). Furthermore, we define the total order <R on the lines L1 and L2 in R
as follows. For two points a and b on L1 (resp. on L2), if a lies to the left of b on L1 (resp. on L2), then we will write a <R b.

There are several trapezoid representations of a particular trapezoid graph G. For instance, given one such representation
R, we can obtain another one R′ by vertical axis flipping of R, i.e. R′ is the mirror image of R along an imaginary line
perpendicular to L1 and L2. Moreover, we can obtain another representation R′′ of G by horizontal axis flipping of R, i.e. R′′

is the mirror image of R along an imaginary line parallel to L1 and L2. We will use extensively these two basic operations
throughout the article. For every trapezoid Tu in R, where u ∈ V , we define by l(u) and r(u) (resp. L(u) and R(u)) the lower
(resp. upper) left and right endpoint of Tu, respectively (cf. the trapezoid Tv in Fig. 2). Since every triangle and simple-
triangle representation is a special type of a trapezoid representation, all the above notions can be also applied to triangle
and simple-triangle graphs. Note here that, if R is a simple-triangle representation of G = (V , E), then L(u) = R(u) for
every u ∈ V ; similarly, if R is a triangle representation of G, then L(u) = R(u) or l(u) = r(u) for every u ∈ V . An example of
a simple-triangle and a triangle representation is shown in Fig. 1.

It can be easily seen that every triangle (resp. single-triangle) graph Gwith n vertices has a triangle (resp. single-triangle)
representation of G, in which the endpoints of the triangles in both lines L1 and L2 are integers between 1 and 2n. That is,
every triangle (resp. single-triangle) graph G with n vertices has a representation with size polynomial on n, and thus the
recognition problems of both both triangle and simple-triangle graphs are in NP, as the next observation states.

Observation 1. The triangle and simple-triangle graph recognition problems are in the complexity class NP.

3. Standard trapezoid representations

In this section we investigate several properties of trapezoid and triangle graphs and their representations. In particular,
we introduce the notion of a standard trapezoid representation. We prove that a sufficient condition for a trapezoid graph G to
be a triangle graph is thatG admits such a standard representation. These properties of trapezoid and triangle graphs, as well
as the notion of a standard trapezoid representation will then be used in our reduction for the triangle graph recognition
problem. In order to define the notion of a standard trapezoid representation (cf. Definition 3), we first provide the following
two definitions regarding an arbitrary trapezoid Tv in a trapezoid representation.

Definition 1. Let R be a trapezoid representation of a trapezoid graph G = (V , E) and Tv be a trapezoid in R, where v ∈ V .
Let R′ and R′′ be the representations obtained by vertical axis flipping and by horizontal axis flipping of R, respectively. Then,

• Tv is upper-right-closed in R if there exist two vertices u, w ∈ N(v), such that Tu ≪R Tw , L(w) <R R(v), and r(v) <R l(w);
otherwise Tv is upper-right-open in R,

• Tv is upper-left-closed in R if Tv is upper-right-closed in R′; otherwise Tv is upper-left-open in R,
• Tv is lower-right-closed in R if Tv is upper-right-closed in R′′; otherwise Tv is lower-right-open in R,
• Tv is lower-left-closed in R if Tv is lower-right-closed in R′; otherwise Tv is lower-left-open in R.
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Intuitively, if the trapezoid Tv is upper-right-closed in the trapezoid representation R (cf. Definition 1), then there exists
another trapezoid Tw in R that ‘‘invades’’ in Tv only at its upper right corner (cf. the trapezoid Tv3 in Fig. 2). In addition,
according to Definition 1, there exists another vertex u ∈ N(v), such that Tu ≪R Tw . Intuitively, the existence of such a
trapezoid Tu in R means that, if we move the left endpoints L(w) and l(w) of Tw to the left to cover the whole trapezoid
Tv , then we will change the graph G, since in this case the trapezoid Tw will intersect the trapezoid Tu in the resulting
representation.

Definition 2. Let R be a trapezoid representation of a trapezoid graph G = (V , E) and Tv be a trapezoid in R, where v ∈ V .
Then,

• Tv is right-closed in R if Tv is both upper-right-closed and lower-right-closed in R; otherwise Tv is right-open in R,
• Tv is left-closed in R if Tv is both upper-left-closed and lower-left-closed in R; otherwise Tv is left-open in R,
• Tv is closed in R if Tv is both right-closed and left-closed in R; otherwise Tv is open in R.

As an example for Definitions 1 and 2, consider the trapezoid representation R in Fig. 2. In this figure, the trapezoid Tv

is upper-left-closed and lower-left-closed, as well as upper-right-closed and lower-right-open. Therefore, Tv is left-closed
and right-open in R, i.e. Tv is open in R. For better visibility, we place in Fig. 2 three bold bullets on the upper right, upper
left, and lower left endpoints of the trapezoid Tv , in order to indicate that Tv is upper-right-closed, upper-left-closed, and
lower-left-closed, respectively.

We are now ready to define the notion of a standard trapezoid representation.

Definition 3. Let G = (V , E) be a trapezoid graph and R be a trapezoid representation of G. If, for every v ∈ V , the trapezoid
Tv is open in R or Tv is a triangle in R, then R is a standard trapezoid representation.

For example, the trapezoid representation R in Fig. 2 is a standard representation. Indeed, none of the trapezoids
Tv1 , Tv2 , Tv3 is right-closed or left-closed, while Tv is lower-right-open (and therefore also right-open by Definition 2). Thus,
each of the trapezoids Tv , Tv1 , Tv2 , and Tv3 is open in R. Moreover, Tv4 is a triangle in R.

Note that every triangle representation is a standard trapezoid representation by Definition 3. We now provide the main
theorem of this section, which states a sufficient condition for a trapezoid graph to be a triangle graph.

Theorem 1. Let G = (V , E) be a trapezoid graph. If there exists a standard trapezoid representation of G, then G is a triangle
graph.

Proof. Let R be a standard trapezoid representation of G. If R is a triangle representation, then G is clearly a triangle
graph. Suppose otherwise that R has a trapezoid Tv , where v ∈ V , that is not a triangle in R. We will construct a triangle
representation R∗ of G. Since R is standard by assumption, Tv is right-open or left-open in R by Definition 2. By possibly
performing a vertical axis flipping, we may assume without loss of generality that Tv is right-open in R. That is, Tv is upper-
right-open or lower-right-open in R by Definition 1. Similarly, by possibly performing a horizontal axis flipping, we may
assume without loss of generality that Tv is upper-right-open in R.

We construct now from R a new trapezoid representation of G, as follows. First, for every vertex w ∈ V with L(v) <R
L(w) <R R(v) and r(v) <R l(w), we move the upper left endpoint L(w) of Tw directly before L(v) on the line L1. Note
that w ∈ N(v) for every such vertex w. Moreover, in the case where the upper left endpoint L(w) of Tw coincides with
its upper right endpoint R(w) in R, i.e. if Tw is a triangle in R with one point on L1, we also move the upper right endpoint
R(w) of Tw to the same position as its upper left endpoint L(w) in R′. That is, if Tw is a triangle in R, it remains a triangle also
in R′. During the movement of all these endpoints, we keep the same relative positions among them on L1 as in the initial
trapezoid representation R. Then, we reduce the trapezoid Tv to a triangle, by moving the upper right endpoint R(v) of Tv to
the left until it coincides with its upper left endpoint L(v). Let R′ be the resulting trapezoid representation. An example of
the construction of R′ is illustrated in Fig. 3.

We will prove that R′ is a representation of the same graph G. First recall that, during the transformation of R to R′, we
moved the endpoints L(w) of the trapezoids Tw for every vertexw, forwhich L(v) <R L(w) <R R(v) and r(v) <R l(w) (cf.w1,
w2, and w3 in Fig. 3). Suppose such a trapezoid Tw intersects a new trapezoid Tu in R′, while Tw did not intersect Tu in R. That
is, Tu ≪R Tw . Then, since L(w) came directly before L(v) on the line L1, it follows that L(v) <R R(u) <R L(w) <R R(v), and
thus Tu intersects Tv in R, i.e. u ∈ N(v). That is, there exist two vertices u, w ∈ N(v), such that Tu ≪R Tw , L(w) <R R(v), and
r(v) <R l(w), and thus Tv is upper-right-closed in R by Definition 1, which is a contradiction to the assumption. Therefore,
Tw does not intersect any new trapezoid in R′.

Let L(w) ≠ R(w) in R, i.e. Tw is not a triangle in R with one point on L1 (cf. w3 in Fig. 3). In this case, the upper right
endpoint R(w) of Tw remains the same in both R and R′, and thus Tw increases during the transformation of R to R′. Therefore,
if L(w) ≠ R(w) in R, then Tw keeps in R′ all its intersections with other trapezoids.

Let L(w) = R(w) in R, i.e. Tw is a triangle in Rwith one point on L1 (cf.w1 andw2 in Fig. 3). Recall that in this case, we also
move during the transformation of R to R′ the upper right endpoint R(w) of Tw to the same position as its upper left endpoint
L(w) in R′. Suppose that, after this movement, Tw misses in R′ its intersection with a trapezoid Tx in R. That is, Tw intersects
Tx in R, while Tw ≪R′ Tx. Therefore, L(x) <R L(w) = R(w) <R R(v) and r(v) <R l(w) ≤R r(w) <R l(x), i.e. L(x) <R R(v) and
r(v) <R l(x). We distinguish now the two cases regarding the relative position of the endpoints L(v) and L(x) in the initial
representation R. Let first L(v) <R L(x). In this case, L(v) <R L(x) <R R(v) and r(v) <R l(x). Therefore, the endpoint L(x) of
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Fig. 3. (a) A standard trapezoid representation R of a trapezoid graphG and (b) the transformation of R to a trapezoid representation R′ ofGwith one triangle
more.

Tx is moved directly before L(v) on the line L1, while the relative position of L(x) and L(w) remains the same in both R and
R′. That is, L(x) <R′ L(w), which is a contradiction, since Tw ≪R′ Tx by assumption. Let now L(x) <R L(v). Then, L(x) remains
the same in both R and R′ , while L(w) is moved directly before L(v) in R′. That is, L(x) <R′ L(w) <R′ L(v), which is again a
contradiction, since Tw ≪R′ Tx by assumption. Therefore, if L(w) = R(w) in R, then Tw keeps in R′ all its intersections with
other trapezoids.

Recall now that we reduced the trapezoid Tv to a triangle (cf. Fig. 3(b)). Suppose that, after this operation, Tv misses in R′

its intersection with a trapezoid Tx. That is, Tv intersects a trapezoid Tx in R, while Tv does not intersect Tx in R′, i.e. Tv ≪R′ Tx.
Therefore, L(v) <R L(x) <R R(v) and r(v) <R l(x). Thus, the upper left endpoint L(x) is moved directly before L(v) on the
line L1 during the transformation of R to R′, which is a contradiction, since Tv ≪R′ Tx. Therefore, Tv keeps all its intersections
in R′. Thus, R′ is a trapezoid representation of the same graph G, in which Tv is a triangle, while all triangles in R remain also
triangles n R′ (cf. w1 and w2 in Fig. 3).

After applying iteratively the above construction for every trapezoid Tv that is not a triangle in R, we obtain a triangle
representation R∗ of G, i.e. G is a triangle graph. This completes the proof of the theorem. �

4. Basic constructions of trapezoid graphs

In this section we investigate some small trapezoid graphs and prove special properties of them. These graphs will then
be used as parts of the gadgets in our reduction of 3SAT to the recognition problem of triangle graphs in Section 6. For
simplicity of the presentation, we do not distinguish in the sequel of the article between a vertex v of a trapezoid graph G
and the trapezoid Tv of v in a trapezoid representation of G.

Lemma 1. Let G = (V , E) be the trapezoid graph induced by the trapezoid representation of Fig. 4(a). Then, in any trapezoid
representation R of G, such that v ≪R v′,

• v is upper-right-closed in R and v′ is lower-left-closed in R, or
• v is lower-right-closed in R and v′ is upper-left-closed in R.

Proof. Consider a trapezoid representation R of G, such that v ≪R v′. Since the vertices v1 and v2 are indistinguishable,
asN(v1) = N(v2), wemay assumewithout loss of generality that v1 ≪R v2. Furthermore, note that if bothR(v) <R L(v2) and
r(v) <R l(v2), then v ≪R v2, which is a contradiction, since v2 intersects v in R. Therefore, L(v2) <R R(v) or l(v2) <R r(v).

Suppose that L(v2) <R R(v). An example of such a trapezoid representation R is the representation R1 in Fig. 4(a). Then,
since v1 ≪R v2 and v ≪R v′ by assumption, it follows that R(v1) <R L(v2) <R R(v) <R L(v′), i.e. R(v1) <R L(v′).
Now, if r(v1) <R l(v′), then v1 ≪R v′, which is a contradiction, since v1 intersects v′ in R. Thus l(v′) <R r(v1). Therefore,
since v ≪R v′ and v1 ≪R v2 by assumption, it follows that r(v) <R l(v′) <R r(v1) <R l(v2), i.e. r(v) <R l(v2). Summarizing,
there exist two vertices v1, v2 ∈ N(v), such that v1 ≪R v2, L(v2) <R R(v), and r(v) <R l(v2), and thus v is upper-right-closed
in R by Definition 1. Moreover, R(v1) <R L(v′) and l(v′) <R r(v1), and thus v′ is lower-left-closed in R by Definition 1.

Suppose now that l(v2) <R r(v). Consider the trapezoid representation R′ ofG that is obtained by performing a horizontal
axis flipping of R. Examples of these trapezoid representations R and R′ are the representations R2 and R1 in Fig. 4(b) and (a),
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Fig. 4. Six basic trapezoid representations.

respectively. Note that L(v2) <R′ R(v), since l(v2) <R r(v). Moreover, it remains v1 ≪R′ v2, since also v1 ≪R v2. Therefore,
it follows by the previous paragraph that v is upper-right-closed in R′ and that v′ is lower-left-closed in R′. Thus, v is lower-
right-closed in R and v′ is upper-left-closed in R. This completes the proof of the lemma. �

The next two lemmas concern similar properties of the graphs induced by the trapezoid representations of Fig. 4(c)
and (e), respectively.

Lemma 2. Let G = (V , E) be the trapezoid graph induced by the trapezoid representation of Fig. 4(c). Then, in any trapezoid
representation R of G, such that v ≪R v′,

• v is upper-right-closed in R and v′ is upper-left-closed in R, or
• v is lower-right-closed in R and v′ is lower-left-closed in R.

Proof. Consider a trapezoid representation R of G, such that v ≪R v′. Since the vertices v3 and v4 are indistinguishable, as
N(v3) = N(v4), wemay assumewithout loss of generality that v3 ≪R v4. Furthermore, since v ≪R v′ and v1 ∈ N(v)\N(v′),
it follows that v1 ≪R v′. Moreover, similarly to the proof of Lemma 1, note that if both R(v) <R L(v2) and r(v) <R l(v2),
then v ≪R v2, which is a contradiction, since v2 intersects v in R. Therefore, L(v2) <R R(v) or l(v2) <R r(v).

Suppose that L(v2) <R R(v). An example of such a trapezoid representation R is the representation R3 in Fig. 4(c).
Consider the induced subgraph G1 = G[{v, v1, v2, v4}] of G; note that G1 is the graph investigated in Lemma 1, where
vertex v4 corresponds to vertex v′ of Lemma 1. Similarly to the proof of Lemma 1 in the corresponding case, it follows
that v is upper-right-closed in R and that l(v4) <R r(v1). Therefore, since v3 ≪R v4 and v1 ≪R v′, it follows that
r(v3) <R l(v4) <R r(v1) <R l(v′), i.e. r(v3) <R l(v′). Now, if R(v3) <R L(v′), then v3 ≪R v′, which is a contradiction,
since v3 intersects v′ in R. Thus L(v′) <R R(v3). Summarizing, there exist two vertices v3, v4 ∈ N(v′), such that v3 ≪R v4,
r(v3) <R l(v′), and L(v′) <R R(v3), and thus v′ is upper-left-closed in R by Definition 1.

Suppose now that l(v2) <R r(v). Consider the trapezoid representation R′ ofG that is obtained by performing a horizontal
axis flipping of R. Examples of these trapezoid representations R and R′ are the representations R4 and R3 in Fig. 4(d) and (c),
respectively. Note that L(v2) <R′ R(v), since l(v2) <R r(v). Moreover, it remains v3 ≪R′ v4, since also v3 ≪R v4. Therefore,
it follows by the previous paragraph that v is upper-right-closed in R′ and that v′ is upper-left-closed in R′. Thus, v is lower-
right-closed in R and v′ is lower-left-closed in R. This completes the proof of the lemma. �

Lemma 3. Let G = (V , E) be the trapezoid graph induced by the trapezoid representation of Fig. 4(e). Then, in any trapezoid
representation R of G, such that v ≪R v′,

• v is upper-right-closed in R and v′ is lower-left-closed in R, or
• v is lower-right-closed in R and v′ is upper-left-closed in R.

Proof. Consider a trapezoid representation R of G, such that v ≪R v′. Since the vertices v5 and v6 are indistinguishable, as
N(v5) = N(v6), wemay assumewithout loss of generality that v5 ≪R v6. Furthermore, since v ≪R v′ and v1 ∈ N(v)\N(v′),
it follows that v1 ≪R v′. Therefore, since v1 ≪R v′ and v3 ∈ N(v1) \ N(v′), it follows that v3 ≪R v′. Moreover, similarly to
the proof of Lemma 1, note that if both R(v) <R L(v2) and r(v) <R l(v2), then v ≪R v2, which is a contradiction, since v2
intersects v in R. Therefore, L(v2) <R R(v) or l(v2) <R r(v).
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Fig. 5. (a) A 1-connected graph G, where G − {v} has k ≥ 2 connected components G1,G2, . . . ,Gk and (b) a trapezoid representation for such a graph G.

Suppose that L(v2) <R R(v). An example of such a trapezoid representation R is the representation R5 in Fig. 4(e).
Consider the induced subgraph G1 = G[{v, v1, v2, v3, v4, v6}] of G; note that G1 is the graph investigated in Lemma 2,
where vertex v6 corresponds to vertex v′ of Lemma 2. Similarly to the proof of Lemma 2 in the corresponding case, it
follows that v is upper-right-closed in R and that L(v6) <R R(v3). Therefore, since v5 ≪R v6 and v3 ≪R v′, it follows
that R(v5) <R L(v6) <R R(v3) <R L(v′), i.e. R(v5) <R L(v′). Now, if r(v5) <R l(v′), then v5 ≪R v′, which is a contradiction,
since v5 intersects v′ in R. Thus l(v′) <R r(v5). Summarizing, there exist two vertices v5, v6 ∈ N(v′), such that v5 ≪R v6,
R(v5) <R L(v′), and l(v′) <R r(v5), and thus v′ is lower-left-closed in R by Definition 1.

Suppose now that l(v2) <R r(v). Consider the trapezoid representation R′ ofG that is obtained by performing a horizontal
axis flipping of R. Examples of these trapezoid representations R and R′ are the representations R6 and R5 in Fig. 4(f) and (e),
respectively. Note that L(v2) <R′ R(v), since l(v2) <R r(v). Moreover, it remains that v5 ≪R′ v6, since also v5 ≪R v6.
Therefore, it follows by the previous paragraph that v is upper-right-closed in R′ and that v′ is lower-left-closed in R′. Thus,
v is lower-right-closed in R and v′ is upper-left-closed in R. This completes the proof of the lemma. �

5. Basic constructions of triangle graphs

In this section we investigate the structure of some specific triangle graphs and devise special properties of them.
As triangle graphs are also trapezoid graphs, in order to prove these properties, we use some of the results provided in
Section 4. Similarly to the trapezoid graphs investigated in Section 4, also the investigated graphs of the present section will
then be used as gadgets in our reduction for the triangle graph recognition problem in Section 6. Before investigating any
specific triangle graph, we first provide in the next theorem a generic result that concerns the triangle representations of the
1-connected triangle graphs. An example of a 1-connected graph Gwith a cut vertex v is illustrated in Fig. 5(a).

Theorem 2. Let G = (V , E) be a 1-connected triangle graph and v ∈ V be a cut vertex of G. Then, in any triangle representation
R of G, the trapezoid of v is open in R.

Proof. Let R be any triangle representation of G. For the sake of contradiction, suppose that v is closed in R, i.e. v is both
left-closed and right-closed in R. We will prove that, in this case, the trapezoid Tv has four distinct endpoints, and thus Tv is
not a triangle in R, which comes in contradiction to the assumption that R is a triangle representation. Let G1,G2, . . . ,Gk be
the connected components of G − {v}, where k ≥ 2. Then, for any i ≠ j, either all trapezoids of Gi lie completely to the left
or to the right of all trapezoids of Gj in R.

Note that v is upper-right-closed in R (as v is right-closed in R by assumption). Therefore, in particular, there exists
by Definition 1 a vertex w ∈ N(v), such that L(w) <R R(v) and r(v) <R l(w) (cf. Fig. 5(b)). Since v is also lower-right-
closed in R, there exists a vertex w′

∈ N(v), such that l(w′) <R r(v) and R(v) <R L(w′) (cf. Fig. 5(b)). Summarizing,
l(w′) <R r(v) <R l(w) and L(w) <R R(v) <R L(w′). Therefore, in particular, the trapezoids of w and of w′ intersect in R,
i.e. ww′

∈ E. Therefore, both w, w′
∈ V (Gi), for some i = 1, 2, . . . , k.

Similarly, since v is upper-left-closed and lower-left-closed in R (as v is left-closed in R by assumption), there exist two
vertices u, u′

∈ N(v), such that R(u′) <R L(v) <R R(u) and r(u) <R l(v) <R r(u′), cf. Fig. 5(b). Therefore, in particular, the
trapezoids of u and of u′ intersect in R, i.e. uu′

∈ E. Thus, both u, u′
∈ V (Gj), for some j = 1, 2, . . . , k.

Suppose that j = i, i.e. the verticesw, w′, u, u′ belong to the same connected component ofG−{v}. Consider now another
connected component Gℓ of G− {v}, where ℓ ≠ i. Note that Gℓ exists, since G− {v} has at least two connected components.
Recall that either all trapezoids of Gℓ lie to the left or to the right of all trapezoids of Gi in R. Suppose that the trapezoids of
Gℓ lie to the left of the trapezoids of Gi in R, i.e. x ≪R y for every x ∈ V (Gℓ) and y ∈ V (Gi). Then, since r(u) <R l(v) and
R(u′) <R L(v), and since u, u′

∈ V (Gi), it follows that x ≪R v for every x ∈ V (Gℓ). Thus no vertex of Gℓ is adjacent to v, i.e. G
is not connected, which is a contradiction by the assumption on G. Similarly, suppose that the trapezoids of Gℓ lie to the right
of the trapezoids of Gi in R, i.e. y ≪R x for every x ∈ V (Gℓ) and y ∈ V (Gi). Then, since r(v) <R l(w) and R(v) <R L(w′), and
since w, w′

∈ V (Gi), it follows that v ≪R x for every x ∈ V (Gℓ). Thus no vertex of Gℓ is adjacent to v, i.e. G is not connected,
which is again a contradiction. Therefore j ≠ i.

Recall that r(u) <R l(v) ≤R r(v) <R l(w), and thus r(u) <R l(w). Furthermore, recall that R(u′) <R L(v) ≤R
R(v) <R L(w′), and thus R(u′) <R L(w′). Moreover, since u, u′

∈ V (Gj) and w, w′
∈ V (Gi), where j ≠ i, it follows that

uw, u′w′ /∈ E, and thus u ≪R w and u′
≪R w′. Summarizing, there exist four distinct vertices u, u′, w,w′

∈ N(v), such
that L(v) <R R(u) <R L(w) <R R(v) and l(v) <R r(u′) <R l(w′) <R r(v). Therefore L(v) <R R(v) and l(v) <R r(v),
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i.e. L(v) ≠ R(v) and l(v) ≠ r(v), which contradicts the fact that R is a triangle representation. An example of such a
forbidden representation R, where V (G1) = {u, u′

} and V (G2) = {w, w′
}, is illustrated in Fig. 5(b). Therefore, v is open

in R. �

We now use the generic Theorem 2, as well as the results of Section 4, in order to prove some properties of the trapezoid
representations of Fig. 6. Note that, although the representations of Fig. 6 are not triangle representations, they are standard
trapezoid representations, and thus the graphs induced by these representations are triangle graphs by Theorem 1.

Lemma 4. Let G = (V , E) be the triangle graph induced by the trapezoid representation of Fig. 6(a). Then, in any triangle
representation R of G, such that a7 ≪R u, u is left-open in R if and only if w is right-open in R.

Proof. Let R be a triangle representation of G, such that a7 ≪R u. Note that G − {u, w} has the two connected components
G1 = G[a1, a2, a3, a4, a5, a6, a7] and G2 = G[v, b1, b2, b3, b4, b5, b6], and thus one of these two induced subgraphs of G
lies completely to the left of the other in R. If v ≪R a7 ≪R u, then a7 would intersect with a triangle of G2, which is a
contradiction, since a7 ∈ V (G1). Furthermore, if a7 ≪R v ≪R u, then v would intersect with a triangle of G1, which is a
contradiction, since v ∈ V (G2). Therefore a7 ≪R u ≪R v; similarly, a7 ≪R w ≪R v. Therefore, every triangle of G1 must lie
completely to the left of every triangle of G2 in R.

(⇒) Suppose that u is left-open in R, i.e. u is upper-left-open or lower-left-open in R. By possibly performing a horizontal
axis flipping of R, we may assume without loss of generality that u is lower-left-open in R. Consider the induced subgraphs
H1 = G[{a7, a1, a2, u}] andH2 = G[{a7, a1, a2, w}] ofG. Note that bothH1 andH2 are isomorphic to the graph investigated in
Lemma1. Sinceu is assumed to be lower-left-open inR (and thus also in the restrictionR[H1]of the triangle representationR),
Lemma 1 implies that u is upper-left-closed and a7 is lower-right-closed in R[H1]. Therefore, a7 is lower-right-closed also
in the restriction R[H1 − {u}] = R[H2 − {w}] of R. Thus, Lemma 1 implies that a7 is lower-right-closed and w is upper-left-
closed in the restriction R[H2] of R, and thus w is upper-left-closed in R.

Consider now the induced subgraphs H3 = G[{a7, a3, a4, u}] and H4 = G[{a7, a3, a4, a5, a6, w}] of G. Note that H3 is
isomorphic to the graph investigated in Lemma 1, while H4 is isomorphic to the graph investigated in Lemma 2. Since u is
assumed to be lower-left-open in R (and thus also in R[H3]), Lemma 1 implies that u is upper-left-closed and a7 is lower-
right-closed in R[H3]. Therefore, a7 is lower-right-closed also in the restriction R[H3 − {u}] = R[H4 − {a5, a6, w}] of the
triangle representation R. Thus, Lemma 2 implies that a7 is lower-right-closed and w is lower-left-closed in the restriction
R[H4] of R, and thus w is lower-left-closed in R. Therefore, since w is also upper-left-closed in R by the previous paragraph,
it follows that w is left-closed in R.

Recall that R is a triangle representation by assumption, and thus the restriction R[G − {u}] is also a triangle
representation. Moreover, since w is left-closed in R, it follows that w is also left-closed in R[G − {u}]. Note now that the
connected graph G − {u} satisfies the conditions of Theorem 2. Indeed, w is a cut vertex of G − {u} and (G − {u}) − {w} has
the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and G2 = G[v, b1, b2, b3, b4, b5, b6]. Therefore, since w is
left-closed in R[G − {u}], Theorem 2 implies that w is right-open in R[G − {u}], and thus also w is right-open in R.

(⇐) Consider the triangle representation R′ of G that is obtained by performing a vertical axis flipping of R. Note that
v ≪R′ w, since w ≪R v. Furthermore, note that there is a trivial automorphism of G, which maps vertex u to w, vertex a7
to v, and the vertices {a1, a2, a3, a4, a5, a6} to the vertices {b1, b2, b3, b4, b5, b6}, in this order. That is, the relation a7 ≪R u
in the representation R is mapped by this automorphism to the relation v ≪R′ w in the representation R′. It follows now
directly by the necessity part (⇒) that, if w is left-open in R′, then u is right-open in R′. That is, if w is right-open in R, then
u is left-open in R. �

Now, using Lemma 4, we can prove the next two lemmas.

Lemma 5. Let G = (V , E) be the triangle graph induced by the trapezoid representation of Fig. 6(a). Then, in any triangle
representation R of G, such that a7 ≪R u, u is left-open in R if and only if v is left-open in R.

Proof. Let R be a triangle representation of G, such that a7 ≪R u. Recall by the proof of Lemma 4 that w ≪R v.
(⇒) Suppose that u is left-open in R. Then,w is right-open in R by Lemma4, i.e.w is upper-right-open or lower-right-open

in R. By possibly performing a horizontal axis flipping of R, we may assume without loss of generality that w is upper-right-
open in R. Consider the induced subgraphs H1 = G[{w, b1, b2, v}] and H2 = G[{w, b5, b6, v}] of G. Note that both H1 and H2
are isomorphic to the graph investigated in Lemma 1. Since w is assumed to be upper-right-open in R (and thus also in both
restrictions R[H1] and R[H2] of R), Lemma 1 implies thatw is lower-right-closed and v is upper-left-closed in both R[H1] and
R[H2], and thus v is upper-left-closed in R. Therefore, since b1, b2, b5, b6 are the only neighbors of v in G, it follows that v is
lower-left-open in R, and thus v is left-open in R.

(⇐) Suppose that v is left-open in R, i.e. v is upper-left-open or lower-left-open in R. By possibly performing a horizontal
axis flipping of R, we may assume without loss of generality that v is lower-left-open in R. Consider the induced subgraphs
H3 = G[{u, b1, b2, v}] and H4 = G[{u, b3, b4, b5, b6, v}] of G. Note that H3 is isomorphic to the graph investigated in
Lemma 1, while H4 is isomorphic to the graph investigated in Lemma 2. Since v is assumed to be lower-left-open in R,
it follows that v is lower-left-open also in the restrictions R[H3] and R[H4] of R. Therefore, Lemma 1 implies that v is upper-
left-closed and u is lower-right-closed in R[H3], and thus also in R. Similarly, Lemma 2 implies that v is upper-left-closed
and u is upper-right-closed in R[H4], and thus also in R. Summarizing, u is both lower-right-closed and upper-right-closed
in R, and thus u is right-closed in R.
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Fig. 6. Two basic trapezoid representations.

Recall that R is a triangle representation by assumption, and thus the restriction R[G − {w}] is also a triangle
representation. Moreover, since u is right-closed in R, it follows that u is also right-closed in R[G − {w}]. Note now that
the connected graph G− {w} satisfies the conditions of Theorem 2. Indeed, u is a cut vertex of G− {w} and (G− {w}) − {u}
has the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and G2 = G[v, b1, b2, b3, b4, b5, b6]. Therefore, since u
is right-closed in R[G − {w}], Theorem 2 implies that u is left-open in R[G − {w}], and thus also u is left-open in R. �

Lemma 6. Let G = (V , E) be the triangle graph induced by the trapezoid representation of Fig. 6(b). Then, in any triangle
representation R of G, such that a7 ≪R u, u is left-open in R if and only if v is left-closed in R.

Proof. Let R be a triangle representation of G, such that a7 ≪R u. Note that the induced subgraph H = G − {b8, v} is
isomorphic to the graph investigated in Lemmas 4 and 5. That is, H is isomorphic to the graph induced by the trapezoid
representation of Fig. 6(a).

(⇒) Suppose that u is left-open in R. Then, u is also left-open in the restriction R[H] of R. Therefore, w is right-open in
R[H] by Lemma 4, and thus w is also right-open in R. That is, w is upper-right-open or lower-right-open in R. By possibly
performing a horizontal axis flipping ofR, wemay assumewithout loss of generality thatw is upper-right-open inR. Consider
the induced subgraphsH1 = G[{w, b1, b2, v}] andH2 = G[{w, b5, b6, b7, b8, v}] ofG. Note thatH1 is isomorphic to the graph
investigated in Lemma 1,whileH2 is isomorphic to the graph investigated in Lemma2. Sincew is assumed to be upper-right-
open in R, it follows that w is upper-right-open also in the restrictions R[H1] and R[H2] of R. Therefore, Lemma 1 implies
that w is lower-right-closed and v is upper-left-closed in R[H1], and thus also in R. Similarly, Lemma 2 implies that w is
lower-right-closed and v is lower-left-closed in R[H2], and thus also in R. Summarizing, v is both upper-left-closed and
lower-left-closed in R, and thus v is left-closed in R.

(⇐) Suppose that u is left-closed in R. Recall that R is a triangle representation by assumption, and thus the restriction
R[G − {w}] is also a triangle representation. Moreover, since u is left-closed in R, it follows that u is also left-closed
in R[G − {w}]. Note now that the connected graph G − {w} satisfies the conditions of Theorem 2. Indeed, u is a cut
vertex of G − {w} and (G − {w}) − {u} has the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and G2 =

G[v, b1, b2, b3, b4, b5, b6, b7, b8]. Therefore, since u is left-closed in R[G − {w}], Theorem 2 implies that u is right-open
inR[G−{w}], and thus alsou is right-open inR. That is,u is upper-right-openor lower-right-open inR. By possibly performing
a horizontal axis flipping of R, we may assume without loss of generality that u is upper-right-open in R.

Consider the induced subgraphs H3 = G[{u, b1, b2, v}] and H4 = G[{u, b3, b4, b5, b6, b7, b8, v}] of G. Note that H3 is
isomorphic to the graph investigated in Lemma 1, while H4 is isomorphic to the graph investigated in Lemma 3. Since u
is assumed to be upper-right-open in R, it follows that u is upper-right-open also in the restrictions R[H3] and R[H4] of R.
Therefore, Lemma 1 implies that u is lower-right-closed and v is upper-left-closed in R[H3], and thus also in R. Similarly,
Lemma 3 implies that u is lower-right-closed and v is upper-left-closed in R[H4]. That is, v is upper-left-closed in both R[H3]

and R[H4], and thus v is upper-left-closed in R. Therefore, since b1, b2, b7, b8 are the only neighbors of v in G, it follows that
v is lower-left-open in R, and thus v is left-open in R. This completes the proof of the lemma. �

6. The recognition of triangle graphs

In this section we provide a reduction from the three-satisfiability (3SAT) problem to the problem of recognizing whether
a given graph is a triangle graph. Given a boolean formula φ in conjunctive normal form with three literals in each clause
(3-CNF), φ is satisfiable if there is a truth assignment of φ, such that every clause contains at least one true literal. The
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Fig. 7. The construction Rαi that is associated to the clause αi of the formula φ, for i ∈ {1, 2, . . . , k}.

problem of deciding whether a given 3-CNF formula φ is satisfiable is one of the most known NP-complete problems. We
can assume without loss of generality that each clause has literals that correspond to three distinct variables. Given the
formulaφ, we construct in polynomial time a trapezoid graphGφ , such thatGφ is a triangle graph if and only ifφ is satisfiable.
Before constructing thewhole trapezoid graphGφ , we construct first some smaller trapezoid graphs for each clause and each
variable that appears in the given formula φ.

6.1. The construction for each clause

Consider a 3-CNF formula φ = α1 ∧ α2 ∧ · · · ∧ αk with k clauses α1, α2, . . . , αk and n boolean variables x1, x2, . . . , xn,
such that αi = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) for i = 1, 2, . . . , k. For the literals ℓi,1, ℓi,2, ℓi,3 of the clause αi, let ℓi,1 ∈ {xri,1 , xri,1},
ℓi,2 ∈ {xri,2 , xri,2}, and ℓi,3 ∈ {xri,3 , xri,3}, where 1 ≤ ri,1 < ri,2 < ri,3 ≤ n. Let L1 and L2 be two parallel lines in the plane. To
every clause αi, where i = 1, 2, . . . , k, we associate the trapezoid representation Rαi with 7 trapezoids that is illustrated in
Fig. 7. Note that the trapezoid of the vertex zi in Rαi is trivial, i.e. a line. In this construction, the trapezoids of the vertices vi,1,
vi,2, and vi,3 correspond to the literals ℓi,1, ℓi,2, and ℓi,3, respectively. Furthermore, by the construction of Rαi , the left line of
vi,j lies completely to the left of the left line of vi,j+1 in Rαi for j ∈ {1, 2}.

We prove now two basic properties of the construction Rαi in Fig. 7 for the clause αi that will be then used in the proof
of correctness of our reduction.
Lemma 7. Let Gαi be the trapezoid graph induced by the trapezoid representation Rαi of Fig. 7. Then, in any trapezoid
representation R of Gαi , such that vi,1 ≪R zi, one of vi,1, vi,2, vi,3 is right-closed in R.
Proof. Let R be a trapezoid representation of Gαi , such that vi,1 ≪R zi. Note that vi,2, vi,3 ∈ N(vi,1) \ N(zi). Thus, since
vi,1 ≪R zi by assumption, it follows that also vi,2 ≪R zi and vi,3 ≪R zi. Furthermore, note that v′

i,1 ∈ N(zi) \ N(vi,1),
v′

i,2 ∈ N(zi) \ N(vi,2), and v′

i,3 ∈ N(zi) \ N(vi,3). Therefore, since vi,1 ≪R zi, vi,2 ≪R zi, and vi,3 ≪R zi, it follows that
vi,1 ≪R v′

i,1, vi,2 ≪R v′

i,2, and vi,3 ≪R v′

i,3. Moreover, note that we can locally change appropriately in R the right lines of
vi,1, vi,2, vi,3 and the left lines of v′

i,1, v
′

i,2, v
′

i,3, such that the relative position of the endpoints R(vi,1), R(vi,2), R(vi,3) on the
line L1 is arbitrary. Therefore, we assume throughout the proof without loss of generality that R(vi,1) <R R(vi,2) <R R(vi,3)
(cf. Fig. 7).

We will now prove that r(vi,3) <R r(vi,2) <R r(vi,1). Suppose otherwise that r(vi,1) <R r(vi,2). Then, since R(vi,1) <R
R(vi,2) and vi,2 ≪R v′

i,2 by the previous paragraph, it follows that also vi,1 ≪R v′

i,2. This is a contradiction, since
vi,1v

′

i,2 ∈ E(Gαi) (cf. Fig. 7). Therefore r(vi,2) <R r(vi,1). Now suppose that r(vi,2) <R r(vi,3). Then, similarly, since
R(vi,2) <R R(vi,3) and vi,3 ≪R v′

i,3 by the previous paragraph, it follows that also vi,2 ≪R v′

i,3. This is again a contradiction,
since vi,2v

′

i,3 ∈ E(Gαi). Summarizing, r(vi,3) <R r(vi,2) <R r(vi,1) (cf. Fig. 7).
Recall that vi,1 ≪R v′

i,1. Therefore, since r(vi,2) <R r(vi,1) by the previous paragraph, it follows that r(vi,2) <R

r(vi,1) <R r(v′

i,1), i.e. r(vi,2) <R l(v′

i,1). Now, if R(vi,2) <R L(v′

i,1), then vi,2 ≪R v′

i,1, which is a contradiction, since
vi,2v

′

i,1 ∈ E(Gαi) (cf. Fig. 7). Thus L(v′

i,1) <R R(vi,2). Summarizing, there exist two vertices vi,1, v
′

i,1 ∈ N(vi,2), such that
vi,1 ≪R v′

i,1, L(v
′

i,1) <R R(vi,2), and r(vi,2) <R l(v′

i,1), and thus vi,2 is upper-right-closed in R by Definition 1. Therefore,
since also R(vi,2) <R R(vi,3) and r(vi,3) <R r(vi,2), it follows that L(v′

i,1) <R R(vi,3) and r(vi,3) <R l(v′

i,1). Thus, since
vi,1, v

′

i,1 ∈ N(vi,3), it follows by Definition 1 that also vi,3 is upper-right-closed in R.
Similarly, since vi,3 ≪R v′

i,3 and R(vi,2) <R R(vi,3), it follows that R(vi,2) <R R(vi,3) <R L(v′

i,3), i.e. R(vi,2) <R L(v′

i,3). Now,
if r(vi,2) <R l(v′

i,3), then vi,2 ≪R v′

i,3, which is a contradiction, since vi,2v
′

i,3 ∈ E(Gαi). Thus l(v
′

i,3) <R r(vi,2). Summarizing,
there exist two vertices vi,3, v

′

i,3 ∈ N(vi,2), such that vi,3 ≪R v′

i,3, l(v
′

i,3) <R r(vi,2), and R(vi,2) <R L(v′

i,3), and thus vi,2
is lower-right-closed in R by Definition 1. Therefore, since also r(vi,2) <R r(vi,1) and R(vi,1) <R R(vi,2), it follows that
l(v′

i,3) <R r(vi,1) and R(vi,1) <R L(v′

i,3). Thus, since vi,3, v
′

i,3 ∈ N(vi,1), it follows by Definition 1 that also vi,1 is lower-right-
closed in R.

Summarizing, vi,3 is upper-right-closed in R and vi,1 is lower-right-closed in R, while vi,2 is both upper-right-closed and
lower-right-closed in R, i.e. vi,2 is right-closed in R by Definition 2. This completes the proof of the lemma. �

Corollary 1. Consider the trapezoid representation Rαi of Fig. 7. For every p ∈ {1, 2, 3}, we can locally change appropriately
in Rαi the right lines of vi,1, vi,2, vi,3 and the left lines of v′

i,1, v
′

i,2, v
′

i,3, such that vi,p is right-closed and vi,p′ is right-open, for every
p′

∈ {1, 2, 3} \ {p}.
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Fig. 8. The construction Rxj that is associated to the variable xj of the formula φ, where j = 1, 2, . . . , n.

Proof. Note that in the representation Rαi of Fig. 7, the relative position of the endpoints R(vi,1), R(vi,2), R(vi,3) on the line
L1 is R(vi,1) <Rαi

R(vi,2) <Rαi
R(vi,3). Then, it follows by the proof of Lemma 7 that vi,2 is right-closed in Rαi . Moreover, it is

straightforward to see that the other two trapezoids vi,1 and vi,3 are right-open in Rαi (in particular, vi,1 is upper-right-open
in Rαi and vi,3 is lower-right-open in Rαi ).

Furthermore, recall by the proof of Lemma 7 that we can locally change appropriately in Rαi the right lines of vi,1, vi,2, vi,3
and the left lines of v′

i,1, v
′

i,2, v
′

i,3, such that the relative position of the endpoints R(vi,1), R(vi,2), R(vi,3) on the line L1 is
arbitrary. For an arbitrary p ∈ {1, 2, 3}, consider now the trapezoid representation R that is obtained by changing locally
these lines in Rαi , such that the endpoint R(vi,p) lies in themiddle of R(vi,1), R(vi,2), R(vi,3) on L1. Then, similarly to the above,
vi,p is right-closed in this representationR, while the other two trapezoidsvi,p′ are right-open inR, for every p′

∈ {1, 2, 3}\{p}.
This completes the proof of the corollary. �

6.2. The construction for each variable

Let xj be a variable of the formula φ, where 1 ≤ j ≤ n. Let xj appear in φ (either as xj or negated as xj) in the mj clauses
αij,1 , αij,2 , . . . , αij,mj

, where 1 ≤ ij,1< ij,2< · · · < ij,mj≤ k. Then, we associate to the variable xj the trapezoid representation
Rxj with 2mj + 7 trapezoids that is illustrated in Fig. 8. In this construction, the trapezoids of the vertices uj,t and wj,t , where
1 ≤ t ≤ mj, correspond to the appearance of the variable xj (either as xj or negated as xj) in the clause αij,t in φ. Note that the
trapezoids of the vertices a1j , a

2
j , . . . , a

7
j are trivial, i.e. lines. By the construction of Rxj , the right line of uj,t lies completely

to the left of the right line of wj,t for all values of j = 1, 2, . . . , n and t = 1, 2, . . . ,mj. Furthermore, the right line of each
of {uj,t , wj,t} lies completely to the left of the right line of each of {uj,t ′ , wj,t ′} in Rxj , whenever t < t ′.

6.3. The construction the trapezoid graph Gφ

We construct now a trapezoid representation Rφ of the whole trapezoid graph Gφ , by composing the constructions
Rαi and Rxj presented in Sections 6.1 and 6.2, as follows. First, we place in Rφ the k trapezoid representations Rαi ,
where i = 1, 2, . . . , k, between the lines L1 and L2 such that, whenever i < i′, every trapezoid of Rαi lies completely to
the left of every trapezoid of Rαi′

. Then, we place in Rφ the n trapezoid representations Rxj , where j = 1, 2, . . . , n, between
the lines L1 and L2 such that, whenever j < j′, the lines of a1j , a

2
j , . . . , a

7
j and the left lines of all uj,t , wj,t , lie completely to

the left of the lines of a1j′ , a
2
j′ , . . . , a

7
j′ and the left lines of all uj′,t ′ , wj′,t ′ . Moreover, for every j, j′ = 1, 2, . . . , n, the lines of

a1j , a
2
j , . . . , a

7
j and the left lines of all uj,t , wj,t , lie in Rφ completely to the left of the right lines of all uj′,t ′ , wj′,t ′ . Thus, note in

particular that every uj,t intersects every other uj′,t ′ and every wj′,t ′ in Rφ .
Let j ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . ,mj}. Recall that, by the construction of Rxj in Section 6.2, the pair of trapezoids

{uj,t , wj,t} corresponds to the appearance of the variable xj in a clause αi of φ, where i = ij,t ∈ {1, 2, . . . , k}. That is, either
ℓi,p = xj or ℓi,p = xj for some p ∈ {1, 2, 3}, where αi = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3). Then, we place in Rφ the right lines of the
trapezoids uj,t and wj,t directly before the left line of vi,p (i.e. no line of any other trapezoid intersects with or lies between
the right lines of uj,t and wj,t and the left line of vi,p).

In order to finalize the construction of Rφ , we distinguish now the two cases regarding the literal ℓi,p of the clause αi, in
which the variable xj appears. If ℓi,p = xj, then we add to Rφ six trivial trapezoids (i.e. lines) {b1j,t , b

2
j,t , . . . , b

6
j,t}, as it is shown

in Fig. 9(b). On the other hand, if ℓi,p = xj, then we add to Rφ eight trivial trapezoids (i.e. lines) {b1j,t , b
2
j,t , . . . , b

8
j,t}, as it is

shown in Fig. 9(b). In particular, we place these six (resp. eight) new lines in Rφ such that they intersect only the right lines
of uj,t andwj,t and the left line of vi,p in Rφ . Note that the trapezoid graphs induced by the representations in Fig. 9(a) and (b)
are isomorphic to the graphs investigated in Lemmas 5 and 6, respectively. This completes the construction of the trapezoid
representation Rφ , while Gφ is the trapezoid graph induced by Rφ .

It is now easy to verify that, by the construction of Rφ , all the trapezoids uj,t are upper-left-closed and right-closed in Rφ ,
while all the trapezoids wj,t are lower-right-closed and left-closed in Rφ . Furthermore, all the trapezoids uj,t are lower-left-
open in Rφ and all the trapezoids wj,t are upper-right-open in Rφ . Consider now a trapezoid vi,p in Rφ . If vi,p corresponds to
a positive literal ℓi,p = xj (for some variable xj), then vi,p is upper-left-closed and lower-left-open in Rφ (cf. Fig. 9(a)). On the
other hand, if vi,p corresponds to a negative literal ℓi,p = xj, then vi,p is left-closed in Rφ (cf. Fig. 9(b)).
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a

b

Fig. 9. The composition of the trapezoids of Rxj with the trapezoid vi,p of Rαi , in the cases where (a) ℓi,p = xj and (b) ℓi,p = xj .

a

b

Fig. 10. The case where xj = 0 in the truth assignment τ : the horizontal axis flipping operations of the lines {a2j , a
2
j } and {b2j,t , b

2
j,t }, t = 1, 2, . . . ,mj , where

(a) ℓi,p = xj = 0, (b) ℓi,p = xj = 1.

In order to prove the correctness of our reduction (cf. Theorem 3), we prove separately the necessary and sufficient
conditions in the next two lemmas.

Lemma 8. If the formula φ is satisfiable, then Gφ is a triangle graph.

Proof. Suppose that φ has a satisfying truth assignment τ . Starting from Rφ , we will construct a standard trapezoid
representation R0 of Gφ . This will then imply that Gφ is a triangle graph by Theorem 1.

First consider an index j that corresponds to a variable xj = 0 in the truth assignment τ . Furthermore consider an
imaginary line L3 that is parallel to L1 and L2 and has the same distance from both L1 and L2. We replace in Rφ the lines
{a1j , a

2
j } (resp. the lines {b1j,t , b

2
j,t} for every index t = 1, 2, . . . ,mj) by their mirror image along L3, such that, in the resulting

representation, these flipped lines intersect with the same trapezoids as the lines {a1j , a
2
j } (resp. the lines {b1j,t , b

2
j,t}) intersect

in Rφ . In the case where the corresponding literal ℓi,p equals a variable xj, i.e. if ℓi,p = xj = 0, these flipping operations
are illustrated in Fig. 10(a). Otherwise, in the case where the corresponding literal ℓi,p equals a negated variable xj, i.e. if
ℓi,p = xj = 1, these flipping operations are illustrated in Fig. 10(b). For better visibility, the flipped lines are drawn dashed
in Fig. 10. For every other index j that corresponds to a variable xj = 1 in τ , we leave the lines {a1j , a

2
j }, as well as all the lines

{b1j,t , b
2
j,t}, at the same position in R0 as in Rφ .

Note that, after performing these flipping operations, for every index j that corresponds to a variable xj = 0 in τ , all the
trapezoids uj,t are left-closed and right-open, while all the trapezoids wj,t are left-open and right-closed. On the contrary,
for every index j that corresponds to a variable xj = 1 in τ , all the trapezoids uj,t are left-open and right-closed, while all the
trapezoids wj,t are left-closed and right-open (cf. Fig. 9). That is, after performing the above flipping operations, for every
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variable xj of φ, all the trapezoids uj,t and wj,t are open in the resulting trapezoid representation. Moreover, for all indices
i, p, the trapezoid vi,p is left-open in the resulting trapezoid representation if and only if the literal ℓi,p is satisfied in τ , i.e. if
and only if ℓi,p = 1 in τ (cf. Figs. 9 and 10).

Let us now complete the construction of R0 from Rφ . Consider first a clause αi of φ, where i = 1, 2, . . . , k. Then, αi has
at least one satisfied literal ℓi,p = 1 in the truth assignment τ , where p ∈ {1, 2, 3}, since τ is assumed to be a satisfying
assignment of φ. Therefore, after performing the above flipping operations, there exists by the previous paragraph at least
one trapezoid vi,p, where p ∈ {1, 2, 3}, which is left-open in the resulting trapezoid representation. Recall nowby Corollary 1
that we can locally change in Rαi the right lines of vi,1, vi,2, vi,3 and the left lines of v′

i,1, v
′

i,2, v
′

i,3, such that vi,p is right-closed
and vi,p′ is right-open, for every p′

∈ {1, 2, 3} \ {p}. Therefore, after changing appropriately these lines of the trapezoids, vi,p
is right-closed and left-open in the resulting representation, while vi,p′ is right-open, for every p′

∈ {1, 2, 3} \ {p}. That is,
all vi,1, vi,2, vi,3 are open in the resulting trapezoid representation.

Denote by R0 the trapezoid representation that is obtained if we perform all the above local changes. Note that all
trapezoids uj,t , wj,t , and vi,p are open in R0 for all pairs of indices j, t and i, p. Furthermore, it is easy to see that also the
trapezoids v′

i,p are right-open in R0 (in particular, they are also right-open in the initial trapezoid representation Rαi , cf. Fig. 7).
All the remaining trapezoids of R0 are trivial, i.e. lines, and thus also trivial triangles. Therefore, R0 is a standard trapezoid
representation ofGφ byDefinition 3, and thusGφ is a triangle graph by Theorem1. This completes the proof of the lemma. �

Lemma 9. If Gφ is a triangle graph, then the formula φ is satisfiable.

Proof. Suppose that Gφ is a triangle graph and let R be a triangle representation of Gφ . We construct a truth assignment τ

of the variables x1, x2, . . . , xn that satisfies the formula φ, as follows. For any j = 1, 2, . . . , n such that a7j ≪R uj,1, we define
xj = 1 if and only if uj,1 is left-open in R. Similarly, for any j = 1, 2, . . . , n such that uj,1 ≪R a7j , we define xj = 1 if and only
if uj,1 is right-open in R. We will prove that the truth assignment τ satisfies φ.

Let i ∈ {1, 2, . . . , k}. By possibly performing a vertical axis flipping of R, we may assume without loss of generality
that vj,1 ≪R zi. Therefore, since vi,2, vi,3 ∈ N(vi,1) \ N(zi), it follows that also vi,2 ≪R zi and vi,3 ≪R zi. Consider now the
subgraph H0 of Gφ induced by the vertices {vi,1, vi,2, vi,3, v

′

i,1, v
′

i,2, v
′

i,3, zi}. Note that H0 is isomorphic to the graph induced
by the trapezoid representation Rαi of Fig. 7. Then, Lemma 7 implies that one of vi,1, vi,2, vi,3 is right-closed in the restriction
R[H0] of R. Let in the following vi,p be right-closed in R[H0], and thus also right-closed in R, for some p ∈ {1, 2, 3}. Thus
L(v′

i,p′) <R R(vi,p) <R L(v′

i,p′′) and l(v′

i,p′′) <R r(vi,p) <R l(v′

i,p′), for appropriate values of the indices p′, p′′
∈ {1, 2, 3} \ {p},

cf. Fig. 7.
Furthermore, let xj be the variable that appears in the literal ℓi,p of the clause αi, i.e. either ℓi,p = xj or ℓi,p = xj. Moreover,

let the trapezoids {uj,t , wj,t} correspond to the appearance of the variable xj in ℓi,p, for some index t ∈ {1, 2, . . . ,mj}. Note
that, since the trapezoids of vertices uj,t and vi,p do not intersect in R, it follows that either uj,t ≪R vi,p or vi,p ≪R uj,t . Wewill
prove that uj,t ≪R vi,p. Suppose otherwise that vi,p ≪R uj,t . Then, since uj,t /∈ N(zi), it follows that either vi,p ≪R zi ≪R uj,t

or vi,p ≪R uj,t ≪R zi. Let first vi,p ≪R zi ≪R uj,t . Then, since b1j,t ∈ N(vi,p) and b1j,t ∈ N(uj,t) by the construction of Gφ

(cf. Fig. 9(a) and (b)), it follows that the line of b1j,t intersects the line of zi in R. This is a contradiction, since b1j,t /∈ N(zi) by
the construction of Gφ . Let now vi,p ≪R uj,t ≪R zi and let q ∈ {1, 2, 3} \ {p}. Then, since v′

i,q ∈ N(vi,p) and v′

i,q ∈ N(zi)
by the construction of Gφ (cf. Fig. 7), it follows that the trapezoid of v′

i,q intersects the trapezoid of uj,t in R. This is again a
contradiction, since v′

i,q /∈ N(uj,t) by the construction of Gφ . Therefore uj,t ≪R vi,p.
Now, we will now prove that a7j ≪R uj,t . Suppose otherwise that uj,t ≪R a7j . Then, since a7j /∈ N(vi,p), it follows that

either uj,t ≪R vi,p ≪R a7j or uj,t ≪R a7j ≪R vi,p. Let first uj,t ≪R vi,p ≪R a7j . Then, since a1j ∈ N(uj,t) and a1j ∈ N(a7j ) by the
construction ofGφ (cf. Fig. 9(a) and (b)), it follows that the line of a1j intersects the trapezoid of vi,p in R. This is a contradiction,
since a1j /∈ N(vi,p) by the construction of Gφ . Let now uj,t ≪R a7j ≪R vi,p. Then, since b1j,t ∈ N(uj,t) and b1j,t ∈ N(vi,p) by the
construction of Gφ (cf. Fig. 7), it follows that the line of b1j,t intersects the line of a7j in R. This is again a contradiction, since
b1j,t /∈ N(a7j ) by the construction of Gφ . Therefore a7j ≪R uj,t .

That is, a7j ≪R uj,t ≪R vi,p ≪R zi. Note here by the construction of Gφ , that the existence of the lines {a1j , a
2
j , . . . , a

7
j }

guarantees that uj,1 is left-open in R if and only if uj,t is left-open in R, for any t = 2, . . . ,mj (cf. Fig. 8). Therefore, due to the
truth assignment τ of the variables x1, x2, . . . , xn that we defined above, it follows that xj = 1 if and only if uj,t is left-open
in R, for any t = 1, 2, . . . ,mj. We distinguish in the following the two cases regarding the literal ℓi,p of the clause αi.

Let first ℓi,p = xj. Consider the subgraphH1 ofGφ induced by the vertices {uj,t , wj,t , vi,p}∪{a1j , . . . , a
7
j }∪{b1j,t , b

2
j,t , . . . , b

6
j,t}.

Note that H1 is isomorphic to the graph induced by the trapezoid representation of Fig. 6(a). Furthermore, consider the
subgraphH2 of Gφ induced by the vertices V (H1)∪{v′

i,p′ , v
′

i,p′′}, where {p′, p′′
} = {1, 2, 3}\{p}. Note now by the construction

of Gφ that the existence of the lines {a1j , a
2
j , . . . , a

7
j } guarantees that the trapezoid uj,t is left-open in R if and only if uj,t is

left-open in the restriction R[H1] of R.
Moreover, the connected graphH2 satisfies the conditions of Theorem2. Indeed, vi,p is a cut vertex ofH2 andH2−{vi,p}has

the two connected components H1 and Gφ[v′

i,p′ , v
′

i,p′′ ]. Therefore, since R[H2] is a triangle representation, Theorem 2 implies
that vi,p is open in R[H2]. Recall now that L(v′

i,p′) <R R(vi,p) <R L(v′

i,p′′) and l(v′

i,p′′) <R r(vi,p) <R l(v′

i,p′), for appropriate
values of the indices p′, p′′

∈ {1, 2, 3} \ {p}. Therefore, since b1j,t ≪R v′

i,p′ and b1j,t ≪R v′

i,p′′ , it follows by Definitions 1 and 2
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that vi,p is right-closed in R[H2]. Thus, since vi,p is open in R[H2], it follows that vi,p is left-open in R[H2]. Therefore, vi,p is
also left-open in R[H1], since H1 is an induced subgraph of H2. Now, Lemma 5 implies that uj,t is left-open in R[H1], since
a7j ≪R uj,t and vi,p is left-open in R[H1]. Therefore uj,t is also left-open in R, and thus it follows by the definition of the truth
assignment τ that ℓi,p = xj = 1.

Let now ℓi,p = xj. Consider the subgraph H3 of Gφ induced by the vertices {uj,t , wj,t , vi,p} ∪ {a1j , . . . , a
7
j } ∪

{b1j,t , b
2
j,t , . . . , b

8
j,t}. Note thatH3 is isomorphic to the graph induced by the trapezoid representation of Fig. 6(b). Furthermore,

consider the subgraph H4 of Gφ induced by the vertices V (H3) ∪ {v′

i,p′ , v
′

i,p′′}, where {p′, p′′
} = {1, 2, 3} \ {p}.

Moreover, the connected graph H4 satisfies the conditions of Theorem 2. Indeed, vi,p is a cut vertex of H4 and H4 − {vi,p}

has the two connected components H3 and Gφ[v′

i,p′ , v
′

i,p′′ ]. Therefore, since R[H4] is a triangle representation, Theorem 2
implies that vi,p is open in R[H4]. Recall that L(v′

i,p′) <R R(vi,p) <R L(v′

i,p′′) and l(v′

i,p′′) <R r(vi,p) <R l(v′

i,p′), for appropriate
values of the indices p′ and p′′, where {p′, p′′

} = {1, 2, 3} \ {p}. Therefore, since b1j,t ≪R v′

i,p′ and b1j,t ≪R v′

i,p′′ , it follows
by Definitions 1 and 2 that vi,p is right-closed in R[H4]. Thus, since vi,p is open in R[H4], it follows that vi,p is left-open in
R[H4]. Therefore, vi,p is also left-open in R[H3], since H3 is an induced subgraph of H4. Now, Lemma 6 implies that uj,t is
left-closed in R[H3], since a7j ≪R uj,t and vi,p is left-open in R[H3]. Therefore uj,t is also left-closed in R, and thus, it follows
by the definition of the truth assignment τ that xj = 0, i.e. ℓi,p = xj = 1.

Summarizing, for an arbitrary index i ∈ {1, 2, . . . , k}, we proved that there exists an index p ∈ {1, 2, 3}, such that the
literal ℓi,p is satisfied by the truth assignment τ , i.e. ℓi,p = 1. Therefore, every clause αi, where i ∈ {1, 2, . . . , k}, is satisfied
by τ , and thus the whole formula φ is satisfied by τ . This completes the proof of the lemma. �

The next theorem follows now directly by Lemmas 8 and 9.
Theorem 3. The formula φ is satisfiable if and only if Gφ is a triangle graph.

Therefore, since 3SAT is NP-complete, Theorem 3 implies that the recognition of triangle graphs is NP-hard. Moreover,
since the recognition of triangle graphs lies in NP by Observation 1, and since Gφ is a trapezoid graph, we can summarize
our main result in the next theorem.
Theorem 4. Given a graph G, it is NP-complete to decide whether G is a triangle graph. The problem remains NP-complete even
if the given graph G is known to be a trapezoid graph.

7. Concluding remarks

In this article we proved that the triangle graph (known also as PI∗ graph) recognition problem is NP-complete, by
providing a reduction from the 3SAT problem, thus answering a longstanding open question. Our reduction implies that this
problem remainsNP-complete even in the casewhere the input graph is a trapezoid graph. The recognition of simple-triangle
graphs [3], as well as the recognition of the related classes of unit and proper tolerance graphs [11,1] (these are subclasses
of bounded tolerance, i.e. parallelogram, graphs [1]), proper bitolerance graphs [11,2] (they coincide with unit bitolerance
graphs [2]), and multitolerance graphs [19] (they naturally generalize trapezoid graphs [23,19]) remain interesting open
problems for further research.
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