A NEW INTERSECTION MODEL AND IMPROVED ALGORITHMS FOR TOLERANCE GRAPHS*

GEORGE B. MERTZIOS ${ }^{\dagger}$, IGNASI SAU ${ }^{\ddagger}$, AND SHMUEL ZAKS ${ }^{\S}$

Abstract

Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs, which generalizes in a natural way both interval and permutation graphs, has attracted many research efforts since their introduction in [M. C. Golumbic and C. L. Monma, Congr. Numer., 35 (1982), pp. 321-331], as it finds many important applications in constraint-based temporal reasoning, resource allocation, and scheduling problems, among others. In this article we propose the first non-trivial intersection model for general tolerance graphs, given by three-dimensional parallelepipeds, which extends the widely known intersection model of parallelograms in the plane that characterizes the class of bounded tolerance graphs. Apart from being important on its own, this new representation also enables us to improve the time complexity of three problems on tolerance graphs. Namely, we present optimal $\mathcal{O}(n \log n)$ algorithms for computing a minimum coloring and a maximum clique and an $\mathcal{O}\left(n^{2}\right)$ algorithm for computing a maximum weight independent set in a tolerance graph with n vertices, thus improving the best known running times $\mathcal{O}\left(n^{2}\right)$ and $\mathcal{O}\left(n^{3}\right)$ for these problems, respectively.

Key words. tolerance graphs, parallelogram graphs, intersection model, minimum coloring, maximum clique, maximum weight independent set

AMS subject classifications. Primary, 05C62; Secondary, 05C85, 05C15, 05C69, 68R10
DOI. 10.1137/09075994X

1. Introduction. A graph $G=(V, E)$ on n vertices is a tolerance graph if there is a set $I=\left\{I_{i} \mid i=1, \ldots, n\right\}$ of closed intervals on the real line and a set $T=\left\{t_{i} \mid i=1, \ldots, n\right\}$ of positive real numbers, called tolerances, such that for any two vertices $v_{i}, v_{j} \in V, v_{i} v_{j} \in E$ if and only if $\left|I_{i} \cap I_{j}\right| \geq \min \left\{t_{i}, t_{j}\right\}$, where $|I|$ denotes the length of the interval I. These sets of intervals and tolerances form a tolerance representation of G. If G has a tolerance representation such that $t_{i} \leq\left|I_{i}\right|$ for $i=1, \ldots, n$, then G is called a bounded tolerance graph, and its representation is a bounded tolerance representation.

Tolerance graphs were introduced in [10], mainly motivated by the need to solve scheduling problems in which resources that would be normally used exclusively, like rooms or vehicles, can tolerate some sharing among users. Since then, tolerance graphs have been widely studied in the literature $[1,2,5,11,12,15,19,23]$, as they naturally generalize both interval graphs (when all tolerances are equal) and permutation graphs (when $\left|I_{i}\right|=t_{i}$ for $i=1, \ldots, n$) [10]. For more details, see [13].

Notation. All the graphs considered in this paper are finite, simple, and undirected. Given a graph $G=(V, E)$, we denote by n the cardinality of V. An edge between vertices u and v is denoted by $u v$, and in this case vertices u and v are said to be adjacent. \bar{G} denotes the complement of G, i.e., $\bar{G}=(V, \bar{E})$, where $u v \in \bar{E}$ if and

[^0]only if $u v \notin E$. Given a subset of vertices $S \subseteq V$, the graph $G[S]$ denotes the graph induced by the vertices in S, i.e., $G[S]=(S, F)$, where for any two vertices $u, v \in S$, $u v \in F$ if and only if $u v \in E$. A subset $S \subseteq V$ is an independent set in G if the graph $G[S]$ has no edges. For a subset $K \subseteq V$, the induced subgraph $G[K]$ is a complete subgraph of G, or a clique, if each two of its vertices are adjacent (equivalently, K is an independent set in \bar{G}). The maximum cardinality of a clique in G is denoted by $\omega(G)$ and is termed the clique number of G. A proper coloring of G is an assignment of different colors to adjacent vertices, which results in a partition of V into independent sets. The minimum number of colors for which there exists a proper coloring is denoted by $\chi(G)$ and is termed the chromatic number of G. A partition of V into $\chi(G)$ independent sets is a minimum coloring of G.

Motivation and previous work. Besides generalizing interval and permutation graphs in a natural way, the class of tolerance graphs has other important subclasses and superclasses. Let us briefly survey some of them.

A graph is perfect if the chromatic number of every induced subgraph equals the clique number of that subgraph. Perfect graphs include many important families of graphs and serve to unify results relating colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time using the ellipsoid method [14]. Since tolerance graphs were shown to be perfect [11], there exist polynomial time algorithms for these problems. However, these algorithms are not very efficient, and, therefore, as it happens for most known subclasses of perfect graphs, it makes sense to devise specific fast algorithms for these problems on tolerance graphs.

A comparability graph is a graph which can be transitively oriented. A cocomparability graph is a graph whose complement is a comparability graph. Bounded tolerance graphs are cocomparability graphs [10], and therefore all known polynomial time algorithms for cocomparability graphs apply to bounded tolerance graphs. This is one of the main reasons why for many problems the existing algorithms have better running time in bounded tolerance graphs than in general tolerance graphs.

A graph $G=(V, E)$ is the intersection graph of a family $F=\left\{S_{1}, \ldots, S_{n}\right\}$ of distinct nonempty subsets of a set S if there exists a bijection $\mu: V \rightarrow F$ such that for any two distinct vertices $u, v \in V, u v \in E$ if and only if $\mu(u) \cap \mu(v) \neq \emptyset$. In that case, we say that F is an intersection model of G. It is easy to see that each graph has a trivial intersection model based on adjacency relations [22]. Some intersection models provide a natural and intuitive understanding of the structure of a class of graphs and turn out to be very helpful to find efficient algorithms to solve optimization problems [22]. Therefore, it is of great importance to establish nontrivial intersection models for families of graphs. A graph G on n vertices is a parallelogram graph (resp., a trapezoid graph) if we can fix two parallel lines L_{1} and L_{2}, and for each vertex $v_{i} \in V(G)$ we can assign a parallelogram \bar{P}_{i} (resp., a trapezoid T_{i}) with parallel sides along L_{1} and L_{2} so that G is the intersection graph of $\left\{\bar{P}_{i} \mid i=1, \ldots, n\right\}$ (resp., of $\left\{T_{i} \mid i=1, \ldots, n\right\}$). The class of parallelogram graphs is strictly included in the class of trapezoid graphs [24]. It was proved in [1,20] that a graph is a bounded tolerance graph if and only if it is a parallelogram graph. This characterization provides a useful way to think about bounded tolerance graphs. However, this intersection model cannot cope with general tolerance graphs, in which the tolerance of an interval can be greater than its length.

Our contribution. In this article we present the first nontrivial intersection model for general tolerance graphs, which generalizes the widely known parallelogram repre-
sentation of bounded tolerance graphs. The main idea is to exploit the third dimension to capture the information given by unbounded tolerances, and as a result parallelograms are replaced with parallelepipeds. The proposed intersection model is very intuitive and can be efficiently constructed from a tolerance representation (actually, we show that it can be constructed in linear time).

Apart from being important on its own, this new representation proves to be a powerful tool for designing efficient algorithms for general tolerance graphs. Indeed, using our intersection model we improve the best existing running times of three problems on tolerance graphs. We present algorithms to find a minimum coloring and a maximum clique in $\mathcal{O}(n \log n)$ time, which is optimal (as discussed in section 3.4). The best existing algorithm was $\mathcal{O}\left(n^{2}\right)[12,13]$. We also present an algorithm to find a maximum weight independent set in $\mathcal{O}\left(n^{2}\right)$ time, whereas the best known algorithm was $\mathcal{O}\left(n^{3}\right)$ [13]. We note that [23] proposes an $\mathcal{O}\left(n^{2} \log n\right)$ algorithm to find a maximum cardinality independent set on a general tolerance graph, and that [13] refers to an algorithm transmitted by personal communication with running time $\mathcal{O}\left(n^{2} \log n\right)$ to find a maximum weight independent set on a general tolerance graph; to the best of our knowledge, this algorithm has not been published.

It is important to note that the complexity of recognizing bounded and general tolerance graphs is a challenging open problem [3,13,23], and this is the reason why we assume throughout this paper that along with the input tolerance graph we are also given a tolerance representation of it. On the contrary, trapezoid graphs can be recognized in polynomial time [21,25]. However, the polynomial recognizability of trapezoid graphs does not imply polynomial recognizability of bounded tolerance graphs, i.e., of parallelogram graphs, since the trapezoids of a bounded tolerance representation have to intersect the two supporting lines L_{1} and L_{2} on intervals of the same length. The only "positive" result in the literature concerning recognition of tolerance graphs is a linear time algorithm for the recognition of bipartite tolerance graphs [3].

Nevertheless, it was shown in [15] that every tolerance graph has a polynomial sized tolerance representation, and hence tolerance graphs recognition is in the class NP. There exist other graph classes closely related to tolerance graphs. If in the definition of tolerance graphs we replace the operation "min" between tolerances with "+", we obtain the class of sum-tolerance graphs [17], and if we replace it with "max," we obtain the class of max-tolerance graphs. Max-tolerance graphs recognition is known to be NP-hard [18].

Organization of the paper. We provide the new intersection model of general tolerance graphs in section 2 . In section 3 we present a canonical representation of tolerance graphs and then show how it can be used in order to obtain optimal $\mathcal{O}(n \log n)$ algorithms for finding a minimum coloring and a maximum clique in a tolerance graph. In section 4 we present an $\mathcal{O}\left(n^{2}\right)$ algorithm for finding a maximum weight independent set. Finally, section 5 is devoted to conclusions and open problems.
2. A new intersection model for tolerance graphs. One of the most natural representations of bounded tolerance graphs is given by parallelograms between two parallel lines in the Euclidean plane $[1,13,20]$. In this section we extend this representation to a three-dimensional representation of general tolerance graphs.

Given a tolerance graph $G=(V, E)$ along with a tolerance representation of it, recall that vertex $v_{i} \in V$ corresponds to an interval $I_{i}=\left[a_{i}, b_{i}\right]$ on the real line with a tolerance $t_{i} \geq 0$. W.l.o.g. we may assume that $t_{i}>0$ for every vertex v_{i} [13].

Definition 1. Given a tolerance representation of a tolerance graph $G=(V, E)$, vertex v_{i} is bounded if $t_{i} \leq\left|I_{i}\right|$. Otherwise, v_{i} is unbounded. V_{B} and V_{U} are the sets of bounded and unbounded vertices in V, respectively. Clearly $V=V_{B} \cup V_{U}$.

FIG. 1. Parallelograms \bar{P}_{i} and \bar{P}_{j} correspond to bounded vertices v_{i} and v_{j}, respectively, whereas \bar{P}_{k} corresponds to an unbounded vertex v_{k}.

We can also assume w.l.o.g. that $t_{i}=\infty$ for any unbounded vertex v_{i}, since if v_{i} is unbounded, then the intersection of any other interval with I_{i} is strictly smaller than t_{i}. Let L_{1} and L_{2} be two parallel lines at distance 1 in the Euclidean plane.

Definition 2. Given an interval $I_{i}=\left[a_{i}, b_{i}\right]$ with tolerance t_{i}, \bar{P}_{i} is the parallelogram defined by the points c_{i}, b_{i} in L_{1} and a_{i}, d_{i} in L_{2}, where $c_{i}=\min \left\{b_{i}, a_{i}+t_{i}\right\}$ and $d_{i}=\max \left\{a_{i}, b_{i}-t_{i}\right\}$. The slope ϕ_{i} of \bar{P}_{i} is $\phi_{i}=\arctan \left(1 / c_{i}-a_{i}\right)$.

An example is depicted in Figure 1, where \bar{P}_{i} and \bar{P}_{j} correspond to bounded vertices v_{i} and v_{j}, and \bar{P}_{k} corresponds to an unbounded vertex v_{k}. Observe that when vertex v_{i} is bounded, the values c_{i} and d_{i} coincide with the tolerance points defined in $[7,13,16]$, and $\phi_{i}=\arctan \left(1 / t_{i}\right)$. On the other hand, when vertex v_{i} is unbounded, the values c_{i} and d_{i} coincide with the end points b_{i} and a_{i} of I_{i}, respectively, and $\phi_{i}=\arctan \left(1 /\left|I_{i}\right|\right)$. Observe also that in both cases $t_{i}=b_{i}-a_{i}$ and $t_{i}=\infty$, parallelogram \bar{P}_{i} is reduced to a line segment (cf. \bar{P}_{j} and \bar{P}_{k} in Figure 1). Since $t_{i}>0$ for every vertex v_{i}, it follows that $0<\phi_{i}<\frac{\pi}{2}$. Furthermore, we can assume w.l.o.g. that all points $a_{i}, b_{i}, c_{i}, d_{i}$ and all slopes ϕ_{i} are distinct $[7,13,16]$.

Observation 1. Let $v_{i} \in V_{U}, v_{j} \in V_{B}$. Then $\left|I_{i}\right|<t_{j}$ if and only if $\phi_{i}>\phi_{j}$.
We are ready to give the main definition of this article.
Definition 3. Let $G=(V, E)$ be a tolerance graph with a tolerance representation $\left\{I_{i}=\left[a_{i}, b_{i}\right], t_{i} \mid i=1, \ldots, n\right\}$. For every $i=1 \ldots, n, P_{i}$ is the parallelepiped in \mathbb{R}^{3}, defined as follows:
(a) If $t_{i} \leq b_{i}-a_{i}$ (that is, v_{i} is bounded), then $P_{i}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y) \in\right.$ $\left.\bar{P}_{i}, 0 \leq z \leq \phi_{i}\right\}$.
(b) If $t_{i}>b_{i}-a_{i}\left(v_{i}\right.$ is unbounded), then $P_{i}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y) \in \bar{P}_{i}, z=\right.$ $\left.\phi_{i}\right\}$.
The set of parallelepipeds $\left\{P_{i} \mid i=1, \ldots, n\right\}$ is a parallelepiped representation of G.
Observe that for each interval I_{i}, the parallelogram \bar{P}_{i} of Definition 2 (see also Figure 1) coincides with the projection of the parallelepiped P_{i} on the plane $z=0$. An example of the construction of these parallelepipeds is given in Figure 2, where a set of eight intervals with their associated tolerances is given in Figure 2(a). The corresponding tolerance graph G is depicted in Figure 2(b), while the parallelepiped representation is illustrated in Figure 2(c). In the case $t_{i}<b_{i}-a_{i}$, the parallelepiped P_{i} is three-dimensional, cf. P_{1}, P_{3}, and P_{5}, while in the border case $t_{i}=b_{i}-a_{i}$ it degenerates to a two-dimensional rectangle; cf. P_{7}. In these two cases, each P_{i} corresponds to a bounded vertex v_{i}. In the remaining case $t_{i}=\infty$ (that is, v_{i} is unbounded), the parallelepiped P_{i} degenerates to a one-dimensional line segment above plane $z=0$; cf. P_{2}, P_{4}, P_{6}, and P_{8}.

We prove now that these parallelepipeds form a three-dimensional intersection model for the class of tolerance graphs (namely, that every tolerance graph G can be viewed as the intersection graph of the corresponding parallelepipeds P_{i}).

Fig. 2. The intersection model for tolerance graphs: (a) a set of intervals $I_{i}=\left[a_{i}, b_{i}\right]$ and tolerances $t_{i}, i=1, \ldots, 8$, (b) the corresponding tolerance graph G, and (c) a parallelepiped representation of G.

Theorem 1. Let $G=(V, E)$ be a tolerance graph with a tolerance representation $\left\{I_{i}=\left[a_{i}, b_{i}\right], t_{i} \mid i=1, \ldots, n\right\}$. Then for every $i \neq j, v_{i} v_{j} \in E$ if and only if $P_{i} \cap P_{j} \neq$ \emptyset.

Proof. We distinguish three cases according to whether vertices v_{i} and v_{j} are bounded or unbounded:
(a) Both vertices are bounded, that is, $t_{i} \leq b_{i}-a_{i}$ and $t_{j} \leq b_{j}-a_{j}$. It follows from [13] that $v_{i} v_{j} \in E(G)$ if and only if $\bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$. However, due to the definition of the parallelepipeds P_{i} and P_{j}, in this case $P_{i} \cap P_{j} \neq \emptyset$ if and only if $\bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$ (cf. P_{1} and P_{3}, or P_{5} and P_{7}, in Figure 2).
(b) Both vertices are unbounded, that is, $t_{i}=t_{j}=\infty$. Since no two unbounded vertices are adjacent, $v_{i} v_{j} \notin E(G)$. On the other hand, the line segments P_{i} and P_{j} lie on the disjoint planes $z=\phi_{i}$ and $z=\phi_{j}$ of \mathbb{R}^{3}, respectively, since we assumed that the slopes ϕ_{i} and ϕ_{j} are distinct. Thus, $P_{i} \cap P_{j}=\emptyset$ (cf. P_{2} and P_{4}).
(c) One vertex is unbounded (that is, $t_{i}=\infty$), and the other is bounded (that is, $t_{j} \leq b_{j}-a_{j}$). If $\bar{P}_{i} \cap \bar{P}_{j}=\emptyset$, then $v_{i} v_{j} \notin E$ and $P_{i} \cap P_{j}=\emptyset$ (cf. P_{1} and P_{6}). Suppose that $\bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$. We distinguish two cases:
(i) $\underline{\phi}_{i}<\phi_{j}$. It is easy to check that $\left|I_{i} \cap I_{j}\right| \geq t_{j}$, and thus $v_{i} v_{j} \in E$. Since $\bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$ and $\phi_{i}<\phi_{j}$, then necessarily the line segment P_{i} intersects with the parallelepiped P_{j} on the plane $z=\phi_{i}$, and thus $P_{i} \cap P_{j} \neq \emptyset$ (cf. P_{1} and P_{2}).
(ii) $\phi_{i}>\phi_{j}$. Clearly $\left|I_{i} \cap I_{j}\right|<t_{i}=\infty$. Furthermore, since $\phi_{i}>\phi_{j}$, Observation 1 implies that $\left|I_{i} \cap I_{j}\right| \leq\left|I_{i}\right|<t_{j}$. It follows that $\left|I_{i} \cap I_{j}\right|<$ $\min \left\{t_{i}, t_{j}\right\}$, and thus $v_{i} v_{j} \notin E$. On the other hand, $z=\phi_{i}$ for all points $(x, y, z) \in P_{i}$, while $z \leq \phi_{j}<\phi_{i}$ for all points $(x, y, z) \in P_{j}$, and therefore $P_{i} \cap P_{j}=\emptyset$ (cf. P_{3} and P_{4}).

Clearly, for each $v_{i} \in V$ the parallelepiped P_{i} can be constructed in constant time. Therefore, we have the following lemma.

Lemma 1. Given a tolerance representation of a tolerance graph G with n vertices, a parallelepiped representation of G can be constructed in $\mathcal{O}(n)$ time.
3. Coloring and clique qlgorithms in $\mathcal{O}(\boldsymbol{n} \log n)$. In this section we present optimal $\mathcal{O}(n \log n)$ algorithms for constructing a minimum coloring and a maximum clique in a tolerance graph $G=(V, E)$ with n vertices, given a parallelepiped representation of G. These algorithms improve the best known running time $\mathcal{O}\left(n^{2}\right)$ of these problems on tolerance graphs $[12,13]$. First, we introduce a canonical representation of tolerance graphs in Section 3.1, and then we use it to obtain the algorithms for the minimum coloring and the maximum clique problems in section 3.2. Finally, we discuss the optimality of both algorithms in section 3.4.
3.1. A canonical representation of tolerance graphs. We associate with every vertex v_{i} of G the point $p_{i}=\left(x_{i}, y_{i}\right)$ in the Euclidean plane, where $x_{i}=b_{i}$ and $y_{i}=\frac{\pi}{2}-\phi_{i}$. Since all end points of the parallelograms \bar{P}_{i} and all slopes ϕ_{i} are distinct, all coordinates of the points p_{i} are distinct as well. Similar to [12, 13], we state the following two definitions.

Definition 4. An unbounded vertex $v_{i} \in V_{U}$ of a tolerance graph G is called inevitable (for a certain parallelepiped representation) if replacing P_{i} with $\{(x, y, z) \mid(x$, $\left.y) \in P_{i}, 0 \leq z \leq \phi_{i}\right\}$ creates a new edge in G. Otherwise, v_{i} is called evitable.

Definition 5. Let $v_{i} \in V_{U}$ be an inevitable unbounded vertex of a tolerance graph G (for a certain parallelepiped representation). A vertex v_{j} is called a hovering vertex of v_{i} if $a_{j}<a_{i}, b_{i}<b_{j}$, and $\phi_{i}>\phi_{j}$.

It is now easy to see that, by Definition 5 if v_{j} is a hovering vertex of v_{i}, then $v_{i} v_{j} \notin E$. Note that, in contrast to [12], in Definition 4 an isolated vertex v_{i} might be also inevitable unbounded, while in Definition 5 , a hovering vertex might be also unbounded. Definitions 4 and 5 imply the following lemma.

Lemma 2. Let $v_{i} \in V_{U}$ be an inevitable unbounded vertex of the tolerance graph G (for a certain parallelepiped representation). Then, there exists a hovering vertex v_{j} of v_{i}.

Proof. Since v_{i} is an inevitable unbounded vertex, replacing P_{i} with $\{(x, y, z) \mid(x$, $\left.\underline{y}) \in \underline{P_{i}}, 0 \leq z \leq \phi_{i}\right\}$ creates a new edge in G; let $v_{i} v_{j}$ be such an edge. Then, clearly $\bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$. We will prove that v_{j} is a hovering vertex of v_{i}. Otherwise, $\phi_{i}<\phi_{j}$, $a_{j}>a_{i}$, or $b_{i}>b_{j}$. Suppose first that $\phi_{i}<\phi_{j}$. If $v_{j} \in V_{U}$, then v_{i} remains not connected to v_{j} after the replacement of P_{i} with $\left\{(x, y, z) \mid(x, y) \in P_{i}, 0 \leq z \leq \phi_{i}\right\}$, since $\phi_{i}<\phi_{j}$, which is a contradiction. If $v_{j} \in V_{B}$, then v_{i} is connected to v_{j} also before the replacement of P_{i}, since $\phi_{i}<\phi_{j}$ and $\bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$, which is again a contradiction. Thus, $\phi_{i}>\phi_{j}$. Suppose now that $a_{j}>a_{i}$ or $b_{i}>b_{j}$. Then, since $\phi_{i}>\phi_{j}$, we obtain for both cases that $\bar{P}_{i} \cap \bar{P}_{j}=\emptyset$, which is a contradiction. Thus, $a_{j}<a_{i}, b_{i}<b_{j}$, and $\phi_{i}>\phi_{j}$, i.e., v_{j} is a hovering vertex of v_{i} by Definition 5.

Definition 6. A parallelepiped representation of a tolerance graph G is called canonical if every unbounded vertex is inevitable.

For example, in the tolerance graph depicted in Figure 2, v_{4} and v_{8} are inevitable unbounded vertices, v_{3} and v_{6} are hovering vertices of v_{4} and v_{8}, respectively, while v_{2} and v_{6} are evitable unbounded vertices. Therefore, this representation is not canonical for the graph G. However, if we replace P_{i} with $\left\{(x, y, z) \mid(x, y) \in P_{i}, 0 \leq z \leq \phi_{i}\right\}$ for $i=2,6$, we get a canonical representation for G.

In the following, we present an algorithm that constructs a canonical representation of a given tolerance graph G.

Definition 7. Let $\alpha=\left(x_{\alpha}, y_{\alpha}\right)$ and $\beta=\left(x_{\beta}, y_{\beta}\right)$ be two points in the plane. Then α dominates β if $x_{\alpha}>x_{\beta}$ and $y_{\alpha}>y_{\beta}$. Given a set A of points, the point $\gamma \in A$ is called an extreme point of A if there is no point $\delta \in A$ that dominates γ. $E x(A)$ is the set of the extreme points of A.

Given a tolerance graph $G=(V, E)$ with the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices (and its parallelepiped representation), we can assume w.l.o.g. that $a_{i}<a_{j}$ whenever $i<j$. Recall that with every vertex v_{i} we associated the point $p_{i}=\left(x_{i}, y_{i}\right)$, where $x_{i}=b_{i}$ and $y_{i}=\frac{\pi}{2}-\phi_{i}$, respectively. We define for every $i=1,2, \ldots, n$ the set $A_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ of the points associated with the first i vertices of G.

Lemma 3. Let $v_{i} \in V_{U}$ be an unbounded vertex of a tolerance graph G. Then
(a) if $p_{i} \in E x\left(A_{i}\right)$, then v_{i} is evitable;
(b) if $p_{i} \notin E x\left(A_{i}\right)$ and point p_{j} dominates p_{i} for some bounded vertex $v_{j} \in V_{B}$ with $j<i$, then v_{i} is inevitable and v_{j} is a hovering vertex of v_{i}.
Proof. (a) Assume, to the contrary, that v_{i} is inevitable. By Lemma 2 there is a hovering vertex v_{j} of v_{i}. But then $x_{i}=b_{i}<b_{j}=x_{j}$ and $y_{i}=\frac{\pi}{2}-\phi_{i}<\frac{\pi}{2}-\phi_{j}=y_{j}$, while $a_{j}<a_{i}$, i.e., $j<i$. Therefore $p_{j} \in A_{i}$ and p_{j} dominates p_{i}, which is a contradiction, since $p_{i} \in E x\left(A_{i}\right)$.
(b) Suppose that p_{j} dominates p_{i} for some vertex $v_{j} \in V_{B}$ with $j<i$. The ordering of the vertices implies $a_{j}<a_{i}$, while $x_{i}<x_{j}$ and $y_{i}<y_{j}$ imply $b_{i}<b_{j}$ and $\phi_{i}>\phi_{j}$. Thus v_{i} is inevitable, and v_{j} is a hovering vertex of v_{i}.

The following theorem shows that, given a parallelepiped representation of a tolerance graph G, we can construct in $\mathcal{O}(n \log n)$ a canonical representation of G. This result is crucial for the time complexity analysis of the algorithms of section 3.2.

THEOREM 2. Every parallelepiped representation of a tolerance graph G with n vertices can be transformed by Algorithm 1 to a canonical representation of G in $\mathcal{O}(n \log n)$ time.

Proof. We describe and analyze Algorithm 1, which generates a canonical representation of G. First, we sort the vertices $v_{1}, v_{2}, \ldots, v_{n}$ of G such that $a_{i}<a_{j}$ whenever $i<j$. Then, we process sequentially all vertices v_{i} of G. The bounded and the inevitable unbounded vertices will not be changed, while the evitable unbounded vertices will be replaced with bounded ones. At step i we update the set $\operatorname{Ex}\left(A_{i}\right)$ of the extreme points of A_{i} (note that the set A_{i} remains unchanged during the algorithm). For two points $p_{i_{1}}, p_{i_{2}}$ of $E x\left(A_{i}\right), x_{i_{1}}>x_{i_{2}}$ if and only if $y_{i_{1}}<y_{i_{2}}$. We store the elements of $E x\left(A_{i}\right)$ in a list P, in which the points p_{j} are sorted increasingly according to their x values (or, equivalently, decreasingly according to their y values). Due to Lemma 3(a) and since during the algorithm the evitable unbounded vertices of G are replaced with bounded ones, after the process of vertex v_{i}, all points in the list P correspond to bounded vertices of G in the current parallelepiped representation.

We distinguish now the following cases.
Case 1. v_{i} is bounded. If there exists a point of P that dominates p_{i}, then $p_{i} \notin E x\left(A_{i}\right)$. Thus, we do not change P, and we continue to the process of v_{i+1}. If no point of P dominates p_{i}, then $p_{i} \in E x\left(A_{i}\right)$. Thus, we add p_{i} to P, and we remove from P all points that are dominated by p_{i}.

Case 2. v_{i} is unbounded. If there exists a point $p_{j} \in P$ that dominates p_{i}, then $p_{i} \notin E x\left(A_{i}\right)$, while Lemma 3(b) implies that v_{i} is inevitable and v_{j} is a hovering vertex of v_{i}. Thus, similarly to Case 1 , we do not change P, and we continue to the process of v_{i+1}. If no point of P dominates p_{i}, then $p_{i} \in E x\left(A_{i}\right)$. Thus, we add the point p_{i} to P and remove from P all points that are dominated by p_{i}. In this case, v_{i} is evitable by Lemma 3(a). Hence, we replace P_{i} with $\left\{(x, y, z) \mid(x, y) \in P_{i}, 0 \leq z \leq \phi_{i}\right\}$

```
AlGorithm 1 Construction of a canonical representation of a tolerance
graph \(G\).
Input: A parallelepiped representation \(R\) of a given tolerance graph \(G\) with \(n\) vertices
Output: A canonical representation \(R^{\prime}\) of \(G\)
    Sort the vertices of \(G\) such that \(a_{i}<a_{j}\) whenever \(i<j\)
    \(\ell_{0} \leftarrow \min \left\{x_{i}: 1 \leq i \leq n\right\} ; r_{0} \leftarrow \max \left\{x_{i}: 1 \leq i \leq n\right\}\)
    \(p_{s} \leftarrow\left(\ell_{0}-1, \frac{\pi}{2}\right) ; p_{t} \leftarrow\left(r_{0}+1,0\right)\)
    \(P \leftarrow\left(p_{s}, p_{t}\right) ; R^{\prime} \leftarrow R\)
    for \(i=1\) to \(n\) do
        Find the point \(p_{j}\) having the smallest \(x_{j}\) with \(x_{j}>x_{i}\)
        if \(y_{j}<y_{i}\) then \(\left\{\right.\) no point of \(P\) dominates \(\left.p_{i}\right\}\)
            Find the point \(p_{k}\) having the greatest \(x_{k}\) with \(x_{k}<x_{i}\)
            Find the point \(p_{\ell}\) having the greatest \(y_{\ell}\) with \(y_{\ell}<y_{i}\)
            if \(x_{k} \geq x_{\ell}\) then
                Replace points \(p_{\ell}, p_{\ell+1} \ldots, p_{k}\) with point \(p_{i}\) in the list \(P\)
            else
                Insert point \(p_{i}\) between points \(p_{k}\) and \(p_{\ell}\) in the list \(P\)
            if \(v_{i} \in V_{U}\) then \(\left\{v_{i}\right.\) is an evitable unbounded vertex \(\}\)
                Replace \(P_{i}\) with \(\left\{(x, y, z) \mid(x, y) \in P_{i}, 0 \leq z \leq \phi_{i}\right\}\) in \(R^{\prime}\)
        else \(\left\{y_{j}>y_{i} ; p_{j}\right.\) dominates \(\left.p_{i}\right\}\)
            if \(v_{i} \in V_{U}\) then \(\left\{v_{i}\right.\) is an inevitable unbounded vertex \(\}\)
            \(v_{j}\) is a hovering vertex of \(v_{i}\)
    return \(R^{\prime}\)
```

in the current parallelepiped representation of G, and we consider from now on v_{i} as a bounded vertex.

It follows that after the process of each vertex v_{i} (either bounded or unbounded), the list P stores the points of $E x\left(A_{i}\right)$. Furthermore, at every iteration of the algorithm, all points of the list P correspond to bounded vertices in the current parallelepiped representation of G.

The processing of vertex v_{i} is done by executing three binary searches in the list P as follows. Let $\ell_{0}=\min \left\{x_{i} \mid 1 \leq i \leq n\right\}$ and $r_{0}=\max \left\{x_{i} \mid 1 \leq i \leq n\right\}$. For convenience, we add two dummy points $p_{s}=\left(\ell_{0}-1, \frac{\pi}{2}\right)$ and $p_{t}=\left(r_{0}+1,0\right)$. First, we find the point $p_{j} \in P$ with the smallest value x_{j} such that $x_{j}>x_{i}$ (see Figure 3). Note that $p_{i} \in E x\left(A_{i}\right)$ if and only if $y_{j}<y_{i}$. If $y_{j}>y_{i}$, then p_{j} dominates p_{i} (see Figure 3(a)). Thus, if $v_{i} \in V_{U}$, Lemma 3(b) implies that v_{i} is an inevitable unbounded vertex and v_{j} is a hovering vertex of v_{i}. In the opposite case $y_{j}<y_{i}$, we have to add p_{i} to P. In order to remove from P all points that are dominated by p_{i}, we execute binary search two more times. In particular, we find the points p_{k} and p_{ℓ} of P with the greatest values x_{k} and y_{ℓ}, respectively, such that $x_{k}<x_{i}$ and $y_{\ell}<y_{i}$ (see Figure 3(b)). If there are some points of P that are dominated by p_{i}, then p_{k} and p_{ℓ} have the greatest and smallest values x_{k} and x_{ℓ} among them, respectively, and $x_{k} \geq x_{\ell}$. In this case, we replace all points $p_{\ell}, p_{\ell+1}, \ldots, p_{k}$ with the point p_{i} in the list P. Otherwise, if no point of P is dominated by p_{i}, then $x_{k}<x_{\ell}$. In this case, we remove no point from P, and we insert p_{i} between p_{k} and p_{ℓ} in P.

Finally, after processing all vertices v_{i} of G, we return a canonical representation of the given tolerance graph G, in which every vertex that remains unbounded has a hovering vertex assigned to it. Since the processing of every vertex can be done in

(a)

Fig. 3. The cases where the associated point p_{i} to the currently processed vertex v_{i} is (a) dominated by the point p_{j} in A_{i} and (b) an extreme point of the set A_{i}.
$\mathcal{O}(\log n)$ time by executing three binary searches and since the sorting of the vertices can be done in $\mathcal{O}(n \log n)$ time, the running time of Algorithm 1 is $\mathcal{O}(n \log n)$.
3.2. Minimum coloring. In the next theorem we present an optimal $\mathcal{O}(n \log n)$ algorithm for computing a minimum coloring of a tolerance graph G with n vertices, given a parallelepiped representation of G. The informal description of the algorithm is identical to the one in [12], which has running time $\mathcal{O}\left(n^{2}\right)$; the difference is in the fact that we use our new representation, in order to improve the time complexity.

Theorem 3. A minimum coloring of a tolerance graph G with n vertices can be computed in $\mathcal{O}(n \log n)$ time.

Proof. We present Algorithm 2, which computes a minimum coloring of G. Given a parallelepiped representation of G, we construct a canonical representation of G in $\mathcal{O}(n \log n)$ time by Algorithm 1. V_{B} and V_{U} are the sets of bounded and inevitable unbounded vertices of G in the latter representation, respectively. In particular, Algorithm 1 associates a hovering vertex $v_{j} \in V_{B}$ with every inevitable unbounded vertex $v_{i} \in V_{U}$. We find a minimum proper coloring of the bounded tolerance graph $G\left[V_{B}\right]$ in $\mathcal{O}(n \log n)$ time using the algorithm of [6]. Finally, we associate with every inevitable unbounded vertex $v_{i} \in V_{U}$ the same color as that of its hovering vertex $v_{j} \in V_{B}$ in the coloring of $G\left[V_{B}\right]$.

```
Algorithm 2 Minimum coloring of a tolerance graph \(G\).
Input: A parallelepiped representation of a given tolerance graph \(G\)
Output: A minimum coloring of \(G\)
Construct a canonical representation of \(G\) by Algorithm 1, where a hovering vertex is associated with every inevitable unbounded vertex
Color \(G\left[V_{B}\right]\) by the algorithm of \([6]\)
for every inevitable unbounded vertex \(v_{i} \in V_{U}\) do
Assign to \(v_{i}\) the same color as its hovering vertex in \(G\left[V_{B}\right]\)
```

Consider an arbitrary inevitable unbounded vertex $v_{i} \in V_{U}$ and its hovering vertex $v_{j} \in V_{B}$. Following Definition $5, \bar{P}_{i} \cap \bar{P}_{j} \neq \emptyset$ and $\phi_{i}>\phi_{j}$. Consider a vertex v_{k} of G such that $v_{i} v_{k} \in E$. It follows that $v_{k} \in V_{B}$, since no two unbounded vertices are adjacent in G. Furthermore, since $v_{i} v_{k} \in E$, it follows that $\bar{P}_{i} \cap \bar{P}_{k} \neq \emptyset$ and $\phi_{k}>\phi_{i}$. Then $\bar{P}_{j} \cap \bar{P}_{k} \neq \emptyset$, and thus $P_{j} \cap P_{k} \neq \emptyset$, i.e., $v_{j} v_{k} \in E$, since both v_{j} and v_{k} are bounded vertices. It follows that v_{k} does not have the same color as v_{j} in
the proper coloring of $G\left[V_{B}\right]$, and thus the resulting coloring of G is proper. Finally, since both colorings of $G\left[V_{B}\right]$ and of G have the same number of colors, it follows that this proper coloring of G is minimum. Since the coloring of $G\left[V_{B}\right]$ can be done in $\mathcal{O}(n \log n)$ time and the coloring of all inevitable unbounded vertices $v_{i} \in V_{U}$ can be done in $\mathcal{O}(n)$ time, Algorithm 2 returns a minimum proper coloring G in $\mathcal{O}(n \log n)$ time.
3.3. Maximum clique. In the next theorem we prove that a maximum clique of a tolerance graph G with n vertices can be computed in optimal $\mathcal{O}(n \log n)$ time, given a parallelepiped representation of G. This theorem follows from Theorem 2 and from the clique algorithm presented in [6], and it improves the best known $\mathcal{O}\left(n^{2}\right)$ running time mentioned in [12].

Theorem 4. A maximum clique of a tolerance graph G with n vertices can be computed in $\mathcal{O}(n \log n)$ time.

Proof. We compute first a canonical representation of G in $\mathcal{O}(n \log n)$ time by Algorithm 1. The proof of Theorem 3 implies that $\chi(G)=\chi\left(G\left[V_{B}\right]\right)$, where $\chi(H)$ denotes the chromatic number of a given graph H. Since tolerance graphs are perfect graphs [11], $\omega(G)=\chi(G)$ and $\omega\left(G\left[V_{B}\right]\right)=\chi\left(G\left[V_{B}\right]\right)$, where $\omega(H)$ denotes the clique number of a given graph H. It follows that $\omega(G)=\omega\left(G\left[V_{B}\right]\right)$. We compute now a maximum clique Q of the bounded tolerance graph $G\left[V_{B}\right]$ in $\mathcal{O}(n \log n)$ time. This can be done by the algorithm presented in [6] that computes a maximum clique in a trapezoid graph, since bounded tolerance graphs are trapezoid graphs [13]. Since $\omega(G)=\omega\left(G\left[V_{B}\right]\right), Q$ is a maximum clique of G as well.
3.4. Optimality of the running time. In this section we use permutation graphs [13]. Given a sequence $S=a_{1}, a_{2}, \ldots, a_{n}$ of numbers, a subsequence of S is a sequence $S^{\prime}=a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$, where $a_{i_{j}} \in S$ for every $j \in\{1,2, \ldots, k\}$ and $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. S^{\prime} is called an increasing subsequence of S if $a_{i_{1}}<a_{i_{2}}<$ $\cdots<a_{i_{k}}$. Clearly, increasing subsequences in a permutation graph G correspond to independent sets of G, while increasing subsequences in the complement \bar{G} of G correspond to cliques of G, where \bar{G} is also a permutation graph. Since $\Omega(n \log n)$ is a lower time bound for computing the length of a longest increasing subsequence in a permutation $[6,8]$, the same lower time bound holds for computing a maximum clique and a maximum independent set in a permutation graph G. Furthermore, since permutation graphs are perfect graphs [9], the chromatic number $\chi(G)$ of a permutation graph G equals the clique number $\omega(G)$ of G. Thus, $\Omega(n \log n)$ is a lower time bound for computing the chromatic number of a permutation graph. Finally, since the class of permutation graphs is a subclass of tolerance graphs [13], the same lower bounds hold for tolerance graphs. It follows that the algorithms in Theorems 3 and 4 for computing a minimum coloring and a maximum clique in tolerance graphs are optimal.
4. Weighted independent set algorithm in $\mathcal{O}\left(n^{2}\right)$. In this section we present an algorithm for computing a maximum weight independent set in a tolerance graph $G=(V, E)$ with n vertices in $\mathcal{O}\left(n^{2}\right)$ time, given a parallelepiped representation of G and a weight $w\left(v_{i}\right)>0$ for every vertex v_{i} of G. The proposed algorithm improves the running time $\mathcal{O}\left(n^{3}\right)$ of the one presented in [13]. In the following, consider as above the partition of the vertex set V into the sets V_{B} and V_{U} of bounded and unbounded vertices of G, respectively.

Similar to [13], we add two isolated bounded vertices v_{s} and v_{t} to G with weights $w\left(v_{s}\right)=w\left(v_{t}\right)=0$ such that the corresponding parallelepipeds P_{s} and P_{t} lie com-

Fig. 4. The parallelograms $\bar{P}_{i}, i=1,2, \ldots, 7$, of a tolerance graph with the sets $V_{B}=\left\{v_{1}, v_{2}\right\}$ and $V_{U}=\left\{v_{3}, v_{4}, \ldots, v_{7}\right\}$ of bounded and unbounded vertices, respectively. In this graph, $L_{1}(2)=\left\{v_{3}, v_{5}\right\}, R_{2}=\left\{v_{6}\right\}$, and $S\left(v_{1}, v_{2}\right)=\left\{v_{3}, v_{5}, v_{6}\right\}$.
pletely to the left and to the right of all other parallelepipeds of G, respectively. Since both v_{s} and v_{t} are bounded vertices, we augment the set V_{B} by the vertices v_{s} and v_{t}. In particular, we define the set of vertices $V_{B}^{\prime}=V_{B} \cup\left\{v_{s}, v_{t}\right\}$ and the tolerance graph $G^{\prime}=\left(V^{\prime}, E\right)$, where $V^{\prime}=V_{B}^{\prime} \cup V_{U}$. Since $G^{\prime}\left[V_{B}^{\prime}\right]$ is a bounded tolerance graph, it is a cocomparability graph as well $[11,13]$. A transitive orientation of the comparability graph $\overline{G^{\prime}\left[V_{B}^{\prime}\right]}$ can be obtained by directing each edge according to the upper left end points of the parallelograms \bar{P}_{i}. Formally, let $\left(V_{B}^{\prime}, \prec\right)$ be the partial order defined on the bounded vertices V_{B}^{\prime} such that $v_{i} \prec v_{j}$ if and only if $v_{i} v_{j} \notin E$ and $c_{i}<c_{j}$. Recall that a chain of elements in a partial order is a set of mutually comparable elements in this order [4].

Observation 2 (see [13]). The independent sets of $G\left[V_{B}\right]$ are in one-to-one correspondence with the chains in the partial order $\left(V_{B}^{\prime}, \prec\right)$ from v_{s} to v_{t}.

For what follows, recall that for every unbounded vertex $v_{k} \in V_{U}$ the parallelepiped P_{k} degenerates to a line segment, while the upper end points b_{k} and c_{k} of the parallelogram \bar{P}_{k} coincide, i.e., $b_{k}=c_{k}$.

DEFINITION 8. For every $v_{i}, v_{j} \in V_{B}^{\prime}$ with $v_{i} \prec v_{j}, L_{i}(j)=\left\{v_{k} \in V_{U} \mid b_{i}<c_{k}<\right.$ $\left.c_{j}, v_{i} v_{k} \notin E\right\}$ and its weight $w\left(L_{i}(j)\right)=\sum_{v \in L_{i}(j)} w(v)$.

Definition 9. For every $v_{j} \in V_{B}^{\prime}, R_{j}=\left\{v_{k} \in V_{U} \| c_{j}<c_{k}<b_{j}, v_{j} v_{k} \notin E\right\}$ and its weight $w\left(R_{j}\right)=\sum_{v \in R_{j}} w(v)$.

For every pair of bounded vertices $v_{i}, v_{j} \in V_{B}^{\prime}$ with $v_{i} \prec v_{j}$, the set $L_{i}(j)$ consists of those unbounded vertices $v_{k} \in V_{U}$ for which $v_{i} v_{k} \notin E$ and whose upper end point $b_{k}=c_{k}$ of \bar{P}_{k} lies between \bar{P}_{i} and \bar{P}_{j}. Furthermore, $v_{j} v_{k} \notin E$ for every vertex $v_{k} \in L_{i}(j)$. Indeed, in the case where $\bar{P}_{k} \cap \bar{P}_{j} \neq \emptyset$, it holds that $\phi_{k}>\phi_{j}$, since $b_{k}=c_{k}<c_{j}$, and thus $P_{k} \cap P_{j}=\emptyset$. Similarly, the set R_{j} consists of those unbounded vertices $v_{k} \in V_{U}$ for which $v_{j} v_{k} \notin E$ and whose upper end point $b_{k}=c_{k}$ of \bar{P}_{k} lies between the upper end points c_{j} and b_{j} of \bar{P}_{j}. Furthermore, $v_{i} v_{k} \notin E$ for every vertex $v_{k} \in R_{j}$ as well. Indeed, since $v_{j} v_{k} \notin E$, it follows that $\phi_{k}>\phi_{j}$, and thus, $\bar{P}_{i} \cap \bar{P}_{k}=\emptyset$ and $P_{i} \cap P_{k}=\emptyset$. In particular, in the example of Figure $4, L_{1}(2)=\left\{v_{3}, v_{5}\right\}$ and $R_{2}=\left\{v_{6}\right\}$. In this figure, the line segments that correspond to the unbounded vertices v_{4} and v_{7}, respectively, are drawn with dotted lines to illustrate the fact that $v_{4} v_{1} \in E$ and $v_{7} v_{2} \in E$.

DEFINITION 10 (see [13]). For every $v_{i}, v_{j} \in V_{B}^{\prime}$ with $v_{i} \prec v_{j}, S\left(v_{i}, v_{j}\right)=\left\{v_{k} \in\right.$ $\left.V_{U} \mid v_{i} v_{k}, v_{j} v_{k} \notin E, b_{i}<c_{k}<b_{j}\right\}$.

Observation 3. For every pair of bounded vertices $v_{i}, v_{j} \in V_{B}^{\prime}$ with $v_{i} \prec v_{j}$,

$$
\begin{equation*}
S\left(v_{i}, v_{j}\right)=L_{i}(j) \cup R_{j} . \tag{1}
\end{equation*}
$$

Furthermore, $L_{i}(j) \subseteq L_{i}(\ell)$ for every triple $\left\{v_{i}, v_{j}, v_{\ell}\right\}$ of bounded vertices, where $v_{i} \prec v_{j}, v_{i} \prec v_{\ell}$ and $c_{j}<c_{\ell}$.

```
AlGORITHM 3 MAXIMUM WEIGHT INDEPENDENT SET OF A TOLERANCE GRAPH \(G\).
Input: A parallelepiped representation of a given tolerance graph \(G\)
Output: The value of a maximum weight independent set of \(G\)
```

 Add the dummy bounded vertices \(v_{s}, v_{t}\) to \(G\) such that \(P_{s}\) and \(P_{t}\) lie completely to
 the left and to the right of all other parallelepipeds of \(G\), respectively
 \(V_{B}^{\prime} \leftarrow V_{B} \cup\left\{v_{s}, v_{t}\right\}\)
 Construct the partial ordering \(\left(V_{B}^{\prime}, \prec\right)\) of the bounded vertices \(V_{B}^{\prime}\)
 Sort the bounded vertices \(V_{B}^{\prime}\) such that \(c_{i}<c_{j}\) whenever \(i<j\)
 for \(j=1\) to \(\left|V_{B}^{\prime}\right|\) do
 \(W\left(v_{j}\right) \leftarrow 0\)
 Compute the value \(w\left(R_{j}\right)\)
 for \(i=1\) to \(\left|V_{B}^{\prime}\right|\) do
 for every \(v_{j} \in V_{B}^{\prime}\) with \(v_{i} \prec v_{j}\) do
 Update the value \(w\left(L_{i}(j)\right)\)
 if \(W\left(v_{j}\right)<\left(w\left(v_{j}\right)+w\left(R_{j}\right)\right)+W\left(v_{i}\right)+w\left(L_{i}(j)\right)\) then
 \(W\left(v_{j}\right) \leftarrow\left(w\left(v_{j}\right)+w\left(R_{j}\right)\right)+W\left(v_{i}\right)+w\left(L_{i}(j)\right)\)
 return \(W\left(v_{t}\right)\)
 In particular, in the example of Figure $4, S\left(v_{1}, v_{2}\right)=L_{1}(2) \cup R_{2}=\left\{v_{3}, v_{5}, v_{6}\right\}$.
Lemma 4 (see [13]). Given a tolerance graph G with a set of positive weights for the vertices of G, any maximum weight independent set of G consists of a chain of bounded vertices $v_{x_{1}} \prec v_{x_{2}} \prec \cdots \prec v_{x_{k}}$ together with the union of the sets $\cup\left\{S\left(v_{x_{i}}, v_{x_{i+1}}\right) \mid i=0,1, \ldots, k\right\}$, where $v_{x_{0}}=v_{s}$ and $v_{x_{k+1}}=v_{t}$.

Now, using Lemma 4 and Observation 3, we can present Algorithm 3, which improves the running time $\mathcal{O}\left(n^{3}\right)$ of the one presented in [13].

Theorem 5. A maximum weight independent set of a tolerance graph G with n vertices can be computed using Algorithm 3 in $\mathcal{O}\left(n^{2}\right)$ time.

Proof. We present Algorithm 3, which computes the value of a maximum weight independent set of G. A slight modification to Algorithm 3 returns a maximum weight independent set of G, instead of its value. First, we construct the partial order $\left(V_{B}^{\prime}, \prec\right)$ defined on the bounded vertices $V_{B}^{\prime}=V_{B} \cup\left\{v_{s}, v_{t}\right\}$ such that $v_{i} \prec v_{j}$ whenever $v_{i} v_{j} \notin E$ and $c_{i}<c_{j}$. This can be done in $\mathcal{O}\left(n^{2}\right)$ time. Then, we sort the bounded vertices of V_{B}^{\prime} such that $c_{i}<c_{j}$ whenever $i<j$. This can be done in $\mathcal{O}(n \log n)$ time. As a preprocessing step, we compute for every bounded vertex $v_{j} \in V_{B}^{\prime}$ the set R_{j} and its weight $w\left(R_{j}\right)$ in linear $\mathcal{O}(n)$ time by visiting at most all unbounded vertices $v_{k} \in V_{U}$. Thus, all values $w\left(R_{j}\right)$ are computed in $\mathcal{O}\left(n^{2}\right)$ time.

We associate with each bounded vertex $v_{j} \in V_{B}^{\prime}$ a cumulative weight $W\left(v_{j}\right)$ defined as follows:

$$
\begin{align*}
& W\left(v_{s}\right)=0 \tag{2}\\
& W\left(v_{j}\right)=\left(w\left(v_{j}\right)+w\left(R_{j}\right)\right)+\max _{v_{i} \prec v_{j}}\left\{W\left(v_{i}\right)+w\left(L_{i}(j)\right)\right\} \text { for every } v_{j} \in V_{B}^{\prime} \backslash\left\{v_{s}\right\}
\end{align*}
$$

The cumulative weight $W\left(v_{j}\right)$ of an arbitrary bounded vertex $v_{j} \in V_{B}^{\prime}$ equals the maximum weight of an independent set S of vertices v_{k} (both bounded and unbounded) for which $b_{k} \leq b_{j}$ and $v_{j} \in S$. Initially all values $W\left(v_{j}\right)$ are set to zero.

In the main part of Algorithm 3, we process sequentially all bounded vertices $v_{i} \in V_{B}^{\prime}$. For every such vertex v_{i}, we update sequentially the cumulative weights
$W\left(v_{j}\right)$ for all bounded vertices $v_{j} \in V_{B}^{\prime}$ with $v_{i} \prec v_{j}$ by comparing the current value of $W\left(v_{j}\right)$ with the value $\left(w\left(v_{j}\right)+w\left(R_{j}\right)\right)+W\left(v_{i}\right)+w\left(L_{i}(j)\right)$ and by storing the greatest of them in $W\left(v_{j}\right)$. After all bounded vertices of V_{B}^{\prime} have been processed, the value of the maximum weight independent set of G is stored in $W\left(v_{t}\right)$, due to Lemma 4 and Observation 3.

While processing the bounded vertex v_{i}, we compute the values $w\left(L_{i}(j)\right)$ sequentially for every j, where $v_{i} \prec v_{j}$, as follows. Let $v_{j_{1}}, v_{j_{2}}$ be two bounded vertices that are visited consecutively by the algorithm during the process of vertex v_{i}. Then, due to Observation 3, we compute the value $w\left(L_{i}\left(j_{2}\right)\right)$ by adding to the previous value $w\left(L_{i}\left(j_{1}\right)\right)$ the weights of all unbounded vertices $v_{k} \in V_{U}$, whose upper end points c_{k} lie between $c_{j_{1}}$ and $c_{j_{2}}$.

Since we visit all bounded and all unbounded vertices of the graph at most once during the process of v_{i}, this can be done in $\mathcal{O}(n)$ time. Thus, since there are in total at most $n+2$ bounded vertices $v_{i} \in V_{B}^{\prime}$, Algorithm 3 returns the value of the maximum weight independent set of G in $\mathcal{O}\left(n^{2}\right)$ time. Finally, observe that storing at every step of Algorithm 3 the independent sets that correspond to the values $W\left(v_{i}\right)$ and removing at the end the vertices v_{s} and v_{t}, the algorithm returns at the same time a maximum weight independent set of G, instead of its value.
5. Conclusions and further research. In this article we proposed the first nontrivial intersection model for general tolerance graphs, given by parallelepipeds in the three-dimensional space. This representation generalizes the parallelogram representation of bounded tolerance graphs. Using this representation, we presented improved algorithms for computing a minimum coloring, a maximum clique, and a maximum weight independent set on a tolerance graph. The running times of the first two algorithms are optimal. It can be expected that this representation will prove useful in improving the running time of other algorithms for the class of tolerance graphs.

As mentioned in section 1, the complexity of the recognition problem for tolerance and bounded tolerance graphs is possibly the main open problem in this class of graphs. Even when the input graph is known to be a tolerance graph, it is not known how to obtain a tolerance representation for it [23]. Moreover, given a tolerance graph, it is not known how to decide in polynomial time whether it is a bounded tolerance graph [23].

REFERENCES

[1] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley, Proper and unit tolerance graphs, Discrete Appl. Math., 60 (1995), pp. 99-117.
[2] A. H. Busch, A characterization of triangle-free tolerance graphs, Discrete Appl. Math., 154 (2006), pp. 471-477.
[3] A. H. Busch and G. Isaak, Recognizing bipartite tolerance graphs in linear time, in Proceedings of the 33rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG), Lecture Notes in Comput. Sci. 4769, 2007, pp. 12-20.
[4] R. Diestel, Graph Theory, 3rd ed., Springer-Verlag, Berlin, 2005.
[5] S. Felsner, Tolerance graphs and orders, J. Graph Theory, 28 (1998), pp. 129-140.
[6] S. Felsner, R. Müller, and L. Wernisch, Trapezoid graphs and generalizations, geometry and algorithms, Discrete Appl. Math., 74 (1997), pp. 13-32.
[7] P. C. Fishburn and W. T. Trotter, Split semiorders, Discrete Math., 195 (1999), pp. 111126.
[8] M. L. Fredman, On computing the length of longest increasing subsequences, Discrete Math., 11 (1975), pp. 29-35.
[9] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Ann. Discrete Math. 57, North-Holland, Amsterdam, 2004.
[10] M. C. Golumbic and C. L. Monma, A generalization of interval graphs with tolerances, in Proceedings of the 13 th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 35 (1982), pp. 321-331.
[11] M. C. Golumbic, C. L. Monma, and W. T. Trotter, Tolerance graphs, Discrete Appl. Math., 9 (1984), pp. 157-170.
[12] M. C. Golumbic and A. Siani, Coloring algorithms for tolerance graphs: Reasoning and scheduling with interval constraints, in Proceedings of the Joint International Conferences on Artificial Intelligence, Automated Reasoning, and Symbolic Computation (AISC/Calculemus), 2002, pp. 196-207.
[13] M. C. Golumbic and A. N. Trenk, Tolerance Graphs, Camb. Stud. Adv. Math. 89, Cambridge University Press, Cambridge, 2004.
[14] M. Grötshcel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1 (1981), pp. 169-197.
[15] R. B. Hayward and R. Shamir, A note on tolerance graph recognition, Discrete Appl. Math., 143 (2004), pp. 307-311.
[16] G. Isaak, K. L. Nyman, and A. N. Trenk, A hierarchy of classes of bounded bitolerance orders, Ars Comb., 69 (2003).
[17] M. S. Jacobson and F. R. McMorris, Sum-tolerance proper interval graphs are precisely sum-tolerance unit interval graphs, J. Comb. Inf. Syst. Sci., 16 (1991), pp. 25-28.
[18] M. Kaufmann, J. Kratochvíl, K. A. Lehmann, and A. R. Subramanian, Max-tolerance graphs as intersection graphs: Cliques, cycles, and recognition, in Proceedings of the 17 th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp. 832-841.
[19] J. M. Keil and P. Belleville, Dominating the complements of bounded tolerance graphs and the complements of trapezoid graphs, Discrete Appl. Math., 140 (2004), pp. 73-89.
[20] L. Langley, Interval Tolerance Orders and Dimension, Ph.D. thesis, Dartmouth College, Hanover, NH, 1993.
[21] T.-H. Ma and J. P. Spinrad, On the 2-chain subgraph cover and related problems, J. Algorithms, 17 (1994), pp. 251-268.
[22] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM, Philadelphia, 1999.
[23] G. Narasimhan and R. Manber, Stability and chromatic number of tolerance graphs, Discrete Appl. Math., 36 (1992), pp. 47-56.
[24] S. P. Ryan, Trapezoid order classification, Order, 15 (1998), pp. 341-354.
[25] J. P. Spinrad, Efficient Graph Representations, Fields Inst. Commun. 19, American Mathematical Society, Providence, RI, 2003.

[^0]: *Received by the editors May 23, 2009; accepted for publication (in revised form) September 4, 2009; published electronically December 4, 2009. A preliminary conference version of this work appeared in Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG) (2009), Montpelier, France, Lecture Notes in Comput. Sci. 5911, 2010, pp. 285-295.
 http://www.siam.org/journals/sidma/23-4/75994.html
 \dagger Department of Computer Science, RWTH Aachen, Germany (mertzios@cs.rwth-aachen.de).
 ${ }^{\ddagger}$ Mascotte Joint Project of INRIA/CNRS/UNSA, Sophia-Antipolis, France, and Graph Theory and Combinatorics Group, Applied Mathematics IV Department of Universitat Politécnia de Catalunya, Barcelona, Spain (ignasi.sau@sophia.inria.fr).
 ${ }^{\S}$ Department of Computer Science, Technion, Haifa, Israel (zaks@cs.technion.ac.il).

