The recognition of triangle graphs ${ }^{\text {* }}$

George B. Mertzios*
School of Engineering and Computing Sciences, Durham University, United Kingdom

ARTICLE INFO

Article history:

Received 13 May 2011
Received in revised form 3 February 2012
Accepted 27 February 2012
Communicated by Ralf Klasing

Keywords:

Intersection graphs
Trapezoid graphs
PI graphs
$P I^{*}$ graphs
Recognition problem
NP-complete

Abstract

Trapezoid graphs are the intersection graphs of trapezoids, where every trapezoid has a pair of opposite sides lying on two parallel lines L_{1} and L_{2} of the plane. This subclass of perfect graphs has received considerable attention as it generalizes in a natural way both interval and permutation graphs. In particular, trapezoid graphs have been introduced in order to generalize some well known applications of these graphs on channel routing in integrated circuits. Strictly between permutation and trapezoid graphs lie the triangle graphs - also known as PI* graphs (for Point-Interval) - where the intersecting objects are triangles with one point of the triangle on the one line and the other two points (i.e. interval) of the triangle on the other line. Note that there is no restriction on which line between L_{1} and L_{2} contains one point of the triangle and which line contains the other two. Due to both their interesting structure and their practical applications, several efficient algorithms for optimization problems that are NP-hard in general graphs have been designed for trapezoid graphs - which also apply to triangle graphs. In spite of this, the complexity status of the triangle graph recognition problem (namely, the problem of deciding whether a given graph is a triangle graph) has been the most fundamental open problem on this class of graphs since its introduction two decades ago. Moreover, since triangle graphs lie naturally between permutation and trapezoid graphs, and since they share a very similar structure with them, it was expected that the recognition of triangle graphs is polynomial, as it is also the case for permutation and trapezoid graphs. In this article we surprisingly prove that the recognition of triangle graphs is NP-complete, even in the case where the input graph is known to be a trapezoid graph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A graph $G=(V, E)$ with n vertices is the intersection graph of a family $F=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of a set S if there exists a bijection $\mu: V \rightarrow F$ such that for any two distinct vertices $u, v \in V, u v \in E$ if and only if $\mu(u) \cap \mu(v) \neq \emptyset$. Then, F is called an intersection model of G. Note that every graph has a trivial intersection model based on adjacency relations [18]. However, some intersection models provide a natural and intuitive understanding of the structure of a class of graphs, and turn out to be very helpful to obtain structural results, as well as to find efficient algorithms to solve optimization problems [18]. Many important graph classes can be described as intersection graphs of set families that are derived from some kind of geometric configuration.

Consider two parallel horizontal lines on the plane, L_{1} (the upper line) and L_{2} (the lower line). Various intersection graphs can be defined on objects formed with respect to these two lines. In particular, for permutation graphs, the objects are line segments that have one endpoint on L_{1} and the other one on L_{2}. Generalizing to objects that are trapezoids with one interval

[^0]on L_{1} and the opposite interval on L_{2}, trapezoid graphs have been introduced independently in [5], [6]. Given a trapezoid graph G, an intersection model of G with trapezoids between L_{1} and L_{2} is called a trapezoid representation of G. Trapezoid graphs are perfect graphs $[3,9]$ and generalize in a natural way both interval graphs (when the trapezoids are rectangles) and permutation graphs (when the trapezoids are trivial, i.e. lines). In particular, the main motivation for the introduction of trapezoid graphs was to generalize some well known applications of interval and permutation graphs on channel routing in integrated circuits [6].

Moreover, two interesting subclasses of trapezoid graphs have been introduced in [5]. A trapezoid graph G is a simpletriangle graph if it admits a trapezoid representation, in which every trapezoid is a triangle with one point on L_{1} and the other two points (i.e. interval) on L_{2}. Similarly, G is a triangle graph if it admits a trapezoid representation, in which every trapezoid is a triangle, but now there is no restriction on which line between L_{1} and L_{2} contains one point of the triangle and which one contains the other two points (i.e. the interval) of the triangle. Such an intersection model of a simpletriangle (resp. triangle) graph G with triangles between L_{1} and L_{2} is called a simple-triangle (resp. triangle representation of G). Simple-triangle and triangle graphs are also known as PI and $P I^{*}$ graphs, respectively [3,5,4,15], where PI stands for "Point-Interval"; note that, using this notation, permutation graphs are PP (for "Point-Point") graphs, while trapezoid graphs are II (for "Interval-Interval") graphs [5]. In particular, both interval and permutation graphs are strictly contained in simpletriangle graphs, which are strictly contained in triangle graphs, which are strictly contained in trapezoid graphs [5,3]. For instance, it is easy to see that every interval graph G is also a simple-triangle graph: given an interval representation of G, replace every interval I_{v} in this representation by an isosceles triangle T_{v} of unit height, which has the interval I_{v} as its base. The resulting representation is a simple-triangle representation of G, since for any two vertices u and v of G, the intervals I_{u} and I_{v} intersect if and only if T_{u} and T_{v} intersect.

Due to both their interesting structure and their practical applications, trapezoid graphs have attracted many research efforts. In particular, efficient algorithms for several optimization problems that are NP-hard in general graphs have been designed for trapezoid graphs [$13,16,12,2,7,24,11$], which also apply to triangle and simple-triangle graphs. Furthermore, several efficient algorithms appeared for the recognition problems of both permutation [17,9] and trapezoid graphs [16,20,14]; see [25] for an overview.

In spite of this, the complexity status of both triangle and simple-triangle recognition problems have been the most fundamental open problems on these classes of graphs since their introduction two decades ago [3]. Since, on the one hand, very few subclasses of perfect graphs are known to be NP-hard to recognize (for instance, perfectly orderable graphs [22], EPT graphs [10], and recently tolerance and bounded tolerance graphs [21]) and, on the other hand, triangle and simple-triangle graphs lie naturally between permutation and trapezoid graphs, while they share a very similar structure with them, it was plausible that the recognition of triangle and simple-triangle graphs was polynomial.

Our contribution. In this article we establish the complexity of recognizing triangle graphs. Namely, we prove that this problem is surprisingly NP-hard, by providing a reduction from the 3SAT problem. Specifically, given a boolean formula formula ϕ in conjunctive normal form with three literals in every clause (3-CNF), we construct a trapezoid graph G_{ϕ}, which is a triangle graph if and only if ϕ is satisfiable. Therefore, as the recognition problems for both triangle and simple-triangle graphs are in the complexity class NP, it follows in particular that the triangle graph recognition problem is NP-complete. This complements the recent surprising result that the recognition of parallelogram graphs (i.e. the intersection graphs of parallelograms between two parallel lines L_{1} and L_{2}), which coincides with bounded tolerance graphs, is NP-complete [21].

Organization of the paper. Background definitions and properties of trapezoid graphs and their representations are presented in Section 2. In Section 3 we introduce the notion of a standard trapezoid representation, the existence of which is a sufficient condition for a trapezoid graph to be a triangle graph. In Sections 4 and 5, we investigate the structure of some specific trapezoid and triangle graphs, respectively, and prove special properties of them. We use these graphs as parts of the gadgets in our reduction of 3SAT to the recognition problem of triangle graphs, which we present in Section 6. Finally, we discuss the presented results and further research in Section 7.

2. Triangle and simple-triangle graphs

In this section we provide some notation and properties of trapezoid graphs and their representations, which will be mainly applied in the sequel to triangle and simple-triangle graphs.

Notation. We consider in this article simple undirected and directed graphs with no loops or multiple edges. In an undirected graph G, the edge between vertices u and v is denoted by $u v$, and in this case u and v are said to be adjacent in G. Given a graph $G=(V, E)$ and a subset $S \subseteq V, G[S]$ denotes the induced subgraph of G on the vertices in S. Furthermore, we denote for simplicity by $G-S$ the induced subgraph $G[V \backslash S]$ of G. Moreover, given a graph G, we denote its vertex set by $V(G)$. A connected graph $G=(V, E)$ is called k-connected, where $k \geq 1$, if k is the smallest number of vertices that have to be removed from G such that the resulting graph is disconnected. Furthermore, a vertex v of a 1-connected graph G is called a cut vertex of G, if $G-\{v\}$ is disconnected. By possibly performing a small shift of the endpoints, we assume throughout the article without loss of generality that all endpoints of the trapezoids (resp. triangles) in a trapezoid (resp. triangle or simple-triangle) representation are distinct [8,11,12]. Given a trapezoid (resp. triangle or simple-triangle) graph G along with a trapezoid (resp. triangle or simple-triangle) representation R, we may not distinguish in the following between a

Fig. 1. (a) A simple-triangle representation R_{1} and (b) a triangle representation R_{2}.

Fig. 2. A standard trapezoid representation R, in which the trapezoid T_{v} is left-closed, upper-right-closed, and lower-right-open.
vertex of G and the corresponding trapezoid (resp. triangle) in R, whenever it is clear from the context. Moreover, given an induced subgraph H of G, we denote by $R[H]$ the restriction of the representation R on the trapezoids (resp. triangles) of H.

Consider a trapezoid graph $G=(V, E)$ and a trapezoid representation R of G, where for any vertex $u \in V$ the trapezoid corresponding to u in R is denoted by T_{u}. Since trapezoid graphs are also cocomparability graphs (there is a transitive orientation of the complement) [9], we can define the partial order ($V,<_{R}$), such that $u<_{R} v$, or equivalently $T_{u}<_{R} T_{v}$, if and only if T_{u} lies completely to the left of T_{v} in R (and thus also $u v \notin E$). Otherwise, if neither $T_{u}<_{R} T_{v}$ nor $T_{v} \ll{ }_{R} T_{u}$, we will say that T_{u} intersects T_{v} in R (and thus also $u v \in E$). Furthermore, we define the total order $<_{R}$ on the lines L_{1} and L_{2} in R as follows. For two points a and b on L_{1} (resp. on L_{2}), if a lies to the left of b on L_{1} (resp. on L_{2}), then we will write $a<_{R} b$.

There are several trapezoid representations of a particular trapezoid graph G. For instance, given one such representation R, we can obtain another one R^{\prime} by vertical axis flipping of R, i.e. R^{\prime} is the mirror image of R along an imaginary line perpendicular to L_{1} and L_{2}. Moreover, we can obtain another representation $R^{\prime \prime}$ of G by horizontal axis flipping of R, i.e. $R^{\prime \prime}$ is the mirror image of R along an imaginary line parallel to L_{1} and L_{2}. We will use extensively these two basic operations throughout the article. For every trapezoid T_{u} in R, where $u \in V$, we define by $l(u)$ and $r(u)(\operatorname{resp} . L(u)$ and $R(u))$ the lower (resp. upper) left and right endpoint of T_{u}, respectively (cf. the trapezoid T_{v} in Fig. 2). Since every triangle and simpletriangle representation is a special type of a trapezoid representation, all the above notions can be also applied to triangle and simple-triangle graphs. Note here that, if R is a simple-triangle representation of $G=(V, E)$, then $L(u)=R(u)$ for every $u \in V$; similarly, if R is a triangle representation of G, then $L(u)=R(u)$ or $l(u)=r(u)$ for every $u \in V$. An example of a simple-triangle and a triangle representation is shown in Fig. 1.

It can be easily seen that every triangle (resp. single-triangle) graph G with n vertices has a triangle (resp. single-triangle) representation of G, in which the endpoints of the triangles in both lines L_{1} and L_{2} are integers between 1 and $2 n$. That is, every triangle (resp. single-triangle) graph G with n vertices has a representation with size polynomial on n, and thus the recognition problems of both both triangle and simple-triangle graphs are in NP, as the next observation states.

Observation 1. The triangle and simple-triangle graph recognition problems are in the complexity class $N P$.

3. Standard trapezoid representations

In this section we investigate several properties of trapezoid and triangle graphs and their representations. In particular, we introduce the notion of a standard trapezoid representation. We prove that a sufficient condition for a trapezoid graph G to be a triangle graph is that G admits such a standard representation. These properties of trapezoid and triangle graphs, as well as the notion of a standard trapezoid representation will then be used in our reduction for the triangle graph recognition problem. In order to define the notion of a standard trapezoid representation (cf. Definition 3), we first provide the following two definitions regarding an arbitrary trapezoid T_{v} in a trapezoid representation.

Definition 1. Let R be a trapezoid representation of a trapezoid graph $G=(V, E)$ and T_{v} be a trapezoid in R, where $v \in V$. Let R^{\prime} and $R^{\prime \prime}$ be the representations obtained by vertical axis flipping and by horizontal axis flipping of R, respectively. Then,

- T_{v} is upper-right-closed in R if there exist two vertices $u, w \in N(v)$, such that $T_{u}<_{R} T_{w}, L(w)<_{R} R(v)$, and $r(v)<_{R} l(w)$; otherwise T_{v} is upper-right-open in R,
- T_{v} is upper-left-closed in R if T_{v} is upper-right-closed in R^{\prime}; otherwise T_{v} is upper-left-open in R,
- T_{v} is lower-right-closed in R if T_{v} is upper-right-closed in $R^{\prime \prime}$; otherwise T_{v} is lower-right-open in R,
- T_{v} is lower-left-closed in R if T_{v} is lower-right-closed in R^{\prime}; otherwise T_{v} is lower-left-open in R.

Intuitively, if the trapezoid T_{v} is upper-right-closed in the trapezoid representation R (cf. Definition 1), then there exists another trapezoid T_{w} in R that "invades" in T_{v} only at its upper right corner (cf. the trapezoid $T_{v_{3}}$ in Fig. 2). In addition, according to Definition 1, there exists another vertex $u \in N(v)$, such that $T_{u} \ll_{R} T_{w}$. Intuitively, the existence of such a trapezoid T_{u} in R means that, if we move the left endpoints $L(w)$ and $l(w)$ of T_{w} to the left to cover the whole trapezoid T_{v}, then we will change the graph G, since in this case the trapezoid T_{w} will intersect the trapezoid T_{u} in the resulting representation.

Definition 2. Let R be a trapezoid representation of a trapezoid graph $G=(V, E)$ and T_{v} be a trapezoid in R, where $v \in V$. Then,

- T_{v} is right-closed in R if T_{v} is both upper-right-closed and lower-right-closed in R; otherwise T_{v} is right-open in R,
- T_{v} is left-closed in R if T_{v} is both upper-left-closed and lower-left-closed in R; otherwise T_{v} is left-open in R,
- T_{v} is closed in R if T_{v} is both right-closed and left-closed in R; otherwise T_{v} is open in R.

As an example for Definitions 1 and 2, consider the trapezoid representation R in Fig. 2. In this figure, the trapezoid T_{v} is upper-left-closed and lower-left-closed, as well as upper-right-closed and lower-right-open. Therefore, T_{v} is left-closed and right-open in R, i.e. T_{v} is open in R. For better visibility, we place in Fig. 2 three bold bullets on the upper right, upper left, and lower left endpoints of the trapezoid T_{v}, in order to indicate that T_{v} is upper-right-closed, upper-left-closed, and lower-left-closed, respectively.

We are now ready to define the notion of a standard trapezoid representation.
Definition 3. Let $G=(V, E)$ be a trapezoid graph and R be a trapezoid representation of G. If, for every $v \in V$, the trapezoid T_{v} is open in R or T_{v} is a triangle in R, then R is a standard trapezoid representation.

For example, the trapezoid representation R in Fig. 2 is a standard representation. Indeed, none of the trapezoids $T_{v_{1}}, T_{v_{2}}, T_{v_{3}}$ is right-closed or left-closed, while T_{v} is lower-right-open (and therefore also right-open by Definition 2). Thus, each of the trapezoids $T_{v}, T_{v_{1}}, T_{v_{2}}$, and $T_{v_{3}}$ is open in R. Moreover, $T_{v_{4}}$ is a triangle in R.

Note that every triangle representation is a standard trapezoid representation by Definition 3. We now provide the main theorem of this section, which states a sufficient condition for a trapezoid graph to be a triangle graph.

Theorem 1. Let $G=(V, E)$ be a trapezoid graph. If there exists a standard trapezoid representation of G, then G is a triangle graph.
Proof. Let R be a standard trapezoid representation of G. If R is a triangle representation, then G is clearly a triangle graph. Suppose otherwise that R has a trapezoid T_{v}, where $v \in V$, that is not a triangle in R. We will construct a triangle representation R^{*} of G. Since R is standard by assumption, T_{v} is right-open or left-open in R by Definition 2 . By possibly performing a vertical axis flipping, we may assume without loss of generality that T_{v} is right-open in R. That is, T_{v} is upper-right-open or lower-right-open in R by Definition 1. Similarly, by possibly performing a horizontal axis flipping, we may assume without loss of generality that T_{v} is upper-right-open in R.

We construct now from R a new trapezoid representation of G, as follows. First, for every vertex $w \in V$ with $L(v)<_{R}$ $L(w)<_{R} R(v)$ and $r(v)<_{R} l(w)$, we move the upper left endpoint $L(w)$ of T_{w} directly before $L(v)$ on the line L_{1}. Note that $w \in N(v)$ for every such vertex w. Moreover, in the case where the upper left endpoint $L(w)$ of T_{w} coincides with its upper right endpoint $R(w)$ in R, i.e. if T_{w} is a triangle in R with one point on L_{1}, we also move the upper right endpoint $R(w)$ of T_{w} to the same position as its upper left endpoint $L(w)$ in R^{\prime}. That is, if T_{w} is a triangle in R, it remains a triangle also in R^{\prime}. During the movement of all these endpoints, we keep the same relative positions among them on L_{1} as in the initial trapezoid representation R. Then, we reduce the trapezoid T_{v} to a triangle, by moving the upper right endpoint $R(v)$ of T_{v} to the left until it coincides with its upper left endpoint $L(v)$. Let R^{\prime} be the resulting trapezoid representation. An example of the construction of R^{\prime} is illustrated in Fig. 3.

We will prove that R^{\prime} is a representation of the same graph G. First recall that, during the transformation of R to R^{\prime}, we moved the endpoints $L(w)$ of the trapezoids T_{w} for every vertex w, for which $L(v)<_{R} L(w)<_{R} R(v)$ and $r(v)<_{R} l(w)$ (cf. w_{1}, w_{2}, and w_{3} in Fig. 3). Suppose such a trapezoid T_{w} intersects a new trapezoid T_{u} in R^{\prime}, while T_{w} did not intersect T_{u} in R. That is, $T_{u}<_{R} T_{w}$. Then, since $L(w)$ came directly before $L(v)$ on the line L_{1}, it follows that $L(v)<_{R} R(u)<_{R} L(w)<_{R} R(v)$, and thus T_{u} intersects T_{v} in R, i.e. $u \in N(v)$. That is, there exist two vertices $u, w \in N(v)$, such that $T_{u}<_{R} T_{w}, L(w)<_{R} R(v)$, and $r(v)<_{R} l(w)$, and thus T_{v} is upper-right-closed in R by Definition 1, which is a contradiction to the assumption. Therefore, T_{w} does not intersect any new trapezoid in R^{\prime}.

Let $L(w) \neq R(w)$ in R, i.e. T_{w} is not a triangle in R with one point on L_{1} (cf. w_{3} in Fig. 3). In this case, the upper right endpoint $R(w)$ of T_{w} remains the same in both R and R^{\prime}, and thus T_{w} increases during the transformation of R to R^{\prime}. Therefore, if $L(w) \neq R(w)$ in R, then T_{w} keeps in R^{\prime} all its intersections with other trapezoids.

Let $L(w)=R(w)$ in R, i.e. T_{w} is a triangle in R with one point on L_{1} (cf. w_{1} and w_{2} in Fig. 3). Recall that in this case, we also move during the transformation of R to R^{\prime} the upper right endpoint $R(w)$ of T_{w} to the same position as its upper left endpoint $L(w)$ in R^{\prime}. Suppose that, after this movement, T_{w} misses in R^{\prime} its intersection with a trapezoid T_{x} in R. That is, T_{w} intersects T_{x} in R, while $T_{w} \ll_{R^{\prime}} T_{x}$. Therefore, $L(x)<_{R} L(w)=R(w)<_{R} R(v)$ and $r(v)<_{R} l(w) \leq_{R} r(w)<_{R} l(x)$, i.e. $L(x)<_{R} R(v)$ and $r(v)<_{R} l(x)$. We distinguish now the two cases regarding the relative position of the endpoints $L(v)$ and $L(x)$ in the initial representation R. Let first $L(v)<_{R} L(x)$. In this case, $L(v)<_{R} L(x)<_{R} R(v)$ and $r(v)<_{R} l(x)$. Therefore, the endpoint $L(x)$ of

Fig. 3. (a) A standard trapezoid representation R of a trapezoid graph G and (b) the transformation of R to a trapezoid representation R^{\prime} of G with one triangle more.
T_{x} is moved directly before $L(v)$ on the line L_{1}, while the relative position of $L(x)$ and $L(w)$ remains the same in both R and R^{\prime}. That is, $L(x)<R_{R^{\prime}} L(w)$, which is a contradiction, since $T_{w} \ll_{R^{\prime}} T_{x}$ by assumption. Let now $L(x)<_{R} L(v)$. Then, $L(x)$ remains the same in both R and R^{\prime}, while $L(w)$ is moved directly before $L(v)$ in R^{\prime}. That is, $L(x)<_{R^{\prime}} L(w)<_{R^{\prime}} L(v)$, which is again a contradiction, since $T_{w}<_{R^{\prime}} T_{x}$ by assumption. Therefore, if $L(w)=R(w)$ in R, then T_{w} keeps in R^{\prime} all its intersections with other trapezoids.

Recall now that we reduced the trapezoid T_{v} to a triangle (cf. Fig. 3(b)). Suppose that, after this operation, T_{v} misses in R^{\prime} its intersection with a trapezoid T_{x}. That is, T_{v} intersects a trapezoid T_{x} in R, while T_{v} does not intersect T_{x} in R^{\prime}, i.e. $T_{v} \ll R^{\prime} T_{x}$. Therefore, $L(v)<_{R} L(x)<_{R} R(v)$ and $r(v)<_{R} l(x)$. Thus, the upper left endpoint $L(x)$ is moved directly before $L(v)$ on the line L_{1} during the transformation of R to R^{\prime}, which is a contradiction, since $T_{v} \ll_{R^{\prime}} T_{x}$. Therefore, T_{v} keeps all its intersections in R^{\prime}. Thus, R^{\prime} is a trapezoid representation of the same graph G, in which T_{v} is a triangle, while all triangles in R remain also triangles $\mathrm{n} R^{\prime}$ (cf. w_{1} and w_{2} in Fig. 3).

After applying iteratively the above construction for every trapezoid T_{v} that is not a triangle in R, we obtain a triangle representation R^{*} of G, i.e. G is a triangle graph. This completes the proof of the theorem.

4. Basic constructions of trapezoid graphs

In this section we investigate some small trapezoid graphs and prove special properties of them. These graphs will then be used as parts of the gadgets in our reduction of 3SAT to the recognition problem of triangle graphs in Section 6 . For simplicity of the presentation, we do not distinguish in the sequel of the article between a vertex v of a trapezoid graph G and the trapezoid T_{v} of v in a trapezoid representation of G.
Lemma 1. Let $G=(V, E)$ be the trapezoid graph induced by the trapezoid representation of Fig. 4(a). Then, in any trapezoid representation R of G, such that $v \ll_{R} v^{\prime}$,

- v is upper-right-closed in R and v^{\prime} is lower-left-closed in R, or
- v is lower-right-closed in R and v^{\prime} is upper-left-closed in R.

Proof. Consider a trapezoid representation R of G, such that $v<_{R} v^{\prime}$. Since the vertices v_{1} and v_{2} are indistinguishable, as $N\left(v_{1}\right)=N\left(v_{2}\right)$, we may assume without loss of generality that $v_{1}<_{R} v_{2}$. Furthermore, note that if both $R(v)<_{R} L\left(v_{2}\right)$ and $r(v)<_{R} l\left(v_{2}\right)$, then $v<_{R} v_{2}$, which is a contradiction, since v_{2} intersects v in R. Therefore, $L\left(v_{2}\right)<_{R} R(v)$ or $l\left(v_{2}\right)<_{R} r(v)$.

Suppose that $L\left(v_{2}\right)<_{R} R(v)$. An example of such a trapezoid representation R is the representation R_{1} in Fig. 4(a). Then, since $v_{1}<_{R} v_{2}$ and $v<_{R} v^{\prime}$ by assumption, it follows that $R\left(v_{1}\right)<_{R} L\left(v_{2}\right)<_{R} R(v)<_{R} L\left(v^{\prime}\right)$, i.e. $R\left(v_{1}\right)<_{R} L\left(v^{\prime}\right)$. Now, if $r\left(v_{1}\right)<_{R} l\left(v^{\prime}\right)$, then $v_{1}<_{R} v^{\prime}$, which is a contradiction, since v_{1} intersects v^{\prime} in R. Thus $l\left(v^{\prime}\right)<_{R} r\left(v_{1}\right)$. Therefore, since $v \ll_{R} v^{\prime}$ and $v_{1} \ll_{R} v_{2}$ by assumption, it follows that $r(v)<_{R} l\left(v^{\prime}\right)<_{R} r\left(v_{1}\right)<_{R} l\left(v_{2}\right)$, i.e. $r(v)<_{R} l\left(v_{2}\right)$. Summarizing, there exist two vertices $v_{1}, v_{2} \in N(v)$, such that $v_{1}<_{R} v_{2}, L\left(v_{2}\right)<_{R} R(v)$, and $r(v)<_{R} l\left(v_{2}\right)$, and thus v is upper-right-closed in R by Definition 1. Moreover, $R\left(v_{1}\right)<_{R} L\left(v^{\prime}\right)$ and $l\left(v^{\prime}\right)<_{R} r\left(v_{1}\right)$, and thus v^{\prime} is lower-left-closed in R by Definition 1.

Suppose now that $l\left(v_{2}\right)<_{R} r(v)$. Consider the trapezoid representation R^{\prime} of G that is obtained by performing a horizontal axis flipping of R. Examples of these trapezoid representations R and R^{\prime} are the representations R_{2} and R_{1} in Fig. 4(b) and (a),

Fig. 4. Six basic trapezoid representations.
respectively. Note that $L\left(v_{2}\right)<_{R^{\prime}} R(v)$, since $l\left(v_{2}\right)<_{R} r(v)$. Moreover, it remains $v_{1}{\ll R^{\prime}} v_{2}$, since also $v_{1}<_{R} v_{2}$. Therefore, it follows by the previous paragraph that v is upper-right-closed in R^{\prime} and that v^{\prime} is lower-left-closed in R^{\prime}. Thus, v is lower-right-closed in R and v^{\prime} is upper-left-closed in R. This completes the proof of the lemma.

The next two lemmas concern similar properties of the graphs induced by the trapezoid representations of Fig. 4(c) and (e), respectively.

Lemma 2. Let $G=(V, E)$ be the trapezoid graph induced by the trapezoid representation of Fig. 4(c). Then, in any trapezoid representation R of G, such that $v \ll_{R} v^{\prime}$,

- v is upper-right-closed in R and v^{\prime} is upper-left-closed in R, or
- v is lower-right-closed in R and v^{\prime} is lower-left-closed in R.

Proof. Consider a trapezoid representation R of G, such that $v<_{R} v^{\prime}$. Since the vertices v_{3} and v_{4} are indistinguishable, as $N\left(v_{3}\right)=N\left(v_{4}\right)$, we may assume without loss of generality that $v_{3}<_{R} v_{4}$. Furthermore, since $v<_{R} v^{\prime}$ and $v_{1} \in N(v) \backslash N\left(v^{\prime}\right)$, it follows that $v_{1}<_{R} v^{\prime}$. Moreover, similarly to the proof of Lemma 1, note that if both $R(v)<_{R} L\left(v_{2}\right)$ and $r(v)<_{R} l\left(v_{2}\right)$, then $v<_{R} v_{2}$, which is a contradiction, since v_{2} intersects v in R. Therefore, $L\left(v_{2}\right)<_{R} R(v)$ or $l\left(v_{2}\right)<_{R} r(v)$.

Suppose that $L\left(v_{2}\right)<_{R} R(v)$. An example of such a trapezoid representation R is the representation R_{3} in Fig. 4(c). Consider the induced subgraph $G_{1}=G\left[\left\{v, v_{1}, v_{2}, v_{4}\right\}\right]$ of G; note that G_{1} is the graph investigated in Lemma 1 , where vertex v_{4} corresponds to vertex v^{\prime} of Lemma 1 . Similarly to the proof of Lemma 1 in the corresponding case, it follows that v is upper-right-closed in R and that $l\left(v_{4}\right)<_{R} r\left(v_{1}\right)$. Therefore, since $v_{3} \lll R^{v_{4}}$ and $v_{1}<_{R} v^{\prime}$, it follows that $r\left(v_{3}\right)<_{R} l\left(v_{4}\right)<_{R} r\left(v_{1}\right)<_{R} l\left(v^{\prime}\right)$, i.e. $r\left(v_{3}\right)<_{R} l\left(v^{\prime}\right)$. Now, if $R\left(v_{3}\right)<_{R} L\left(v^{\prime}\right)$, then $v_{3} \lll R v^{\prime}$, which is a contradiction, since v_{3} intersects v^{\prime} in R. Thus $L\left(v^{\prime}\right)<_{R} R\left(v_{3}\right)$. Summarizing, there exist two vertices $v_{3}, v_{4} \in N\left(v^{\prime}\right)$, such that $v_{3} \ll_{R} v_{4}$, $r\left(v_{3}\right)<_{R} l\left(v^{\prime}\right)$, and $L\left(v^{\prime}\right)<_{R} R\left(v_{3}\right)$, and thus v^{\prime} is upper-left-closed in R by Definition 1.

Suppose now that $l\left(v_{2}\right)<_{R} r(v)$. Consider the trapezoid representation R^{\prime} of G that is obtained by performing a horizontal axis flipping of R. Examples of these trapezoid representations R and R^{\prime} are the representations R_{4} and R_{3} in Fig. 4(d) and (c), respectively. Note that $L\left(v_{2}\right)<_{R^{\prime}} R(v)$, since $l\left(v_{2}\right)<_{R} r(v)$. Moreover, it remains $v_{3} \ll_{R^{\prime}} v_{4}$, since also $v_{3} \ll{ }_{R} v_{4}$. Therefore, it follows by the previous paragraph that v is upper-right-closed in R^{\prime} and that v^{\prime} is upper-left-closed in R^{\prime}. Thus, v is lower-right-closed in R and v^{\prime} is lower-left-closed in R. This completes the proof of the lemma.
Lemma 3. Let $G=(V, E)$ be the trapezoid graph induced by the trapezoid representation of Fig. 4(e). Then, in any trapezoid representation R of G, such that $v \ll_{R} v^{\prime}$,

- v is upper-right-closed in R and v^{\prime} is lower-left-closed in R, or
- v is lower-right-closed in R and v^{\prime} is upper-left-closed in R.

Proof. Consider a trapezoid representation R of G, such that $v<_{R} v^{\prime}$. Since the vertices v_{5} and v_{6} are indistinguishable, as $N\left(v_{5}\right)=N\left(v_{6}\right)$, we may assume without loss of generality that $v_{5} \lll R v_{6}$. Furthermore, since $v \ll_{R} v^{\prime}$ and $v_{1} \in N(v) \backslash N\left(v^{\prime}\right)$, it follows that $v_{1} \ll R v^{\prime}$. Therefore, since $v_{1}<_{R} v^{\prime}$ and $v_{3} \in N\left(v_{1}\right) \backslash N\left(v^{\prime}\right)$, it follows that $v_{3} \ll R v^{\prime}$. Moreover, similarly to the proof of Lemma 1, note that if both $R(v)<_{R} L\left(v_{2}\right)$ and $r(v)<_{R} l\left(v_{2}\right)$, then $v<_{R} v_{2}$, which is a contradiction, since v_{2} intersects v in R. Therefore, $L\left(v_{2}\right)<_{R} R(v)$ or $l\left(v_{2}\right)<_{R} r(v)$.

Fig. 5. (a) A 1-connected graph G, where $G-\{v\}$ has $k \geq 2$ connected components $G_{1}, G_{2}, \ldots, G_{k}$ and (b) a trapezoid representation for such a graph G.
Suppose that $L\left(v_{2}\right)<_{R} R(v)$. An example of such a trapezoid representation R is the representation R_{5} in Fig. 4(e). Consider the induced subgraph $G_{1}=G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\}\right]$ of G; note that G_{1} is the graph investigated in Lemma 2 , where vertex v_{6} corresponds to vertex v^{\prime} of Lemma 2 . Similarly to the proof of Lemma 2 in the corresponding case, it follows that v is upper-right-closed in R and that $L\left(v_{6}\right)<_{R} R\left(v_{3}\right)$. Therefore, since $v_{5} \ll_{R} v_{6}$ and $v_{3}<_{R} v^{\prime}$, it follows that $R\left(v_{5}\right)<_{R} L\left(v_{6}\right)<_{R} R\left(v_{3}\right)<_{R} L\left(v^{\prime}\right)$, i.e. $R\left(v_{5}\right)<_{R} L\left(v^{\prime}\right)$. Now, if $r\left(v_{5}\right)<_{R} l\left(v^{\prime}\right)$, then $v_{5} \ll_{R} v^{\prime}$, which is a contradiction, since v_{5} intersects v^{\prime} in R. Thus $l\left(v^{\prime}\right)<_{R} r\left(v_{5}\right)$. Summarizing, there exist two vertices $v_{5}, v_{6} \in N\left(v^{\prime}\right)$, such that $v_{5}<_{R} v_{6}$, $R\left(v_{5}\right)<_{R} L\left(v^{\prime}\right)$, and $l\left(v^{\prime}\right)<_{R} r\left(v_{5}\right)$, and thus v^{\prime} is lower-left-closed in R by Definition 1.

Suppose now that $l\left(v_{2}\right)<_{R} r(v)$. Consider the trapezoid representation R^{\prime} of G that is obtained by performing a horizontal axis flipping of R. Examples of these trapezoid representations R and R^{\prime} are the representations R_{6} and R_{5} in Fig. 4(f) and (e), respectively. Note that $L\left(v_{2}\right)<_{R^{\prime}} R(v)$, since $l\left(v_{2}\right)<_{R} r(v)$. Moreover, it remains that $v_{5}<_{R^{\prime}} v_{6}$, since also $v_{5} \ll{ }_{R} v_{6}$. Therefore, it follows by the previous paragraph that v is upper-right-closed in R^{\prime} and that v^{\prime} is lower-left-closed in R^{\prime}. Thus, v is lower-right-closed in R and v^{\prime} is upper-left-closed in R. This completes the proof of the lemma.

5. Basic constructions of triangle graphs

In this section we investigate the structure of some specific triangle graphs and devise special properties of them. As triangle graphs are also trapezoid graphs, in order to prove these properties, we use some of the results provided in Section 4. Similarly to the trapezoid graphs investigated in Section 4, also the investigated graphs of the present section will then be used as gadgets in our reduction for the triangle graph recognition problem in Section 6. Before investigating any specific triangle graph, we first provide in the next theorem a generic result that concerns the triangle representations of the 1 -connected triangle graphs. An example of a 1-connected graph G with a cut vertex v is illustrated in Fig. 5(a).

Theorem 2. Let $G=(V, E)$ be a 1-connected triangle graph and $v \in V$ be a cut vertex of G. Then, in any triangle representation R of G, the trapezoid of v is open in R.

Proof. Let R be any triangle representation of G. For the sake of contradiction, suppose that v is closed in R, i.e. v is both left-closed and right-closed in R. We will prove that, in this case, the trapezoid T_{v} has four distinct endpoints, and thus T_{v} is not a triangle in R, which comes in contradiction to the assumption that R is a triangle representation. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of $G-\{v\}$, where $k \geq 2$. Then, for any $i \neq j$, either all trapezoids of G_{i} lie completely to the left or to the right of all trapezoids of G_{j} in R.

Note that v is upper-right-closed in R (as v is right-closed in R by assumption). Therefore, in particular, there exists by Definition 1 a vertex $w \in N(v)$, such that $L(w)<_{R} R(v)$ and $r(v)<_{R} l(w)$ (cf. Fig. 5(b)). Since v is also lower-rightclosed in R, there exists a vertex $w^{\prime} \in N(v)$, such that $l\left(w^{\prime}\right)<_{R} r(v)$ and $R(v)<_{R} L\left(w^{\prime}\right)$ (cf. Fig. 5(b)). Summarizing, $l\left(w^{\prime}\right)<_{R} r(v)<_{R} l(w)$ and $L(w)<_{R} R(v)<_{R} L\left(w^{\prime}\right)$. Therefore, in particular, the trapezoids of w and of w^{\prime} intersect in R, i.e. $w w^{\prime} \in E$. Therefore, both $w, w^{\prime} \in V\left(G_{i}\right)$, for some $i=1,2, \ldots, k$.

Similarly, since v is upper-left-closed and lower-left-closed in R (as v is left-closed in R by assumption), there exist two vertices $u, u^{\prime} \in N(v)$, such that $R\left(u^{\prime}\right)<_{R} L(v)<_{R} R(u)$ and $r(u)<_{R} l(v)<_{R} r\left(u^{\prime}\right)$, cf. Fig. 5(b). Therefore, in particular, the trapezoids of u and of u^{\prime} intersect in R, i.e. $u u^{\prime} \in E$. Thus, both $u, u^{\prime} \in V\left(G_{j}\right)$, for some $j=1,2, \ldots, k$.

Suppose that $j=i$, i.e. the vertices $w, w^{\prime}, u, u^{\prime}$ belong to the same connected component of $G-\{v\}$. Consider now another connected component G_{ℓ} of $G-\{v\}$, where $\ell \neq i$. Note that G_{ℓ} exists, since $G-\{v\}$ has at least two connected components. Recall that either all trapezoids of G_{ℓ} lie to the left or to the right of all trapezoids of G_{i} in R. Suppose that the trapezoids of G_{ℓ} lie to the left of the trapezoids of G_{i} in R, i.e. $x<_{R} y$ for every $x \in V\left(G_{\ell}\right)$ and $y \in V\left(G_{i}\right)$. Then, since $r(u)<_{R} l(v)$ and $R\left(u^{\prime}\right)<_{R} L(v)$, and since $u, u^{\prime} \in V\left(G_{i}\right)$, it follows that $x \ll_{R} v$ for every $x \in V\left(G_{\ell}\right)$. Thus no vertex of G_{ℓ} is adjacent to v, i.e. G is not connected, which is a contradiction by the assumption on G. Similarly, suppose that the trapezoids of G_{ℓ} lie to the right of the trapezoids of G_{i} in R, i.e. $y<_{R} x$ for every $x \in V\left(G_{\ell}\right)$ and $y \in V\left(G_{i}\right)$. Then, since $r(v)<_{R} l(w)$ and $R(v)<_{R} L\left(w^{\prime}\right)$, and since $w, w^{\prime} \in V\left(G_{i}\right)$, it follows that $v<_{R} x$ for every $x \in V\left(G_{\ell}\right)$. Thus no vertex of G_{ℓ} is adjacent to v, i.e. G is not connected, which is again a contradiction. Therefore $j \neq i$.

Recall that $r(u)<_{R} l(v) \leq_{R} r(v)<_{R} l(w)$, and thus $r(u)<_{R} l(w)$. Furthermore, recall that $R\left(u^{\prime}\right)<_{R} L(v) \leq_{R}$ $R(v)<_{R} L\left(w^{\prime}\right)$, and thus $R\left(u^{\prime}\right)<_{R} L\left(w^{\prime}\right)$. Moreover, since $u, u^{\prime} \in V\left(G_{j}\right)$ and $w, w^{\prime} \in V\left(G_{i}\right)$, where $j \neq i$, it follows that $u w, u^{\prime} w^{\prime} \notin E$, and thus $u<_{R} w$ and $u^{\prime}<_{R} w^{\prime}$. Summarizing, there exist four distinct vertices $u, u^{\prime}, w, w^{\prime} \in N(v)$, such that $L(v)<_{R} R(u)<_{R} L(w)<_{R} R(v)$ and $l(v)<_{R} r\left(u^{\prime}\right)<_{R} l\left(w^{\prime}\right)<_{R} r(v)$. Therefore $L(v)<_{R} R(v)$ and $l(v)<_{R} r(v)$,
i.e. $L(v) \neq R(v)$ and $l(v) \neq r(v)$, which contradicts the fact that R is a triangle representation. An example of such a forbidden representation R, where $V\left(G_{1}\right)=\left\{u, u^{\prime}\right\}$ and $V\left(G_{2}\right)=\left\{w, w^{\prime}\right\}$, is illustrated in Fig. 5(b). Therefore, v is open in R.

We now use the generic Theorem 2, as well as the results of Section 4, in order to prove some properties of the trapezoid representations of Fig. 6. Note that, although the representations of Fig. 6 are not triangle representations, they are standard trapezoid representations, and thus the graphs induced by these representations are triangle graphs by Theorem 1.

Lemma 4. Let $G=(V, E)$ be the triangle graph induced by the trapezoid representation of Fig. 6(a). Then, in any triangle representation R of G, such that $a_{7}<_{R} u$, u is left-open in R if and only if w is right-open in R.
Proof. Let R be a triangle representation of G, such that $a_{7}<_{R} u$. Note that $G-\{u, w\}$ has the two connected components $G_{1}=G\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right]$ and $G_{2}=G\left[v, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right]$, and thus one of these two induced subgraphs of G lies completely to the left of the other in R. If $v<_{R} a_{7} \ll_{R} u$, then a_{7} would intersect with a triangle of G_{2}, which is a contradiction, since $a_{7} \in V\left(G_{1}\right)$. Furthermore, if $a_{7}<_{R} v \ll_{R} u$, then v would intersect with a triangle of G_{1}, which is a contradiction, since $v \in V\left(G_{2}\right)$. Therefore $a_{7}<_{R} u<_{R} v$; similarly, $a_{7}<_{R} w<_{R} v$. Therefore, every triangle of G_{1} must lie completely to the left of every triangle of G_{2} in R.
(\Rightarrow) Suppose that u is left-open in R, i.e. u is upper-left-open or lower-left-open in R. By possibly performing a horizontal axis flipping of R, we may assume without loss of generality that u is lower-left-open in R. Consider the induced subgraphs $H_{1}=G\left[\left\{a_{7}, a_{1}, a_{2}, u\right\}\right]$ and $H_{2}=G\left[\left\{a_{7}, a_{1}, a_{2}, w\right\}\right]$ of G. Note that both H_{1} and H_{2} are isomorphic to the graph investigated in Lemma 1. Since u is assumed to be lower-left-open in R (and thus also in the restriction $R\left[H_{1}\right]$ of the triangle representation R), Lemma 1 implies that u is upper-left-closed and a_{7} is lower-right-closed in $R\left[H_{1}\right]$. Therefore, a_{7} is lower-right-closed also in the restriction $R\left[H_{1}-\{u\}\right]=R\left[H_{2}-\{w\}\right]$ of R. Thus, Lemma 1 implies that a_{7} is lower-right-closed and w is upper-leftclosed in the restriction $R\left[\mathrm{H}_{2}\right]$ of R, and thus w is upper-left-closed in R.

Consider now the induced subgraphs $H_{3}=G\left[\left\{a_{7}, a_{3}, a_{4}, u\right\}\right]$ and $H_{4}=G\left[\left\{a_{7}, a_{3}, a_{4}, a_{5}, a_{6}, w\right\}\right]$ of G. Note that H_{3} is isomorphic to the graph investigated in Lemma 1, while H_{4} is isomorphic to the graph investigated in Lemma 2 . Since u is assumed to be lower-left-open in R (and thus also in $R\left[H_{3}\right]$), Lemma 1 implies that u is upper-left-closed and a_{7} is lower-right-closed in $R\left[H_{3}\right]$. Therefore, a_{7} is lower-right-closed also in the restriction $R\left[H_{3}-\{u\}\right]=R\left[H_{4}-\left\{a_{5}, a_{6}, w\right\}\right]$ of the triangle representation R. Thus, Lemma 2 implies that a_{7} is lower-right-closed and w is lower-left-closed in the restriction $R\left[H_{4}\right]$ of R, and thus w is lower-left-closed in R. Therefore, since w is also upper-left-closed in R by the previous paragraph, it follows that w is left-closed in R.

Recall that R is a triangle representation by assumption, and thus the restriction $R[G-\{u\}]$ is also a triangle representation. Moreover, since w is left-closed in R, it follows that w is also left-closed in $R[G-\{u\}]$. Note now that the connected graph $G-\{u\}$ satisfies the conditions of Theorem 2. Indeed, w is a cut vertex of $G-\{u\}$ and $(G-\{u\})-\{w\}$ has the two connected components $G_{1}=G\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right]$ and $G_{2}=G\left[v, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right]$. Therefore, since w is left-closed in $R[G-\{u\}]$, Theorem 2 implies that w is right-open in $R[G-\{u\}]$, and thus also w is right-open in R.
(\Leftarrow) Consider the triangle representation R^{\prime} of G that is obtained by performing a vertical axis flipping of R. Note that $v \ll_{R^{\prime}} w$, since $w<_{R} v$. Furthermore, note that there is a trivial automorphism of G, which maps vertex u to w, vertex a_{7} to v, and the vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ to the vertices $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}$, in this order. That is, the relation $a_{7}<_{R} u$ in the representation R is mapped by this automorphism to the relation $v \ll_{R^{\prime}} w$ in the representation R^{\prime}. It follows now directly by the necessity part (\Rightarrow) that, if w is left-open in R^{\prime}, then u is right-open in R^{\prime}. That is, if w is right-open in R, then u is left-open in R.

Now, using Lemma 4, we can prove the next two lemmas.
Lemma 5. Let $G=(V, E)$ be the triangle graph induced by the trapezoid representation of Fig. 6(a). Then, in any triangle representation R of G, such that $a_{7}<_{R} u$, u is left-open in R if and only if v is left-open in R.
Proof. Let R be a triangle representation of G, such that $a_{7} \lll R^{u}$. Recall by the proof of Lemma 4 that $w<_{R} v$.
(\Rightarrow) Suppose that u is left-open in R. Then, w is right-open in R by Lemma 4, i.e. w is upper-right-open or lower-right-open in R. By possibly performing a horizontal axis flipping of R, we may assume without loss of generality that w is upper-rightopen in R. Consider the induced subgraphs $H_{1}=G\left[\left\{w, b_{1}, b_{2}, v\right\}\right]$ and $H_{2}=G\left[\left\{w, b_{5}, b_{6}, v\right\}\right]$ of G. Note that both H_{1} and H_{2} are isomorphic to the graph investigated in Lemma 1 . Since w is assumed to be upper-right-open in R (and thus also in both restrictions $R\left[H_{1}\right]$ and $R\left[H_{2}\right]$ of R), Lemma 1 implies that w is lower-right-closed and v is upper-left-closed in both $R\left[H_{1}\right]$ and $R\left[H_{2}\right]$, and thus v is upper-left-closed in R. Therefore, since $b_{1}, b_{2}, b_{5}, b_{6}$ are the only neighbors of v in G, it follows that v is lower-left-open in R, and thus v is left-open in R.
(\Leftarrow) Suppose that v is left-open in R, i.e. v is upper-left-open or lower-left-open in R. By possibly performing a horizontal axis flipping of R, we may assume without loss of generality that v is lower-left-open in R. Consider the induced subgraphs $H_{3}=G\left[\left\{u, b_{1}, b_{2}, v\right\}\right]$ and $H_{4}=G\left[\left\{u, b_{3}, b_{4}, b_{5}, b_{6}, v\right\}\right]$ of G. Note that H_{3} is isomorphic to the graph investigated in Lemma 1, while H_{4} is isomorphic to the graph investigated in Lemma 2. Since v is assumed to be lower-left-open in R, it follows that v is lower-left-open also in the restrictions $R\left[H_{3}\right]$ and $R\left[H_{4}\right]$ of R. Therefore, Lemma 1 implies that v is upper-left-closed and u is lower-right-closed in $R\left[\mathrm{H}_{3}\right]$, and thus also in R. Similarly, Lemma 2 implies that v is upper-left-closed and u is upper-right-closed in $R\left[H_{4}\right]$, and thus also in R. Summarizing, u is both lower-right-closed and upper-right-closed in R, and thus u is right-closed in R.

Fig. 6. Two basic trapezoid representations.
Recall that R is a triangle representation by assumption, and thus the restriction $R[G-\{w\}]$ is also a triangle representation. Moreover, since u is right-closed in R, it follows that u is also right-closed in $R[G-\{w\}]$. Note now that the connected graph $G-\{w\}$ satisfies the conditions of Theorem 2. Indeed, u is a cut vertex of $G-\{w\}$ and $(G-\{w\})-\{u\}$ has the two connected components $G_{1}=G\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right]$ and $G_{2}=G\left[v, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right]$. Therefore, since u is right-closed in $R[G-\{w\}]$, Theorem 2 implies that u is left-open in $R[G-\{w\}$, and thus also u is left-open in R.

Lemma 6. Let $G=(V, E)$ be the triangle graph induced by the trapezoid representation of Fig. 6(b). Then, in any triangle representation R of G, such that $a_{7}<_{R} u$, u is left-open in R if and only if v is left-closed in R.
Proof. Let R be a triangle representation of G, such that $a_{7}<_{R} u$. Note that the induced subgraph $H=G-\left\{b_{8}, v\right\}$ is isomorphic to the graph investigated in Lemmas 4 and 5 . That is, H is isomorphic to the graph induced by the trapezoid representation of Fig. 6(a).
(\Rightarrow) Suppose that u is left-open in R. Then, u is also left-open in the restriction $R[H]$ of R. Therefore, w is right-open in $R[H]$ by Lemma 4, and thus w is also right-open in R. That is, w is upper-right-open or lower-right-open in R. By possibly performing a horizontal axis flipping of R, we may assume without loss of generality that w is upper-right-open in R. Consider the induced subgraphs $H_{1}=G\left[\left\{w, b_{1}, b_{2}, v\right\}\right]$ and $H_{2}=G\left[\left\{w, b_{5}, b_{6}, b_{7}, b_{8}, v\right\}\right]$ of G. Note that H_{1} is isomorphic to the graph investigated in Lemma 1, while H_{2} is isomorphic to the graph investigated in Lemma 2. Since w is assumed to be upper-rightopen in R, it follows that w is upper-right-open also in the restrictions $R\left[H_{1}\right]$ and $R\left[H_{2}\right]$ of R. Therefore, Lemma 1 implies that w is lower-right-closed and v is upper-left-closed in $R\left[H_{1}\right]$, and thus also in R. Similarly, Lemma 2 implies that w is lower-right-closed and v is lower-left-closed in $R\left[\mathrm{H}_{2}\right]$, and thus also in R. Summarizing, v is both upper-left-closed and lower-left-closed in R, and thus v is left-closed in R.
(\Leftarrow) Suppose that u is left-closed in R. Recall that R is a triangle representation by assumption, and thus the restriction $R[G-\{w\}]$ is also a triangle representation. Moreover, since u is left-closed in R, it follows that u is also left-closed in $R[G-\{w\}]$. Note now that the connected graph $G-\{w\}$ satisfies the conditions of Theorem 2. Indeed, u is a cut vertex of $G-\{w\}$ and $(G-\{w\})-\{u\}$ has the two connected components $G_{1}=G\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right]$ and $G_{2}=$ $G\left[v, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}\right]$. Therefore, since u is left-closed in $R[G-\{w\}]$, Theorem 2 implies that u is right-open in $R[G-\{w\}]$, and thus also u is right-open in R. That is, u is upper-right-open or lower-right-open in R. By possibly performing a horizontal axis flipping of R, we may assume without loss of generality that u is upper-right-open in R.

Consider the induced subgraphs $H_{3}=G\left[\left\{u, b_{1}, b_{2}, v\right\}\right]$ and $H_{4}=G\left[\left\{u, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, v\right\}\right]$ of G. Note that H_{3} is isomorphic to the graph investigated in Lemma 1, while H_{4} is isomorphic to the graph investigated in Lemma 3. Since u is assumed to be upper-right-open in R, it follows that u is upper-right-open also in the restrictions $R\left[H_{3}\right]$ and $R\left[H_{4}\right]$ of R. Therefore, Lemma 1 implies that u is lower-right-closed and v is upper-left-closed in $R\left[H_{3}\right]$, and thus also in R. Similarly, Lemma 3 implies that u is lower-right-closed and v is upper-left-closed in $R\left[H_{4}\right]$. That is, v is upper-left-closed in both $R\left[H_{3}\right]$ and $R\left[H_{4}\right]$, and thus v is upper-left-closed in R. Therefore, since $b_{1}, b_{2}, b_{7}, b_{8}$ are the only neighbors of v in G, it follows that v is lower-left-open in R, and thus v is left-open in R. This completes the proof of the lemma.

6. The recognition of triangle graphs

In this section we provide a reduction from the three-satisfiability (3SAT) problem to the problem of recognizing whether a given graph is a triangle graph. Given a boolean formula ϕ in conjunctive normal form with three literals in each clause (3-CNF), ϕ is satisfiable if there is a truth assignment of ϕ, such that every clause contains at least one true literal. The

Fig. 7. The construction $R_{\alpha_{i}}$ that is associated to the clause α_{i} of the formula ϕ, for $i \in\{1,2, \ldots, k\}$.
problem of deciding whether a given 3-CNF formula ϕ is satisfiable is one of the most known NP-complete problems. We can assume without loss of generality that each clause has literals that correspond to three distinct variables. Given the formula ϕ, we construct in polynomial time a trapezoid graph G_{ϕ}, such that G_{ϕ} is a triangle graph if and only if ϕ is satisfiable. Before constructing the whole trapezoid graph G_{ϕ}, we construct first some smaller trapezoid graphs for each clause and each variable that appears in the given formula ϕ.

6.1. The construction for each clause

Consider a 3-CNF formula $\phi=\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{k}$ with k clauses $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ and n boolean variables $x_{1}, x_{2}, \ldots, x_{n}$, such that $\alpha_{i}=\left(\ell_{i, 1} \vee \ell_{i, 2} \vee \ell_{i, 3}\right)$ for $i=1,2, \ldots, k$. For the literals $\ell_{i, 1}, \ell_{i, 2}, \ell_{i, 3}$ of the clause α_{i}, let $\ell_{i, 1} \in\left\{x_{r_{i, 1}}, \overline{x_{r_{i, 1}}}\right\}$, $\ell_{i, 2} \in\left\{x_{r_{i, 2}}, \overline{x_{r_{i, 2}}}\right\}$, and $\ell_{i, 3} \in\left\{x_{r_{i, 3}}, \overline{x_{r_{i, 3}}}\right\}$, where $1 \leq r_{i, 1}<r_{i, 2}<r_{i, 3} \leq n$. Let L_{1} and L_{2} be two parallel lines in the plane. To every clause α_{i}, where $i=1,2, \ldots, k$, we associate the trapezoid representation $R_{\alpha_{i}}$ with 7 trapezoids that is illustrated in Fig. 7. Note that the trapezoid of the vertex z_{i} in $R_{\alpha_{i}}$ is trivial, i.e. a line. In this construction, the trapezoids of the vertices $v_{i, 1}$, $v_{i, 2}$, and $v_{i, 3}$ correspond to the literals $\ell_{i, 1}, \ell_{i, 2}$, and $\ell_{i, 3}$, respectively. Furthermore, by the construction of $R_{\alpha_{i}}$, the left line of $v_{i, j}$ lies completely to the left of the left line of $v_{i, j+1}$ in $R_{\alpha_{i}}$ for $j \in\{1,2\}$.

We prove now two basic properties of the construction $R_{\alpha_{i}}$ in Fig. 7 for the clause α_{i} that will be then used in the proof of correctness of our reduction.
Lemma 7. Let $G_{\alpha_{i}}$ be the trapezoid graph induced by the trapezoid representation $R_{\alpha_{i}}$ of Fig. 7. Then, in any trapezoid representation R of $G_{\alpha_{i}}$, such that $v_{i, 1}<_{R} z_{i}$, one of $v_{i, 1}, v_{i, 2}, v_{i, 3}$ is right-closed in R.
Proof. Let R be a trapezoid representation of $G_{\alpha_{i}}$, such that $v_{i, 1} \ll_{R} z_{i}$. Note that $v_{i, 2}, v_{i, 3} \in N\left(v_{i, 1}\right) \backslash N\left(z_{i}\right)$. Thus, since $v_{i, 1} \ll R_{R} z_{i}$ by assumption, it follows that also $v_{i, 2}<_{R} z_{i}$ and $v_{i, 3}<_{R} z_{i}$. Furthermore, note that $v_{i, 1}^{\prime} \in N\left(z_{i}\right) \backslash N\left(v_{i, 1}\right)$, $v_{i, 2}^{\prime} \in N\left(z_{i}\right) \backslash N\left(v_{i, 2}\right)$, and $v_{i, 3}^{\prime} \in N\left(z_{i}\right) \backslash N\left(v_{i, 3}\right)$. Therefore, since $v_{i, 1}<_{R} \quad z_{i}, v_{i, 2} \ll_{R} \quad z_{i}$, and $v_{i, 3}<_{R} z_{i}$, it follows that $v_{i, 1} \ll_{R} v_{i, 1}^{\prime}, v_{i, 2} \ll R v_{i, 2}^{\prime}$, and $v_{i, 3} \ll R v_{i, 3}^{\prime}$. Moreover, note that we can locally change appropriately in R the right lines of $v_{i, 1}, v_{i, 2}, v_{i, 3}$ and the left lines of $v_{i, 1}^{\prime}, v_{i, 2}^{\prime}, v_{i, 3}^{\prime}$, such that the relative position of the endpoints $R\left(v_{i, 1}\right), R\left(v_{i, 2}\right), R\left(v_{i, 3}\right)$ on the line L_{1} is arbitrary. Therefore, we assume throughout the proof without loss of generality that $R\left(v_{i, 1}\right)<_{R} R\left(v_{i, 2}\right)<_{R} R\left(v_{i, 3}\right)$ (cf. Fig. 7).

We will now prove that $r\left(v_{i, 3}\right)<_{R} r\left(v_{i, 2}\right)<_{R} r\left(v_{i, 1}\right)$. Suppose otherwise that $r\left(v_{i, 1}\right)<_{R} r\left(v_{i, 2}\right)$. Then, since $R\left(v_{i, 1}\right)<_{R}$ $R\left(v_{i, 2}\right)$ and $v_{i, 2}<_{R} v_{i, 2}^{\prime}$ by the previous paragraph, it follows that also $v_{i, 1} \ll R R v_{i, 2}^{\prime}$. This is a contradiction, since $v_{i, 1} v_{i, 2}^{\prime} \in E\left(G_{\alpha_{i}}\right)$ (cf. Fig. 7). Therefore $r\left(v_{i, 2}\right)<_{R} r\left(v_{i, 1}\right)$. Now suppose that $r\left(v_{i, 2}\right)<_{R} r\left(v_{i, 3}\right)$. Then, similarly, since $R\left(v_{i, 2}\right)<_{R} R\left(v_{i, 3}\right)$ and $v_{i, 3} \ll R R^{v_{i, 3}^{\prime}}$ by the previous paragraph, it follows that also $v_{i, 2}<_{R} v_{i, 3}^{\prime}$. This is again a contradiction, since $v_{i, 2} v_{i, 3}^{\prime} \in E\left(G_{\alpha_{i}}\right)$. Summarizing, $r\left(v_{i, 3}\right)<_{R} r\left(v_{i, 2}\right)<_{R} r\left(v_{i, 1}\right)$ (cf. Fig. 7).

Recall that $v_{i, 1}<_{R} v_{i, 1}^{\prime}$. Therefore, since $r\left(v_{i, 2}\right)<_{R} r\left(v_{i, 1}\right)$ by the previous paragraph, it follows that $r\left(v_{i, 2}\right)<_{R}$ $r\left(v_{i, 1}\right)<_{R} r\left(v_{i, 1}^{\prime}\right)$, i.e. $r\left(v_{i, 2}\right)<_{R} l\left(v_{i, 1}^{\prime}\right)$. Now, if $R\left(v_{i, 2}\right)<_{R} L\left(v_{i, 1}^{\prime}\right)$, then $v_{i, 2} \ll R_{R} v_{i, 1}^{\prime}$, which is a contradiction, since $v_{i, 2} v_{i, 1}^{\prime} \in E\left(G_{\alpha_{i}}\right)$ (cf. Fig. 7). Thus $L\left(v_{i, 1}^{\prime}\right)<_{R} R\left(v_{i, 2}\right)$. Summarizing, there exist two vertices $v_{i, 1}, v_{i, 1}^{\prime} \in N\left(v_{i, 2}\right)$, such that $v_{i, 1} \ll_{R} v_{i, 1}^{\prime}, L\left(v_{i, 1}^{\prime}\right)<_{R} R\left(v_{i, 2}\right)$, and $r\left(v_{i, 2}\right)<_{R} l\left(v_{i, 1}^{\prime}\right)$, and thus $v_{i, 2}$ is upper-right-closed in R by Definition 1 . Therefore, since also $R\left(v_{i, 2}\right)<_{R} R\left(v_{i, 3}\right)$ and $r\left(v_{i, 3}\right)<_{R} r\left(v_{i, 2}\right)$, it follows that $L\left(v_{i, 1}^{\prime}\right)<_{R} R\left(v_{i, 3}\right)$ and $r\left(v_{i, 3}\right)<_{R} l\left(v_{i, 1}^{\prime}\right)$. Thus, since $v_{i, 1}, v_{i, 1}^{\prime} \in N\left(v_{i, 3}\right)$, it follows by Definition 1 that also $v_{i, 3}$ is upper-right-closed in R.

Similarly, since $v_{i, 3}<_{R} v_{i, 3}^{\prime}$ and $R\left(v_{i, 2}\right)<_{R} R\left(v_{i, 3}\right)$, it follows that $R\left(v_{i, 2}\right)<_{R} R\left(v_{i, 3}\right)<_{R} L\left(v_{i, 3}^{\prime}\right)$, i.e. $R\left(v_{i, 2}\right)<_{R} L\left(v_{i, 3}^{\prime}\right)$. Now, if $r\left(v_{i, 2}\right)<_{R} l\left(v_{i, 3}^{\prime}\right)$, then $v_{i, 2}<_{R} v_{i, 3}^{\prime}$, which is a contradiction, since $v_{i, 2} v_{i, 3}^{\prime} \in E\left(G_{\alpha_{i}}\right)$. Thus $l\left(v_{i, 3}^{\prime}\right)<_{R} r\left(v_{i, 2}\right)$. Summarizing, there exist two vertices $v_{i, 3}, v_{i, 3}^{\prime} \in N\left(v_{i, 2}\right)$, such that $v_{i, 3} \ll_{R} v_{i, 3}^{\prime}, l\left(v_{i, 3}^{\prime}\right)<_{R} r\left(v_{i, 2}\right)$, and $R\left(v_{i, 2}\right)<_{R} L\left(v_{i, 3}^{\prime}\right)$, and thus $v_{i, 2}$ is lower-right-closed in R by Definition 1. Therefore, since also $r\left(v_{i, 2}\right)<_{R} r\left(v_{i, 1}\right)$ and $R\left(v_{i, 1}\right)<_{R} R\left(v_{i, 2}\right)$, it follows that $l\left(v_{i, 3}^{\prime}\right)<_{R} r\left(v_{i, 1}\right)$ and $R\left(v_{i, 1}\right)<_{R} L\left(v_{i, 3}^{\prime}\right)$. Thus, since $v_{i, 3}, v_{i, 3}^{\prime} \in N\left(v_{i, 1}\right)$, it follows by Definition 1 that also $v_{i, 1}$ is lower-rightclosed in R.

Summarizing, $v_{i, 3}$ is upper-right-closed in R and $v_{i, 1}$ is lower-right-closed in R, while $v_{i, 2}$ is both upper-right-closed and lower-right-closed in R, i.e. $v_{i, 2}$ is right-closed in R by Definition 2. This completes the proof of the lemma.
Corollary 1. Consider the trapezoid representation $R_{\alpha_{i}}$ of Fig. 7. For every $p \in\{1,2,3\}$, we can locally change appropriately in $R_{\alpha_{i}}$ the right lines of $v_{i, 1}, v_{i, 2}, v_{i, 3}$ and the left lines of $v_{i, 1}^{\prime}, v_{i, 2}^{\prime}, v_{i, 3}^{\prime}$, such that $v_{i, p}$ is right-closed and $v_{i, p^{\prime}}$ is right-open, for every $p^{\prime} \in\{1,2,3\} \backslash\{p\}$.

Fig. 8. The construction $R_{x_{j}}$ that is associated to the variable x_{j} of the formula ϕ, where $j=1,2, \ldots, n$.
Proof. Note that in the representation $R_{\alpha_{i}}$ of Fig. 7, the relative position of the endpoints $R\left(v_{i, 1}\right), R\left(v_{i, 2}\right), R\left(v_{i, 3}\right)$ on the line L_{1} is $R\left(v_{i, 1}\right)<_{R_{\alpha_{i}}} R\left(v_{i, 2}\right)<_{R_{\alpha_{i}}} R\left(v_{i, 3}\right)$. Then, it follows by the proof of Lemma 7 that $v_{i, 2}$ is right-closed in $R_{\alpha_{i}}$. Moreover, it is straightforward to see that the other two trapezoids $v_{i, 1}$ and $v_{i, 3}$ are right-open in $R_{\alpha_{i}}$ (in particular, $v_{i, 1}$ is upper-right-open in $R_{\alpha_{i}}$ and $v_{i, 3}$ is lower-right-open in $R_{\alpha_{i}}$).

Furthermore, recall by the proof of Lemma 7 that we can locally change appropriately in $R_{\alpha_{i}}$ the right lines of $v_{i, 1}, v_{i, 2}, v_{i, 3}$ and the left lines of $v_{i, 1}^{\prime}, v_{i, 2}^{\prime}, v_{i, 3}^{\prime}$, such that the relative position of the endpoints $R\left(v_{i, 1}\right), R\left(v_{i, 2}\right), R\left(v_{i, 3}\right)$ on the line L_{1} is arbitrary. For an arbitrary $p \in\{1,2,3\}$, consider now the trapezoid representation R that is obtained by changing locally these lines in $R_{\alpha_{i}}$, such that the endpoint $R\left(v_{i, p}\right)$ lies in the middle of $R\left(v_{i, 1}\right), R\left(v_{i, 2}\right), R\left(v_{i, 3}\right)$ on L_{1}. Then, similarly to the above, $v_{i, p}$ is right-closed in this representation R, while the other two trapezoids $v_{i, p^{\prime}}$ are right-open in R, for every $p^{\prime} \in\{1,2,3\} \backslash\{p\}$. This completes the proof of the corollary.

6.2. The construction for each variable

Let x_{j} be a variable of the formula ϕ, where $1 \leq j \leq n$. Let x_{j} appear in ϕ (either as x_{j} or negated as $\overline{x_{j}}$) in the m_{j} clauses $\alpha_{j_{j, 1}}, \alpha_{j_{j, 2}}, \ldots, \alpha_{i_{j, m_{j}}}$, where $1 \leq i_{j, 1}<i_{j, 2}<\cdots<i_{j, m_{j}} \leq k$. Then, we associate to the variable x_{j} the trapezoid representation $R_{x_{j}}$ with $2 m_{j}+7$ trapezoids that is illustrated in Fig. 8. In this construction, the trapezoids of the vertices $u_{j, t}$ and $w_{j, t}$, where $1 \leq t \leq m_{j}$, correspond to the appearance of the variable x_{j} (either as x_{j} or negated as $\overline{x_{j}}$) in the clause $\alpha_{i_{j, t}}$ in ϕ. Note that the trapezoids of the vertices $a_{j}^{1}, a_{j}^{2}, \ldots, a_{j}^{7}$ are trivial, i.e. lines. By the construction of $R_{x_{j}}$, the right line of $u_{j, t}$ lies completely to the left of the right line of $w_{j, t}$ for all values of $j=1,2, \ldots, n$ and $t=1,2, \ldots, m_{j}$. Furthermore, the right line of each of $\left\{u_{j, t}, w_{j, t}\right\}$ lies completely to the left of the right line of each of $\left\{u_{j, t^{\prime}}, w_{j, t^{\prime}}\right\}$ in $R_{x_{j}}$, whenever $t<t^{\prime}$.

6.3. The construction the trapezoid graph G_{ϕ}

We construct now a trapezoid representation R_{ϕ} of the whole trapezoid graph G_{ϕ}, by composing the constructions $R_{\alpha_{i}}$ and $R_{x_{j}}$ presented in Sections 6.1 and 6.2, as follows. First, we place in R_{ϕ} the k trapezoid representations $R_{\alpha_{i}}$, where $i=1,2, \ldots, k$, between the lines L_{1} and L_{2} such that, whenever $i<i^{\prime}$, every trapezoid of $R_{\alpha_{i}}$ lies completely to the left of every trapezoid of $R_{\alpha_{i^{\prime}}}$. Then, we place in R_{ϕ} the n trapezoid representations $R_{x_{j}}$, where $j=1,2, \ldots, n$, between the lines L_{1} and L_{2} such that, whenever $j<j^{\prime}$, the lines of $a_{j}^{1}, a_{j}^{2}, \ldots, a_{j}^{7}$ and the left lines of all $u_{j, t}, w_{j, t}$, lie completely to the left of the lines of $a_{j^{\prime}}^{1}, a_{j^{\prime}}^{2}, \ldots, a_{j^{\prime}}^{7}$ and the left lines of all $u_{j^{\prime}, t^{\prime}}, w_{j^{\prime}, t^{\prime}}$. Moreover, for every $j, j^{\prime}=1,2, \ldots, n$, the lines of $a_{j}^{1}, a_{j}^{2}, \ldots, a_{j}^{7}$ and the left lines of all $u_{j, t}, w_{j, t}$, lie in R_{ϕ} completely to the left of the right lines of all $u_{j^{\prime}, t^{\prime}}, w_{j^{\prime}, t^{\prime}}$. Thus, note in particular that every $u_{j, t}$ intersects every other $u_{j^{\prime}, t^{\prime}}$ and every $w_{j^{\prime}, t^{\prime}}$ in R_{ϕ}.

Let $j \in\{1,2, \ldots, n\}$ and $t \in\left\{1,2, \ldots, m_{j}\right\}$. Recall that, by the construction of $R_{x_{j}}$ in Section 6.2, the pair of trapezoids $\left\{u_{j, t}, w_{j, t}\right\}$ corresponds to the appearance of the variable x_{j} in a clause α_{i} of ϕ, where $i=i_{j, t} \in\{1,2, \ldots, k\}$. That is, either $\ell_{i, p}=x_{j}$ or $\ell_{i, p}=\overline{x_{j}}$ for some $p \in\{1,2,3\}$, where $\alpha_{i}=\left(\ell_{i, 1} \vee \ell_{i, 2} \vee \ell_{i, 3}\right)$. Then, we place in R_{ϕ} the right lines of the trapezoids $u_{j, t}$ and $w_{j, t}$ directly before the left line of $v_{i, p}$ (i.e. no line of any other trapezoid intersects with or lies between the right lines of $u_{j, t}$ and $w_{j, t}$ and the left line of $v_{i, p}$).

In order to finalize the construction of R_{ϕ}, we distinguish now the two cases regarding the literal $\ell_{i, p}$ of the clause α_{i}, in which the variable x_{j} appears. If $\ell_{i, p}=x_{j}$, then we add to R_{ϕ} six trivial trapezoids (i.e. lines) $\left\{b_{j, t}^{1}, b_{j, t}^{2}, \ldots, b_{j, t}^{6}\right\}$, as it is shown in Fig. 9(b). On the other hand, if $\ell_{i, p}=\overline{x_{j}}$, then we add to R_{ϕ} eight trivial trapezoids (i.e. lines) $\left\{b_{j, t}^{1}, b_{j, t}^{2}, \ldots, b_{j,}^{8}\right\}$, as it is shown in Fig. 9(b). In particular, we place these six (resp. eight) new lines in R_{ϕ} such that they intersect only the right lines of $u_{j, t}$ and $w_{j, t}$ and the left line of $v_{i, p}$ in R_{ϕ}. Note that the trapezoid graphs induced by the representations in Fig. 9(a) and (b) are isomorphic to the graphs investigated in Lemmas 5 and 6, respectively. This completes the construction of the trapezoid representation R_{ϕ}, while G_{ϕ} is the trapezoid graph induced by R_{ϕ}.

It is now easy to verify that, by the construction of R_{ϕ}, all the trapezoids $u_{j, t}$ are upper-left-closed and right-closed in R_{ϕ}, while all the trapezoids $w_{j, t}$ are lower-right-closed and left-closed in R_{ϕ}. Furthermore, all the trapezoids $u_{j, t}$ are lower-leftopen in R_{ϕ} and all the trapezoids $w_{j, t}$ are upper-right-open in R_{ϕ}. Consider now a trapezoid $v_{i, p}$ in R_{ϕ}. If $v_{i, p}$ corresponds to a positive literal $\ell_{i, p}=x_{j}$ (for some variable x_{j}), then $v_{i, p}$ is upper-left-closed and lower-left-open in R_{ϕ} (cf. Fig. 9(a)). On the other hand, if $v_{i, p}$ corresponds to a negative literal $\ell_{i, p}=\overline{x_{j}}$, then $v_{i, p}$ is left-closed in R_{ϕ} (cf. Fig. 9(b)).
a

b

Fig. 9. The composition of the trapezoids of $R_{x_{j}}$ with the trapezoid $v_{i, p}$ of $R_{\alpha_{i}}$, in the cases where (a) $\ell_{i, p}=x_{j}$ and (b) $\ell_{i, p}=\overline{x_{j}}$.
a

b

Fig. 10. The case where $x_{j}=0$ in the truth assignment τ : the horizontal axis flipping operations of the lines $\left\{a_{j}^{2}, a_{j}^{2}\right\}$ and $\left\{b_{j, t}^{2}, b_{j, t}^{2}\right\}, t=1,2, \ldots, m_{j}$, where (a) $\ell_{i, p}=x_{j}=0$, (b) $\ell_{i, p}=\overline{x_{j}}=1$.

In order to prove the correctness of our reduction (cf. Theorem 3), we prove separately the necessary and sufficient conditions in the next two lemmas.

Lemma 8. If the formula ϕ is satisfiable, then G_{ϕ} is a triangle graph.
Proof. Suppose that ϕ has a satisfying truth assignment τ. Starting from R_{ϕ}, we will construct a standard trapezoid representation R_{0} of G_{ϕ}. This will then imply that G_{ϕ} is a triangle graph by Theorem 1.

First consider an index j that corresponds to a variable $x_{j}=0$ in the truth assignment τ. Furthermore consider an imaginary line L_{3} that is parallel to L_{1} and L_{2} and has the same distance from both L_{1} and L_{2}. We replace in R_{ϕ} the lines $\left\{a_{j}^{1}, a_{j}^{2}\right\}$ (resp. the lines $\left\{b_{j, t}^{1}, b_{j, t}^{2}\right\}$ for every index $t=1,2, \ldots, m_{j}$) by their mirror image along L_{3}, such that, in the resulting representation, these flipped lines intersect with the same trapezoids as the lines $\left\{a_{j}^{1}, a_{j}^{2}\right\}$ (resp. the lines $\left\{b_{j, t}^{1}, b_{j, t}^{2}\right\}$) intersect in R_{ϕ}. In the case where the corresponding literal $\ell_{i, p}$ equals a variable x_{j}, i.e. if $\ell_{i, p}=x_{j}=0$, these flipping operations are illustrated in Fig. 10(a). Otherwise, in the case where the corresponding literal $\ell_{i, p}$ equals a negated variable $\overline{x_{j}}$, i.e. if $\ell_{i, p}=\overline{x_{j}}=1$, these flipping operations are illustrated in Fig. 10(b). For better visibility, the flipped lines are drawn dashed in Fig. 10. For every other index j that corresponds to a variable $x_{j}=1$ in τ, we leave the lines $\left\{a_{j}^{1}, a_{j}^{2}\right\}$, as well as all the lines $\left\{b_{j, t}^{1}, b_{j, t}^{2}\right\}$, at the same position in R_{0} as in R_{ϕ}.

Note that, after performing these flipping operations, for every index j that corresponds to a variable $x_{j}=0$ in τ, all the trapezoids $u_{j, t}$ are left-closed and right-open, while all the trapezoids $w_{j, t}$ are left-open and right-closed. On the contrary, for every index j that corresponds to a variable $x_{j}=1$ in τ, all the trapezoids $u_{j, t}$ are left-open and right-closed, while all the trapezoids $w_{j, t}$ are left-closed and right-open (cf. Fig. 9). That is, after performing the above flipping operations, for every
variable x_{j} of ϕ, all the trapezoids $u_{j, t}$ and $w_{j, t}$ are open in the resulting trapezoid representation. Moreover, for all indices i, p, the trapezoid $v_{i, p}$ is left-open in the resulting trapezoid representation if and only if the literal $\ell_{i, p}$ is satisfied in τ, i.e. if and only if $\ell_{i, p}=1$ in τ (cf. Figs. 9 and 10).

Let us now complete the construction of R_{0} from R_{ϕ}. Consider first a clause α_{i} of ϕ, where $i=1,2, \ldots, k$. Then, α_{i} has at least one satisfied literal $\ell_{i, p}=1$ in the truth assignment τ, where $p \in\{1,2,3\}$, since τ is assumed to be a satisfying assignment of ϕ. Therefore, after performing the above flipping operations, there exists by the previous paragraph at least one trapezoid $v_{i, p}$, where $p \in\{1,2,3\}$, which is left-open in the resulting trapezoid representation. Recall now by Corollary 1 that we can locally change in $R_{\alpha_{i}}$ the right lines of $v_{i, 1}, v_{i, 2}, v_{i, 3}$ and the left lines of $v_{i, 1}^{\prime}, v_{i, 2}^{\prime}, v_{i, 3}^{\prime}$, such that $v_{i, p}$ is right-closed and $v_{i, p^{\prime}}$ is right-open, for every $p^{\prime} \in\{1,2,3\} \backslash\{p\}$. Therefore, after changing appropriately these lines of the trapezoids, $v_{i, p}$ is right-closed and left-open in the resulting representation, while $v_{i, p^{\prime}}$ is right-open, for every $p^{\prime} \in\{1,2,3\} \backslash\{p\}$. That is, all $v_{i, 1}, v_{i, 2}, v_{i, 3}$ are open in the resulting trapezoid representation.

Denote by R_{0} the trapezoid representation that is obtained if we perform all the above local changes. Note that all trapezoids $u_{j, t}, w_{j, t}$, and $v_{i, p}$ are open in R_{0} for all pairs of indices j, t and i, p. Furthermore, it is easy to see that also the trapezoids $v_{i, p}^{\prime}$ are right-open in R_{0} (in particular, they are also right-open in the initial trapezoid representation $R_{\alpha_{i}}$, cf. Fig. 7). All the remaining trapezoids of R_{0} are trivial, i.e. lines, and thus also trivial triangles. Therefore, R_{0} is a standard trapezoid representation of G_{ϕ} by Definition 3, and thus G_{ϕ} is a triangle graph by Theorem 1. This completes the proof of the lemma.
Lemma 9. If G_{ϕ} is a triangle graph, then the formula ϕ is satisfiable.
Proof. Suppose that G_{ϕ} is a triangle graph and let R be a triangle representation of G_{ϕ}. We construct a truth assignment τ of the variables $x_{1}, x_{2}, \ldots, x_{n}$ that satisfies the formula ϕ, as follows. For any $j=1,2, \ldots, n$ such that $a_{j}^{7}<_{R} u_{j, 1}$, we define $x_{j}=1$ if and only if $u_{j, 1}$ is left-open in R. Similarly, for any $j=1,2, \ldots, n$ such that $u_{j, 1}<_{R} a_{j}^{7}$, we define $x_{j}=1$ if and only if $u_{j, 1}$ is right-open in R. We will prove that the truth assignment τ satisfies ϕ.

Let $i \in\{1,2, \ldots, k\}$. By possibly performing a vertical axis flipping of R, we may assume without loss of generality that $v_{j, 1} \ll R_{R} z_{i}$. Therefore, since $v_{i, 2}, v_{i, 3} \in N\left(v_{i, 1}\right) \backslash N\left(z_{i}\right)$, it follows that also $v_{i, 2}<_{R} z_{i}$ and $v_{i, 3}<_{R} z_{i}$. Consider now the subgraph H_{0} of G_{ϕ} induced by the vertices $\left\{v_{i, 1}, v_{i, 2}, v_{i, 3}, v_{i, 1}^{\prime}, v_{i, 2}^{\prime}, v_{i, 3}^{\prime}, z_{i}\right\}$. Note that H_{0} is isomorphic to the graph induced by the trapezoid representation $R_{\alpha_{i}}$ of Fig. 7. Then, Lemma 7 implies that one of $v_{i, 1}, v_{i, 2}, v_{i, 3}$ is right-closed in the restriction $R\left[H_{0}\right]$ of R. Let in the following $v_{i, p}$ be right-closed in $R\left[H_{0}\right]$, and thus also right-closed in R, for some $p \in\{1,2,3\}$. Thus $L\left(v_{i, p^{\prime}}^{\prime}\right)<_{R} R\left(v_{i, p}\right)<_{R} L\left(v_{i, p^{\prime \prime}}^{\prime}\right)$ and $l\left(v_{i, p^{\prime \prime}}^{\prime}\right)<_{R} r\left(v_{i, p}\right)<_{R} l\left(v_{i, p^{\prime}}^{\prime}\right)$, for appropriate values of the indices $p^{\prime}, p^{\prime \prime} \in\{1,2,3\} \backslash\{p\}$, cf. Fig. 7.

Furthermore, let x_{j} be the variable that appears in the literal $\ell_{i, p}$ of the clause α_{i}, i.e. either $\ell_{i, p}=x_{j}$ or $\ell_{i, p}=\overline{x_{j}}$. Moreover, let the trapezoids $\left\{u_{j, t}, w_{j, t}\right\}$ correspond to the appearance of the variable x_{j} in $\ell_{i, p}$, for some index $t \in\left\{1,2, \ldots, m_{j}\right\}$. Note that, since the trapezoids of vertices $u_{j, t}$ and $v_{i, p}$ do not intersect in R, it follows that either $u_{j, t} \ll_{R} v_{i, p}$ or $v_{i, p} \ll_{R} u_{j, t}$. We will prove that $u_{j, t} \ll R_{R} v_{i, p}$. Suppose otherwise that $v_{i, p}<_{R} u_{j, t}$. Then, since $u_{j, t} \notin N\left(z_{i}\right)$, it follows that either $v_{i, p}<_{R} z_{i} \ll_{R} u_{j, t}$ or $v_{i, p}<_{R} u_{j, t} \ll R_{R} z_{i}$. Let first $v_{i, p}<_{R} z_{i}<_{R} u_{j, t}$. Then, since $b_{j, t}^{1} \in N\left(v_{i, p}\right)$ and $b_{j, t}^{1} \in N\left(u_{j, t}\right)$ by the construction of G_{ϕ} (cf. Fig. 9(a) and (b)), it follows that the line of $b_{j, t}^{1}$ intersects the line of z_{i} in R. This is a contradiction, since $b_{j, t}^{1} \notin N\left(z_{i}\right)$ by the construction of G_{ϕ}. Let now $v_{i, p} \ll R u_{j, t} \ll_{R} z_{i}$ and let $q \in\{1,2,3\} \backslash\{p\}$. Then, since $v_{i, q}^{\prime} \in N\left(v_{i, p}\right)$ and $v_{i, q}^{\prime} \in N\left(z_{i}\right)$ by the construction of G_{ϕ} (cf. Fig. 7), it follows that the trapezoid of $v_{i, q}^{\prime}$ intersects the trapezoid of $u_{j, t}$ in R. This is again a contradiction, since $v_{i, q}^{\prime} \notin N\left(u_{j, t}\right)$ by the construction of G_{ϕ}. Therefore $u_{j, t}<_{R} v_{i, p}$.

Now, we will now prove that $a_{j}^{7} \ll R u_{j, t}$. Suppose otherwise that $u_{j, t}<_{R} a_{j}^{7}$. Then, since $a_{j}^{7} \notin N\left(v_{i, p}\right)$, it follows that either $u_{j, t} \ll R_{R} v_{i, p}<_{R} a_{j}^{7}$ or $u_{j, t} \ll R_{R} a_{j}^{7}<_{R} v_{i, p}$. Let first $u_{j, t}<_{R} v_{i, p}<_{R} a_{j}^{7}$. Then, since $a_{j}^{1} \in N\left(u_{j, t}\right)$ and $a_{j}^{1} \in N\left(a_{j}^{7}\right)$ by the construction of G_{ϕ} (cf. Fig. 9(a) and (b)), it follows that the line of a_{j}^{1} intersects the trapezoid of $v_{i, p}$ in R. This is a contradiction, since $a_{j}^{1} \notin N\left(v_{i, p}\right)$ by the construction of G_{ϕ}. Let now $u_{j, t} \ll R a_{j}^{7} \ll_{R} v_{i, p}$. Then, since $b_{j, t}^{1} \in N\left(u_{j, t}\right)$ and $b_{j, t}^{1} \in N\left(v_{i, p}\right)$ by the construction of G_{ϕ} (cf. Fig. 7), it follows that the line of $b_{j, t}^{1}$ intersects the line of a_{j}^{7} in R. This is again a contradiction, since $b_{j, t}^{1} \notin N\left(a_{j}^{7}\right)$ by the construction of G_{ϕ}. Therefore $a_{j}^{7} \ll R_{R} u_{j, t}$.

That is, $a_{j}^{7}<_{R} u_{j, t}<_{R} v_{i, p}<_{R} z_{i}$. Note here by the construction of G_{ϕ}, that the existence of the lines $\left\{a_{j}^{1}, a_{j}^{2}, \ldots, a_{j}^{7}\right\}$ guarantees that $u_{j, 1}$ is left-open in R if and only if $u_{j, t}$ is left-open in R, for any $t=2, \ldots, m_{j}$ (cf. Fig. 8). Therefore, due to the truth assignment τ of the variables $x_{1}, x_{2}, \ldots, x_{n}$ that we defined above, it follows that $x_{j}=1$ if and only if $u_{j, t}$ is left-open in R, for any $t=1,2, \ldots, m_{j}$. We distinguish in the following the two cases regarding the literal $\ell_{i, p}$ of the clause α_{i}.

Let first $\ell_{i, p}=x_{j}$. Consider the subgraph H_{1} of G_{ϕ} induced by the vertices $\left\{u_{j, t}, w_{j, t}, v_{i, p}\right\} \cup\left\{a_{j}^{1}, \ldots, a_{j}^{7}\right\} \cup\left\{b_{j, t}^{1}, b_{j, t}^{2}, \ldots, b_{j, t}^{6}\right\}$. Note that H_{1} is isomorphic to the graph induced by the trapezoid representation of Fig. 6(a). Furthermore, consider the subgraph H_{2} of G_{ϕ} induced by the vertices $V\left(H_{1}\right) \cup\left\{v_{i, p^{\prime}}^{\prime}, v_{i, p^{\prime \prime}}^{\prime}\right\}$, where $\left\{p^{\prime}, p^{\prime \prime}\right\}=\{1,2,3\} \backslash\{p\}$. Note now by the construction of G_{ϕ} that the existence of the lines $\left\{a_{j}^{1}, a_{j}^{2}, \ldots, a_{j}^{7}\right\}$ guarantees that the trapezoid $u_{j, t}$ is left-open in R if and only if $u_{j, t}$ is left-open in the restriction $R\left[H_{1}\right]$ of R.

Moreover, the connected graph H_{2} satisfies the conditions of Theorem 2. Indeed, $v_{i, p}$ is a cut vertex of H_{2} and $H_{2}-\left\{v_{i, p}\right\}$ has the two connected components H_{1} and $G_{\phi}\left[v_{i, p^{\prime}}^{\prime}, v_{i, p^{\prime \prime}}^{\prime}\right]$. Therefore, since $R\left[H_{2}\right]$ is a triangle representation, Theorem 2 implies that $v_{i, p}$ is open in $R\left[H_{2}\right]$. Recall now that $L\left(v_{i, p^{\prime}}^{\prime}\right)<_{R} R\left(v_{i, p}\right)<_{R} L\left(v_{i, p^{\prime \prime}}^{\prime}\right)$ and $l\left(v_{i, p^{\prime \prime}}^{\prime}\right)<_{R} r\left(v_{i, p}\right)<_{R} l\left(v_{i, p^{\prime}}^{\prime}\right)$, for appropriate values of the indices $p^{\prime}, p^{\prime \prime} \in\{1,2,3\} \backslash\{p\}$. Therefore, since $b_{j, t}^{1} \ll R R v_{i, p^{\prime}}^{\prime}$ and $b_{j, t}^{1} \ll R R v_{i, p^{\prime \prime}}^{\prime}$, it follows by Definitions 1 and 2
that $v_{i, p}$ is right-closed in $R\left[H_{2}\right]$. Thus, since $v_{i, p}$ is open in $R\left[H_{2}\right]$, it follows that $v_{i, p}$ is left-open in $R\left[H_{2}\right]$. Therefore, $v_{i, p}$ is also left-open in $R\left[H_{1}\right]$, since H_{1} is an induced subgraph of H_{2}. Now, Lemma 5 implies that $u_{j, t}$ is left-open in $R\left[H_{1}\right]$, since $a_{j}^{7} \ll_{R} u_{j, t}$ and $v_{i, p}$ is left-open in $R\left[H_{1}\right]$. Therefore $u_{j, t}$ is also left-open in R, and thus it follows by the definition of the truth assignment τ that $\ell_{i, p}=x_{j}=1$.

Let now $\ell_{i, p}=\overline{x_{j}}$. Consider the subgraph H_{3} of G_{ϕ} induced by the vertices $\left\{u_{j, t}, w_{j, t}, v_{i, p}\right\} \cup\left\{a_{j}^{1}, \ldots, a_{j}^{7}\right\} \cup$ $\left\{b_{j, t}^{1}, b_{j, t}^{2}, \ldots, b_{j, t}^{8}\right\}$. Note that H_{3} is isomorphic to the graph induced by the trapezoid representation of Fig. 6(b). Furthermore, consider the subgraph H_{4} of G_{ϕ} induced by the vertices $V\left(H_{3}\right) \cup\left\{v_{i, p^{\prime}}^{\prime}, v_{i, p^{\prime \prime}}^{\prime}\right\}$, where $\left\{p^{\prime}, p^{\prime \prime}\right\}=\{1,2,3\} \backslash\{p\}$.

Moreover, the connected graph H_{4} satisfies the conditions of Theorem 2. Indeed, $v_{i, p}$ is a cut vertex of H_{4} and $H_{4}-\left\{v_{i, p}\right\}$ has the two connected components H_{3} and $G_{\phi}\left[v_{i, p^{\prime}}^{\prime}, v_{i, p^{\prime \prime}}^{\prime}\right]$. Therefore, since $R\left[H_{4}\right]$ is a triangle representation, Theorem 2 implies that $v_{i, p}$ is open in $R\left[H_{4}\right]$. Recall that $L\left(v_{i, p^{\prime}}^{\prime}\right)<_{R} R\left(v_{i, p}\right)<_{R} L\left(v_{i, p^{\prime \prime}}^{\prime}\right)$ and $l\left(v_{i, p^{\prime \prime}}^{\prime}\right)<_{R} r\left(v_{i, p}\right)<_{R} l\left(v_{i, p^{\prime}}^{\prime}\right)$, for appropriate values of the indices p^{\prime} and $p^{\prime \prime}$, where $\left\{p^{\prime}, p^{\prime \prime}\right\}=\{1,2,3\} \backslash\{p\}$. Therefore, since $b_{j, t}^{1}<_{R} v_{i, p^{\prime}}^{\prime}$ and $b_{j, t}^{1}<_{R} v_{i, p^{\prime \prime}}^{\prime}$, it follows by Definitions 1 and 2 that $v_{i, p}$ is right-closed in $R\left[H_{4}\right]$. Thus, since $v_{i, p}$ is open in $R\left[H_{4}\right]$, it follows that $v_{i, p}$ is left-open in $R\left[H_{4}\right]$. Therefore, $v_{i, p}$ is also left-open in $R\left[H_{3}\right]$, since H_{3} is an induced subgraph of H_{4}. Now, Lemma 6 implies that $u_{j, t}$ is left-closed in $R\left[H_{3}\right]$, since $a_{j}^{7}<_{R} u_{j, t}$ and $v_{i, p}$ is left-open in $R\left[H_{3}\right]$. Therefore $u_{j, t}$ is also left-closed in R, and thus, it follows by the definition of the truth assignment τ that $x_{j}=0$, i.e. $\ell_{i, p}=\overline{x_{j}}=1$.

Summarizing, for an arbitrary index $i \in\{1,2, \ldots, k\}$, we proved that there exists an index $p \in\{1,2,3\}$, such that the literal $\ell_{i, p}$ is satisfied by the truth assignment τ, i.e. $\ell_{i, p}=1$. Therefore, every clause α_{i}, where $i \in\{1,2, \ldots, k\}$, is satisfied by τ, and thus the whole formula ϕ is satisfied by τ. This completes the proof of the lemma.

The next theorem follows now directly by Lemmas 8 and 9 .
Theorem 3. The formula ϕ is satisfiable if and only if G_{ϕ} is a triangle graph.
Therefore, since 3 SAT is NP-complete, Theorem 3 implies that the recognition of triangle graphs is NP-hard. Moreover, since the recognition of triangle graphs lies in NP by Observation 1, and since G_{ϕ} is a trapezoid graph, we can summarize our main result in the next theorem.
Theorem 4. Given a graph G, it is NP-complete to decide whether G is a triangle graph. The problem remains NP-complete even if the given graph G is known to be a trapezoid graph.

7. Concluding remarks

In this article we proved that the triangle graph (known also as PI* graph) recognition problem is NP-complete, by providing a reduction from the 3SAT problem, thus answering a longstanding open question. Our reduction implies that this problem remains NP-complete even in the case where the input graph is a trapezoid graph. The recognition of simple-triangle graphs [3], as well as the recognition of the related classes of unit and proper tolerance graphs [11,1] (these are subclasses of bounded tolerance, i.e. parallelogram, graphs [1]), proper bitolerance graphs [11,2] (they coincide with unit bitolerance graphs [2]), and multitolerance graphs [19] (they naturally generalize trapezoid graphs [23,19]) remain interesting open problems for further research.

References

[1] K.P. Bogart, P.C. Fishburn, G. Isaak, L. Langley, Proper and unit tolerance graphs, Discrete Applied Mathematics 60 (1-3) (1995) 99-117.
[2] K.P. Bogart, G. Isaak, Proper and unit bitolerance orders and graphs, Discrete Mathematics 181 (1-3) (1998) 37-51.
[3] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (SIAM), 1999.
[4] M.R. Cerioli, F.de S. Oliveira, J.L. Szwarcfiter, Linear-interval dimension and PI orders, Electronic Notes in Discrete Mathematics 30 (2008) 111-116.
[5] D.G. Corneil, P.A. Kamula, Extensions of permutation and interval graphs, in: Proceedings of the 18th Southeastern Conference on Combinatorics, Graph Theory and Computing 1987, pp. 267-275.
[6] I. Dagan, M.C. Golumbic, R.Y. Pinter, Trapezoid graphs and their coloring, Discrete Applied Mathematics 21 (1) (1988) 35-46.
[7] S. Felsner, R. Müller, L. Wernisch, Trapezoid graphs and generalizations, geometry and algorithms, Discrete Applied Mathematics 74 (1997) 13-32.
[8] P.C. Fishburn, W.T. Trotter, Split semiorders, Discrete Mathematics 195 (1999) 111-126.
[9] M.C. Golumbic, Algorithmic graph theory and perfect graphs, in: Annals of Discrete Mathematics, vol 57, North-Holland Publishing Co., 2004.
[10] M.C. Golumbic, R.E. Jamison, Edge and vertex intersection of paths in a tree, Discrete Mathematics 55 (2) (1985) 151-159.
11] M.C. Golumbic, A.N. Trenk, Tolerance Graphs, Cambridge studies in advanced mathematics, 2004.
[12] G. Isaak, K.L. Nyman, A.N. Trenk, A hierarchy of classes of bounded bitolerance orders, Ars Combinatoria 69 (2003).
$13]$ E. Köhler, Connected domination and dominating clique in trapezoid graphs, Discrete Applied Mathematics 99 (1-3) (2000) 91-110.
14] L.J. Langley, A recognition algorithm for orders of interval dimension two, Discrete Applied Mathematics 60 (1-3) (1995) 257 -266.
15] Y.-L. Lin, Triangle graphs and their coloring, in: Proceedings of the International Workshop on Orders, Algorithms, and Applications, ORDAL, SpringerVerlag, 1994, pp. 128-142.
[16] T.-H. Ma, J.P. Spinrad, On the 2-chain subgraph cover and related problems, Journal of Algorithms 17 (2) (1994) 251-268.
17] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Mathematics 201 (1-3) (1999) 189-241.
18] T.A. McKee, F.R. McMorris, Topics in intersection graph theory, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.
[19] G.B. Mertzios, An intersection model for multitolerance graphs: efficient algorithms and hierarchy, in: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA, 2011, pp. 1306-1317.
[20] G.B. Mertzios, D.G. Corneil, Vertex splitting and the recognition of trapezoid graphs, Discrete Applied Mathematics 159 (11) (2011) $1131-1147$.
[21] G.B. Mertzios, I. Sau, S. Zaks, The recognition of tolerance and bounded tolerance graphs, SIAM Journal on Computing 40 (5) (2011) $1234-1257$.
[22] M. Middendorf, F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Mathematics 80 (3) (1990) $327-333$.
[23] A. Parra, Triangulating multitolerance graphs, Discrete Applied Mathematics 84 (1-3) (1998) 183-197.
[24] S.P. Ryan, Trapezoid order classification, Order 15 (1998) 341-354.
[25] J.P. Spinrad, Efficient Graph Representations, in: Fields Institute Monographs, vol. 19, American Mathematical Society, 2003.

[^0]: ${ }^{*}$ A preliminary conference version of this work appeared in Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), Dortmund, Germany, March 2011, pages 591-602.

 * Tel.: +44 1913342429.

 E-mail address: george.mertzios@durham.ac.uk.

