

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 4, pp. 1800–1813

A NEW INTERSECTION MODEL AND IMPROVED ALGORITHMS
FOR TOLERANCE GRAPHS∗

GEORGE B. MERTZIOS† , IGNASI SAU‡ , AND SHMUEL ZAKS§

Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate
a certain degree of overlap without being in conflict. This class of graphs, which generalizes in a
natural way both interval and permutation graphs, has attracted many research efforts since their
introduction in [M. C. Golumbic and C. L. Monma, Congr. Numer., 35 (1982), pp. 321–331], as it
finds many important applications in constraint-based temporal reasoning, resource allocation, and
scheduling problems, among others. In this article we propose the first non-trivial intersection model
for general tolerance graphs, given by three-dimensional parallelepipeds, which extends the widely
known intersection model of parallelograms in the plane that characterizes the class of bounded
tolerance graphs. Apart from being important on its own, this new representation also enables us
to improve the time complexity of three problems on tolerance graphs. Namely, we present optimal
O(n logn) algorithms for computing a minimum coloring and a maximum clique and an O(n2)
algorithm for computing a maximum weight independent set in a tolerance graph with n vertices,
thus improving the best known running times O(n2) and O(n3) for these problems, respectively.

Key words. tolerance graphs, parallelogram graphs, intersection model, minimum coloring,
maximum clique, maximum weight independent set

AMS subject classifications. Primary, 05C62; Secondary, 05C85, 05C15, 05C69, 68R10

DOI. 10.1137/09075994X

1. Introduction. A graph G = (V,E) on n vertices is a tolerance graph if
there is a set I = {Ii | i = 1, . . . , n} of closed intervals on the real line and a set
T = {ti | i = 1, . . . , n} of positive real numbers, called tolerances, such that for any
two vertices vi, vj ∈ V , vivj ∈ E if and only if |Ii ∩ Ij | ≥ min{ti, tj}, where |I|
denotes the length of the interval I. These sets of intervals and tolerances form a
tolerance representation of G. If G has a tolerance representation such that ti ≤ |Ii|
for i = 1, . . . , n, then G is called a bounded tolerance graph, and its representation is
a bounded tolerance representation.

Tolerance graphs were introduced in [10], mainly motivated by the need to solve
scheduling problems in which resources that would be normally used exclusively, like
rooms or vehicles, can tolerate some sharing among users. Since then, tolerance graphs
have been widely studied in the literature [1, 2, 5, 11, 12, 15, 19, 23], as they naturally
generalize both interval graphs (when all tolerances are equal) and permutation graphs
(when |Ii| = ti for i = 1, . . . , n) [10]. For more details, see [13].

Notation. All the graphs considered in this paper are finite, simple, and undi-
rected. Given a graph G = (V,E), we denote by n the cardinality of V . An edge
between vertices u and v is denoted by uv, and in this case vertices u and v are said
to be adjacent. G denotes the complement of G, i.e., G = (V,E), where uv ∈ E if and

∗Received by the editors May 23, 2009; accepted for publication (in revised form) September 4,
2009; published electronically December 4, 2009. A preliminary conference version of this work ap-
peared in Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG) (2009), Montpelier, France, Lecture Notes in Comput. Sci. 5911, 2010, pp. 285–295.

http://www.siam.org/journals/sidma/23-4/75994.html
†Department of Computer Science, RWTH Aachen, Germany (mertzios@cs.rwth-aachen.de).
‡Mascotte Joint Project of INRIA/CNRS/UNSA, Sophia-Antipolis, France, and Graph The-

ory and Combinatorics Group, Applied Mathematics IV Department of Universitat Politécnia de
Catalunya, Barcelona, Spain (ignasi.sau@sophia.inria.fr).

§Department of Computer Science, Technion, Haifa, Israel (zaks@cs.technion.ac.il).

1800

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1801

only if uv /∈ E. Given a subset of vertices S ⊆ V , the graph G[S] denotes the graph
induced by the vertices in S, i.e., G[S] = (S, F), where for any two vertices u, v ∈ S,
uv ∈ F if and only if uv ∈ E. A subset S ⊆ V is an independent set in G if the graph
G[S] has no edges. For a subset K ⊆ V , the induced subgraph G[K] is a complete
subgraph of G, or a clique, if each two of its vertices are adjacent (equivalently, K is
an independent set in G). The maximum cardinality of a clique in G is denoted by
ω(G) and is termed the clique number of G. A proper coloring of G is an assignment
of different colors to adjacent vertices, which results in a partition of V into indepen-
dent sets. The minimum number of colors for which there exists a proper coloring is
denoted by χ(G) and is termed the chromatic number of G. A partition of V into
χ(G) independent sets is a minimum coloring of G.

Motivation and previous work. Besides generalizing interval and permutation
graphs in a natural way, the class of tolerance graphs has other important subclasses
and superclasses. Let us briefly survey some of them.

A graph is perfect if the chromatic number of every induced subgraph equals the
clique number of that subgraph. Perfect graphs include many important families of
graphs and serve to unify results relating colorings and cliques in those families. For
instance, in all perfect graphs, the graph coloring problem, maximum clique problem,
and maximum independent set problem can all be solved in polynomial time using
the ellipsoid method [14]. Since tolerance graphs were shown to be perfect [11], there
exist polynomial time algorithms for these problems. However, these algorithms are
not very efficient, and, therefore, as it happens for most known subclasses of per-
fect graphs, it makes sense to devise specific fast algorithms for these problems on
tolerance graphs.

A comparability graph is a graph which can be transitively oriented. A cocom-
parability graph is a graph whose complement is a comparability graph. Bounded
tolerance graphs are cocomparability graphs [10], and therefore all known polynomial
time algorithms for cocomparability graphs apply to bounded tolerance graphs. This
is one of the main reasons why for many problems the existing algorithms have better
running time in bounded tolerance graphs than in general tolerance graphs.

A graph G = (V,E) is the intersection graph of a family F = {S1, . . . , Sn} of
distinct nonempty subsets of a set S if there exists a bijection μ : V → F such
that for any two distinct vertices u, v ∈ V , uv ∈ E if and only if μ(u) ∩ μ(v) �= ∅.
In that case, we say that F is an intersection model of G. It is easy to see that
each graph has a trivial intersection model based on adjacency relations [22]. Some
intersection models provide a natural and intuitive understanding of the structure
of a class of graphs and turn out to be very helpful to find efficient algorithms to
solve optimization problems [22]. Therefore, it is of great importance to establish
nontrivial intersection models for families of graphs. A graph G on n vertices is
a parallelogram graph (resp., a trapezoid graph) if we can fix two parallel lines L1

and L2, and for each vertex vi ∈ V (G) we can assign a parallelogram P i (resp., a
trapezoid Ti) with parallel sides along L1 and L2 so that G is the intersection graph
of {P i | i = 1, . . . , n} (resp., of {Ti | i = 1, . . . , n}). The class of parallelogram
graphs is strictly included in the class of trapezoid graphs [24]. It was proved in [1,20]
that a graph is a bounded tolerance graph if and only if it is a parallelogram graph.
This characterization provides a useful way to think about bounded tolerance graphs.
However, this intersection model cannot cope with general tolerance graphs, in which
the tolerance of an interval can be greater than its length.

Our contribution. In this article we present the first nontrivial intersection model
for general tolerance graphs, which generalizes the widely known parallelogram repre-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1802 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

sentation of bounded tolerance graphs. The main idea is to exploit the third dimension
to capture the information given by unbounded tolerances, and as a result parallel-
ograms are replaced with parallelepipeds. The proposed intersection model is very
intuitive and can be efficiently constructed from a tolerance representation (actually,
we show that it can be constructed in linear time).

Apart from being important on its own, this new representation proves to be a
powerful tool for designing efficient algorithms for general tolerance graphs. Indeed,
using our intersection model we improve the best existing running times of three
problems on tolerance graphs. We present algorithms to find a minimum coloring and
a maximum clique in O(n log n) time, which is optimal (as discussed in section 3.4).
The best existing algorithm was O(n2) [12, 13]. We also present an algorithm to
find a maximum weight independent set in O(n2) time, whereas the best known
algorithm was O(n3) [13]. We note that [23] proposes an O(n2 logn) algorithm to find
a maximum cardinality independent set on a general tolerance graph, and that [13]
refers to an algorithm transmitted by personal communication with running time
O(n2 logn) to find a maximum weight independent set on a general tolerance graph;
to the best of our knowledge, this algorithm has not been published.

It is important to note that the complexity of recognizing bounded and general
tolerance graphs is a challenging open problem [3,13,23], and this is the reason why we
assume throughout this paper that along with the input tolerance graph we are also
given a tolerance representation of it. On the contrary, trapezoid graphs can be recog-
nized in polynomial time [21,25]. However, the polynomial recognizability of trapezoid
graphs does not imply polynomial recognizability of bounded tolerance graphs, i.e., of
parallelogram graphs, since the trapezoids of a bounded tolerance representation have
to intersect the two supporting lines L1 and L2 on intervals of the same length. The
only “positive” result in the literature concerning recognition of tolerance graphs is a
linear time algorithm for the recognition of bipartite tolerance graphs [3].

Nevertheless, it was shown in [15] that every tolerance graph has a polynomial
sized tolerance representation, and hence tolerance graphs recognition is in the class
NP. There exist other graph classes closely related to tolerance graphs. If in the
definition of tolerance graphs we replace the operation “min” between tolerances with
“+”, we obtain the class of sum-tolerance graphs [17], and if we replace it with “max,”
we obtain the class of max-tolerance graphs. Max-tolerance graphs recognition is
known to be NP-hard [18].

Organization of the paper. We provide the new intersection model of general toler-
ance graphs in section 2. In section 3 we present a canonical representation of tolerance
graphs and then show how it can be used in order to obtain optimal O(n log n) algo-
rithms for finding a minimum coloring and a maximum clique in a tolerance graph. In
section 4 we present an O(n2) algorithm for finding a maximum weight independent
set. Finally, section 5 is devoted to conclusions and open problems.

2. A new intersection model for tolerance graphs. One of the most nat-
ural representations of bounded tolerance graphs is given by parallelograms between
two parallel lines in the Euclidean plane [1, 13, 20]. In this section we extend this
representation to a three-dimensional representation of general tolerance graphs.

Given a tolerance graph G = (V,E) along with a tolerance representation of it,
recall that vertex vi ∈ V corresponds to an interval Ii = [ai, bi] on the real line with
a tolerance ti ≥ 0. W.l.o.g. we may assume that ti > 0 for every vertex vi [13].

Definition 1. Given a tolerance representation of a tolerance graph G = (V,E),
vertex vi is bounded if ti ≤ |Ii|. Otherwise, vi is unbounded. VB and VU are the sets
of bounded and unbounded vertices in V , respectively. Clearly V = VB ∪ VU .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1803

L1

L2

1

ti

ai

bici

di

ti

φi

P i
P j

aj = dj

cj = bj

φj

P k

|Ij |

tj

|Ik||Ii|

ck = bk

ak = dk

tk = ∞

φk

Fig. 1. Parallelograms P i and P j correspond to bounded vertices vi and vj , respectively,

whereas P k corresponds to an unbounded vertex vk.

We can also assume w.l.o.g. that ti = ∞ for any unbounded vertex vi, since if
vi is unbounded, then the intersection of any other interval with Ii is strictly smaller
than ti. Let L1 and L2 be two parallel lines at distance 1 in the Euclidean plane.

Definition 2. Given an interval Ii = [ai, bi] with tolerance ti, P i is the parallel-
ogram defined by the points ci, bi in L1 and ai, di in L2, where ci = min {bi, ai + ti}
and di = max {ai, bi − ti}. The slope φi of P i is φi = arctan(1/ci − ai).

An example is depicted in Figure 1, where P i and P j correspond to bounded ver-
tices vi and vj , and P k corresponds to an unbounded vertex vk. Observe that when
vertex vi is bounded, the values ci and di coincide with the tolerance points defined
in [7,13,16], and φi = arctan(1/ti). On the other hand, when vertex vi is unbounded,
the values ci and di coincide with the end points bi and ai of Ii, respectively, and
φi = arctan(1/|Ii|). Observe also that in both cases ti = bi − ai and ti =∞, parallel-
ogram P i is reduced to a line segment (cf. P j and P k in Figure 1). Since ti > 0 for
every vertex vi, it follows that 0 < φi <

π
2 . Furthermore, we can assume w.l.o.g. that

all points ai, bi, ci, di and all slopes φi are distinct [7, 13, 16].
Observation 1. Let vi ∈ VU , vj ∈ VB. Then |Ii| < tj if and only if φi > φj .
We are ready to give the main definition of this article.
Definition 3. Let G = (V,E) be a tolerance graph with a tolerance representa-

tion {Ii = [ai, bi], ti | i = 1, . . . , n}. For every i = 1 . . . , n, Pi is the parallelepiped in
R

3, defined as follows:
(a) If ti ≤ bi − ai (that is, vi is bounded), then Pi = {(x, y, z) ∈ R

3 | (x, y) ∈
P i, 0 ≤ z ≤ φi}.

(b) If ti > bi − ai (vi is unbounded), then Pi = {(x, y, z) ∈ R
3 | (x, y) ∈ P i, z =

φi}.
The set of parallelepipeds {Pi | i = 1, . . . , n} is a parallelepiped representation of G.

Observe that for each interval Ii, the parallelogramP i of Definition 2 (see also Fig-
ure 1) coincides with the projection of the parallelepiped Pi on the plane z = 0. An
example of the construction of these parallelepipeds is given in Figure 2, where a
set of eight intervals with their associated tolerances is given in Figure 2(a). The
corresponding tolerance graph G is depicted in Figure 2(b), while the parallelepiped
representation is illustrated in Figure 2(c). In the case ti < bi− ai, the parallelepiped
Pi is three-dimensional, cf. P1, P3, and P5, while in the border case ti = bi−ai it degen-
erates to a two-dimensional rectangle; cf. P7. In these two cases, each Pi corresponds
to a bounded vertex vi. In the remaining case ti =∞ (that is, vi is unbounded), the
parallelepiped Pi degenerates to a one-dimensional line segment above plane z = 0;
cf. P2, P4, P6, and P8.

We prove now that these parallelepipeds form a three-dimensional intersection
model for the class of tolerance graphs (namely, that every tolerance graph G can be
viewed as the intersection graph of the corresponding parallelepipeds Pi).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1804 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

I = [1,17] t = 51 1

I = [4,26] t = 2 2

I = [21,37] t = 103 3

I = [32,36] t =4 4

I = [41,60] t = 65 5

I = [43,68] t = 6 6

I = [49,52] t = 37 7

I = [61,66] t = 8 8

8
8 8

8

(a)

1v 2v 3v 4v 5v 6v

7v

8v G

(b)

φ

P

1 6 12 17 21 27 32 37 41 43 4947 52 54 61 66 684

P

P
P

P

P

P

P
1

1

2

2

3
3

4

4

5

6

5

8

7
7

6

8

1

L1

L2 x

yz

φ

φ

φ

φ

φ

φ

φ

(c)

Fig. 2. The intersection model for tolerance graphs: (a) a set of intervals Ii = [ai, bi] and
tolerances ti, i = 1, . . . , 8, (b) the corresponding tolerance graph G, and (c) a parallelepiped repre-
sentation of G.

Theorem 1. Let G = (V,E) be a tolerance graph with a tolerance representation
{Ii = [ai, bi], ti | i = 1, . . . , n}. Then for every i �= j, vivj ∈ E if and only if Pi∩Pj �=
∅.

Proof. We distinguish three cases according to whether vertices vi and vj are
bounded or unbounded:

(a) Both vertices are bounded, that is, ti ≤ bi − ai and tj ≤ bj − aj . It follows
from [13] that vivj ∈ E(G) if and only if P i ∩ P j �= ∅. However, due to the
definition of the parallelepipeds Pi and Pj , in this case Pi ∩ Pj �= ∅ if and
only if P i ∩ P j �= ∅ (cf. P1 and P3, or P5 and P7, in Figure 2).

(b) Both vertices are unbounded, that is, ti = tj =∞. Since no two unbounded
vertices are adjacent, vivj /∈ E(G). On the other hand, the line segments Pi

and Pj lie on the disjoint planes z = φi and z = φj of R3, respectively, since
we assumed that the slopes φi and φj are distinct. Thus, Pi ∩ Pj = ∅ (cf. P2

and P4).
(c) One vertex is unbounded (that is, ti = ∞), and the other is bounded (that

is, tj ≤ bj − aj). If P i ∩ P j = ∅, then vivj /∈ E and Pi ∩ Pj = ∅ (cf. P1 and
P6). Suppose that P i ∩ P j �= ∅. We distinguish two cases:
(i) φi < φj . It is easy to check that |Ii ∩ Ij | ≥ tj , and thus vivj ∈ E. Since

P i ∩P j �= ∅ and φi < φj , then necessarily the line segment Pi intersects
with the parallelepiped Pj on the plane z = φi, and thus Pi ∩ Pj �= ∅
(cf. P1 and P2).

(ii) φi > φj . Clearly |Ii ∩ Ij | < ti = ∞. Furthermore, since φi > φj ,
Observation 1 implies that |Ii ∩ Ij | ≤ |Ii| < tj . It follows that |Ii ∩ Ij | <
min{ti, tj}, and thus vivj /∈ E. On the other hand, z = φi for all
points (x, y, z) ∈ Pi, while z ≤ φj < φi for all points (x, y, z) ∈ Pj , and
therefore Pi ∩ Pj = ∅ (cf. P3 and P4).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1805

Clearly, for each vi ∈ V the parallelepiped Pi can be constructed in constant time.
Therefore, we have the following lemma.

Lemma 1. Given a tolerance representation of a tolerance graph G with n vertices,
a parallelepiped representation of G can be constructed in O(n) time.

3. Coloring and clique qlgorithms in O(n logn). In this section we present
optimal O(n log n) algorithms for constructing a minimum coloring and a maximum
clique in a tolerance graph G = (V,E) with n vertices, given a parallelepiped repre-
sentation of G. These algorithms improve the best known running time O(n2) of these
problems on tolerance graphs [12, 13]. First, we introduce a canonical representation
of tolerance graphs in Section 3.1, and then we use it to obtain the algorithms for
the minimum coloring and the maximum clique problems in section 3.2. Finally, we
discuss the optimality of both algorithms in section 3.4.

3.1. A canonical representation of tolerance graphs. We associate with
every vertex vi of G the point pi = (xi, yi) in the Euclidean plane, where xi = bi
and yi =

π
2 − φi. Since all end points of the parallelograms P i and all slopes φi are

distinct, all coordinates of the points pi are distinct as well. Similar to [12, 13], we
state the following two definitions.

Definition 4. An unbounded vertex vi ∈ VU of a tolerance graph G is called in-
evitable (for a certain parallelepiped representation) if replacing Pi with {(x, y, z) | (x,
y) ∈ Pi, 0 ≤ z ≤ φi} creates a new edge in G. Otherwise, vi is called evitable.

Definition 5. Let vi ∈ VU be an inevitable unbounded vertex of a tolerance graph
G (for a certain parallelepiped representation). A vertex vj is called a hovering vertex
of vi if aj < ai, bi < bj, and φi > φj.

It is now easy to see that, by Definition 5 if vj is a hovering vertex of vi, then
vivj /∈ E. Note that, in contrast to [12], in Definition 4 an isolated vertex vi might
be also inevitable unbounded, while in Definition 5, a hovering vertex might be also
unbounded. Definitions 4 and 5 imply the following lemma.

Lemma 2. Let vi ∈ VU be an inevitable unbounded vertex of the tolerance graph G
(for a certain parallelepiped representation). Then, there exists a hovering vertex vj
of vi.

Proof. Since vi is an inevitable unbounded vertex, replacing Pi with {(x, y, z) | (x,
y) ∈ Pi, 0 ≤ z ≤ φi} creates a new edge in G; let vivj be such an edge. Then, clearly
P i ∩ P j �= ∅. We will prove that vj is a hovering vertex of vi. Otherwise, φi < φj ,
aj > ai, or bi > bj . Suppose first that φi < φj . If vj ∈ VU , then vi remains not
connected to vj after the replacement of Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi},
since φi < φj , which is a contradiction. If vj ∈ VB, then vi is connected to vj
also before the replacement of Pi, since φi < φj and P i ∩ P j �= ∅, which is again a
contradiction. Thus, φi > φj . Suppose now that aj > ai or bi > bj. Then, since
φi > φj , we obtain for both cases that P i ∩ P j = ∅, which is a contradiction. Thus,
aj < ai, bi < bj, and φi > φj , i.e., vj is a hovering vertex of vi by Definition 5.

Definition 6. A parallelepiped representation of a tolerance graph G is called
canonical if every unbounded vertex is inevitable.

For example, in the tolerance graph depicted in Figure 2, v4 and v8 are inevitable
unbounded vertices, v3 and v6 are hovering vertices of v4 and v8, respectively, while v2
and v6 are evitable unbounded vertices. Therefore, this representation is not canonical
for the graph G. However, if we replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} for
i = 2, 6, we get a canonical representation for G.

In the following, we present an algorithm that constructs a canonical representa-
tion of a given tolerance graph G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1806 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

Definition 7. Let α = (xα, yα) and β = (xβ , yβ) be two points in the plane.
Then α dominates β if xα > xβ and yα > yβ. Given a set A of points, the point
γ ∈ A is called an extreme point of A if there is no point δ ∈ A that dominates γ.
Ex(A) is the set of the extreme points of A.

Given a tolerance graph G = (V,E) with the set V = {v1, v2, . . . , vn} of vertices
(and its parallelepiped representation), we can assume w.l.o.g. that ai < aj whenever
i < j. Recall that with every vertex vi we associated the point pi = (xi, yi), where
xi = bi and yi = π

2 − φi, respectively. We define for every i = 1, 2, . . . , n the set
Ai = {p1, p2, . . . , pi} of the points associated with the first i vertices of G.

Lemma 3. Let vi ∈ VU be an unbounded vertex of a tolerance graph G. Then
(a) if pi ∈ Ex(Ai), then vi is evitable;
(b) if pi /∈ Ex(Ai) and point pj dominates pi for some bounded vertex vj ∈ VB

with j < i, then vi is inevitable and vj is a hovering vertex of vi.
Proof. (a) Assume, to the contrary, that vi is inevitable. By Lemma 2 there is a

hovering vertex vj of vi. But then xi = bi < bj = xj and yi =
π
2 − φi <

π
2 − φj = yj ,

while aj < ai, i.e., j < i. Therefore pj ∈ Ai and pj dominates pi, which is a
contradiction, since pi ∈ Ex(Ai).

(b) Suppose that pj dominates pi for some vertex vj ∈ VB with j < i. The
ordering of the vertices implies aj < ai, while xi < xj and yi < yj imply bi < bj and
φi > φj . Thus vi is inevitable, and vj is a hovering vertex of vi.

The following theorem shows that, given a parallelepiped representation of a
tolerance graph G, we can construct in O(n logn) a canonical representation of G.
This result is crucial for the time complexity analysis of the algorithms of section 3.2.

Theorem 2. Every parallelepiped representation of a tolerance graph G with n
vertices can be transformed by Algorithm 1 to a canonical representation of G in
O(n logn) time.

Proof. We describe and analyze Algorithm 1, which generates a canonical rep-
resentation of G. First, we sort the vertices v1, v2, . . . , vn of G such that ai < aj
whenever i < j. Then, we process sequentially all vertices vi of G. The bounded and
the inevitable unbounded vertices will not be changed, while the evitable unbounded
vertices will be replaced with bounded ones. At step i we update the set Ex(Ai) of the
extreme points of Ai (note that the set Ai remains unchanged during the algorithm).
For two points pi1 , pi2 of Ex(Ai), xi1 > xi2 if and only if yi1 < yi2 . We store the
elements of Ex(Ai) in a list P , in which the points pj are sorted increasingly according
to their x values (or, equivalently, decreasingly according to their y values). Due to
Lemma 3(a) and since during the algorithm the evitable unbounded vertices of G are
replaced with bounded ones, after the process of vertex vi, all points in the list P
correspond to bounded vertices of G in the current parallelepiped representation.

We distinguish now the following cases.
Case 1. vi is bounded. If there exists a point of P that dominates pi, then

pi /∈ Ex(Ai). Thus, we do not change P , and we continue to the process of vi+1. If
no point of P dominates pi, then pi ∈ Ex(Ai). Thus, we add pi to P , and we remove
from P all points that are dominated by pi.

Case 2. vi is unbounded. If there exists a point pj ∈ P that dominates pi, then
pi /∈ Ex(Ai), while Lemma 3(b) implies that vi is inevitable and vj is a hovering
vertex of vi. Thus, similarly to Case 1, we do not change P , and we continue to the
process of vi+1. If no point of P dominates pi, then pi ∈ Ex(Ai). Thus, we add the
point pi to P and remove from P all points that are dominated by pi. In this case, vi is
evitable by Lemma 3(a). Hence, we replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi}

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1807

Algorithm 1Construction of a canonical representation of a tolerance

graph G.

Input: A parallelepiped representation R of a given tolerance graphG with n vertices
Output: A canonical representation R′ of G

Sort the vertices of G such that ai < aj whenever i < j
	0 ← min{xi : 1 ≤ i ≤ n}; r0 ← max{xi : 1 ≤ i ≤ n}
ps ← (0 − 1, π2); pt ← (r0 + 1, 0)
P ← (ps, pt); R

′ ← R
for i = 1 to n do
Find the point pj having the smallest xj with xj > xi

if yj < yi then {no point of P dominates pi}
Find the point pk having the greatest xk with xk < xi

Find the point p� having the greatest y� with y� < yi
if xk ≥ x� then
Replace points p�, p�+1 . . . , pk with point pi in the list P

else
Insert point pi between points pk and p� in the list P

if vi ∈ VU then {vi is an evitable unbounded vertex}
Replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in R′

else {yj > yi; pj dominates pi}
if vi ∈ VU then {vi is an inevitable unbounded vertex}
vj is a hovering vertex of vi

return R′

in the current parallelepiped representation of G, and we consider from now on vi as
a bounded vertex.

It follows that after the process of each vertex vi (either bounded or unbounded),
the list P stores the points of Ex(Ai). Furthermore, at every iteration of the algo-
rithm, all points of the list P correspond to bounded vertices in the current paral-
lelepiped representation of G.

The processing of vertex vi is done by executing three binary searches in the
list P as follows. Let 	0 = min{xi | 1 ≤ i ≤ n} and r0 = max{xi | 1 ≤ i ≤ n}.
For convenience, we add two dummy points ps = (0 − 1, π2) and pt = (r0 + 1, 0).
First, we find the point pj ∈ P with the smallest value xj such that xj > xi (see
Figure 3). Note that pi ∈ Ex(Ai) if and only if yj < yi. If yj > yi, then pj dominates
pi (see Figure 3(a)). Thus, if vi ∈ VU , Lemma 3(b) implies that vi is an inevitable
unbounded vertex and vj is a hovering vertex of vi. In the opposite case yj < yi, we
have to add pi to P . In order to remove from P all points that are dominated by pi,
we execute binary search two more times. In particular, we find the points pk and p�
of P with the greatest values xk and y�, respectively, such that xk < xi and y� < yi
(see Figure 3(b)). If there are some points of P that are dominated by pi, then pk
and p� have the greatest and smallest values xk and x� among them, respectively, and
xk ≥ x�. In this case, we replace all points p�, p�+1, . . . , pk with the point pi in the
list P . Otherwise, if no point of P is dominated by pi, then xk < x�. In this case, we
remove no point from P , and we insert pi between pk and p� in P .

Finally, after processing all vertices vi of G, we return a canonical representation
of the given tolerance graph G, in which every vertex that remains unbounded has
a hovering vertex assigned to it. Since the processing of every vertex can be done in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1808 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

x

y

pi

pj

pt

ps

(a)

x

y

pi

pjpk

p�

pt

ps

(b)

Fig. 3. The cases where the associated point pi to the currently processed vertex vi is (a)
dominated by the point pj in Ai and (b) an extreme point of the set Ai.

O(log n) time by executing three binary searches and since the sorting of the vertices
can be done in O(n log n) time, the running time of Algorithm 1 is O(n logn).

3.2. Minimum coloring. In the next theorem we present an optimalO(n log n)
algorithm for computing a minimum coloring of a tolerance graph G with n vertices,
given a parallelepiped representation of G. The informal description of the algorithm
is identical to the one in [12], which has running time O(n2); the difference is in the
fact that we use our new representation, in order to improve the time complexity.

Theorem 3. A minimum coloring of a tolerance graph G with n vertices can be
computed in O(n logn) time.

Proof. We present Algorithm 2, which computes a minimum coloring of G. Given
a parallelepiped representation of G, we construct a canonical representation of G in
O(n logn) time by Algorithm 1. VB and VU are the sets of bounded and inevitable
unbounded vertices of G in the latter representation, respectively. In particular, Algo-
rithm 1 associates a hovering vertex vj ∈ VB with every inevitable unbounded vertex
vi ∈ VU . We find a minimum proper coloring of the bounded tolerance graph G[VB]
in O(n logn) time using the algorithm of [6]. Finally, we associate with every in-
evitable unbounded vertex vi ∈ VU the same color as that of its hovering vertex
vj ∈ VB in the coloring of G[VB].

Algorithm 2 Minimum coloring of a tolerance graph G.
Input: A parallelepiped representation of a given tolerance graph G
Output: A minimum coloring of G

Construct a canonical representation of G by Algorithm 1, where a hovering vertex
is associated with every inevitable unbounded vertex
Color G[VB] by the algorithm of [6]
for every inevitable unbounded vertex vi ∈ VU do
Assign to vi the same color as its hovering vertex in G[VB]

Consider an arbitrary inevitable unbounded vertex vi ∈ VU and its hovering
vertex vj ∈ VB. Following Definition 5, P i ∩ P j �= ∅ and φi > φj . Consider a vertex
vk of G such that vivk ∈ E. It follows that vk ∈ VB , since no two unbounded vertices
are adjacent in G. Furthermore, since vivk ∈ E, it follows that P i ∩ P k �= ∅ and
φk > φi. Then P j ∩ P k �= ∅, and thus Pj ∩ Pk �= ∅, i.e., vjvk ∈ E, since both vj
and vk are bounded vertices. It follows that vk does not have the same color as vj in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1809

the proper coloring of G[VB], and thus the resulting coloring of G is proper. Finally,
since both colorings of G[VB] and of G have the same number of colors, it follows that
this proper coloring of G is minimum. Since the coloring of G[VB] can be done in
O(n logn) time and the coloring of all inevitable unbounded vertices vi ∈ VU can be
done in O(n) time, Algorithm 2 returns a minimum proper coloring G in O(n log n)
time.

3.3. Maximum clique. In the next theorem we prove that a maximum clique
of a tolerance graph G with n vertices can be computed in optimal O(n logn) time,
given a parallelepiped representation of G. This theorem follows from Theorem 2 and
from the clique algorithm presented in [6], and it improves the best known O(n2)
running time mentioned in [12].

Theorem 4. A maximum clique of a tolerance graph G with n vertices can be
computed in O(n logn) time.

Proof. We compute first a canonical representation of G in O(n log n) time by
Algorithm 1. The proof of Theorem 3 implies that χ(G) = χ(G[VB]), where χ(H)
denotes the chromatic number of a given graph H . Since tolerance graphs are perfect
graphs [11], ω(G) = χ(G) and ω(G[VB]) = χ(G[VB]), where ω(H) denotes the clique
number of a given graph H . It follows that ω(G) = ω(G[VB]). We compute now a
maximum clique Q of the bounded tolerance graph G[VB] in O(n logn) time. This
can be done by the algorithm presented in [6] that computes a maximum clique in
a trapezoid graph, since bounded tolerance graphs are trapezoid graphs [13]. Since
ω(G) = ω(G[VB]), Q is a maximum clique of G as well.

3.4. Optimality of the running time. In this section we use permutation
graphs [13]. Given a sequence S = a1, a2, . . . , an of numbers, a subsequence of S
is a sequence S′ = ai1 , ai2 , . . . , aik , where aij ∈ S for every j ∈ {1, 2, . . . , k} and
1 ≤ i1 < i2 < · · · < ik ≤ n. S′ is called an increasing subsequence of S if ai1 < ai2 <
· · · < aik . Clearly, increasing subsequences in a permutation graph G correspond
to independent sets of G, while increasing subsequences in the complement G of G
correspond to cliques of G, where G is also a permutation graph. Since Ω(n logn)
is a lower time bound for computing the length of a longest increasing subsequence
in a permutation [6, 8], the same lower time bound holds for computing a maximum
clique and a maximum independent set in a permutation graph G. Furthermore, since
permutation graphs are perfect graphs [9], the chromatic number χ(G) of a permuta-
tion graph G equals the clique number ω(G) of G. Thus, Ω(n logn) is a lower time
bound for computing the chromatic number of a permutation graph. Finally, since
the class of permutation graphs is a subclass of tolerance graphs [13], the same lower
bounds hold for tolerance graphs. It follows that the algorithms in Theorems 3 and 4
for computing a minimum coloring and a maximum clique in tolerance graphs are
optimal.

4. Weighted independent set algorithm inO(n2). In this section we present
an algorithm for computing a maximum weight independent set in a tolerance graph
G = (V,E) with n vertices in O(n2) time, given a parallelepiped representation of G
and a weight w(vi) > 0 for every vertex vi of G. The proposed algorithm improves the
running time O(n3) of the one presented in [13]. In the following, consider as above
the partition of the vertex set V into the sets VB and VU of bounded and unbounded
vertices of G, respectively.

Similar to [13], we add two isolated bounded vertices vs and vt to G with weights
w(vs) = w(vt) = 0 such that the corresponding parallelepipeds Ps and Pt lie com-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1810 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

L1

L2

c1 b1 c2 b2c3 c4 c5 c6 c7

a1 d1 a2 d2

P 1 P 2

Fig. 4. The parallelograms P i, i = 1, 2, . . . , 7, of a tolerance graph with the sets VB = {v1, v2}
and VU = {v3, v4, . . . , v7} of bounded and unbounded vertices, respectively. In this graph,
L1(2) = {v3, v5}, R2 = {v6}, and S(v1, v2) = {v3, v5, v6}.

pletely to the left and to the right of all other parallelepipeds of G, respectively. Since
both vs and vt are bounded vertices, we augment the set VB by the vertices vs and vt.
In particular, we define the set of vertices V ′

B = VB ∪{vs, vt} and the tolerance graph
G′ = (V ′, E), where V ′ = V ′

B ∪VU . Since G
′[V ′

B] is a bounded tolerance graph, it is a
cocomparability graph as well [11, 13]. A transitive orientation of the comparability
graph G′[V ′

B] can be obtained by directing each edge according to the upper left end
points of the parallelograms P i. Formally, let (V ′

B ,≺) be the partial order defined on
the bounded vertices V ′

B such that vi ≺ vj if and only if vivj /∈ E and ci < cj . Recall
that a chain of elements in a partial order is a set of mutually comparable elements
in this order [4].

Observation 2 (see [13]). The independent sets of G[VB] are in one-to-one corre-
spondence with the chains in the partial order (V ′

B ,≺) from vs to vt.
For what follows, recall that for every unbounded vertex vk ∈ VU the paral-

lelepiped Pk degenerates to a line segment, while the upper end points bk and ck of
the parallelogram P k coincide, i.e., bk = ck.

Definition 8. For every vi, vj ∈ V ′
B with vi ≺ vj , Li(j) = {vk ∈ VU | bi < ck <

cj , vivk /∈ E} and its weight w(Li(j)) =
∑

v∈Li(j)
w(v).

Definition 9. For every vj ∈ V ′
B, Rj = {vk ∈ VU‖ cj < ck < bj , vjvk /∈ E} and

its weight w(Rj) =
∑

v∈Rj
w(v).

For every pair of bounded vertices vi, vj ∈ V ′
B with vi ≺ vj , the set Li(j) consists

of those unbounded vertices vk ∈ VU for which vivk /∈ E and whose upper end point
bk = ck of P k lies between P i and P j . Furthermore, vjvk /∈ E for every vertex
vk ∈ Li(j). Indeed, in the case where P k ∩ P j �= ∅, it holds that φk > φj , since
bk = ck < cj , and thus Pk ∩Pj = ∅. Similarly, the set Rj consists of those unbounded
vertices vk ∈ VU for which vjvk /∈ E and whose upper end point bk = ck of P k lies
between the upper end points cj and bj of P j . Furthermore, vivk /∈ E for every
vertex vk ∈ Rj as well. Indeed, since vjvk /∈ E, it follows that φk > φj , and thus,
P i∩P k = ∅ and Pi∩Pk = ∅. In particular, in the example of Figure 4, L1(2) = {v3, v5}
and R2 = {v6}. In this figure, the line segments that correspond to the unbounded
vertices v4 and v7, respectively, are drawn with dotted lines to illustrate the fact that
v4v1 ∈ E and v7v2 ∈ E.

Definition 10 (see [13]). For every vi, vj ∈ V ′
B with vi ≺ vj, S(vi, vj) = {vk ∈

VU | vivk, vjvk /∈ E, bi < ck < bj}.
Observation 3. For every pair of bounded vertices vi, vj ∈ V ′

B with vi ≺ vj ,

(1) S(vi, vj) = Li(j) ∪Rj .

Furthermore, Li(j) ⊆ Li() for every triple {vi, vj , v�} of bounded vertices, where
vi ≺ vj , vi ≺ v� and cj < c�.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1811

Algorithm 3 Maximum weight independent set of a tolerance graph G.

Input: A parallelepiped representation of a given tolerance graph G
Output: The value of a maximum weight independent set of G

Add the dummy bounded vertices vs, vt to G such that Ps and Pt lie completely to
the left and to the right of all other parallelepipeds of G, respectively
V ′
B ← VB ∪ {vs, vt}

Construct the partial ordering (V ′
B ,≺) of the bounded vertices V ′

B

Sort the bounded vertices V ′
B such that ci < cj whenever i < j

for j = 1 to |V ′
B | do

W (vj)← 0
Compute the value w(Rj)

for i = 1 to |V ′
B | do

for every vj ∈ V ′
B with vi ≺ vj do

Update the value w(Li(j))
if W (vj) < (w(vj) + w(Rj)) +W (vi) + w(Li(j)) then
W (vj)← (w(vj) + w(Rj)) +W (vi) + w(Li(j))

return W (vt)

In particular, in the example of Figure 4, S(v1, v2) = L1(2) ∪R2 = {v3, v5, v6}.
Lemma 4 (see [13]). Given a tolerance graph G with a set of positive weights for

the vertices of G, any maximum weight independent set of G consists of a chain
of bounded vertices vx1 ≺ vx2 ≺ · · · ≺ vxk

together with the union of the sets
∪{S(vxi , vxi+1) | i = 0, 1, . . . , k}, where vx0 = vs and vxk+1

= vt.
Now, using Lemma 4 and Observation 3, we can present Algorithm 3, which

improves the running time O(n3) of the one presented in [13].
Theorem 5. A maximum weight independent set of a tolerance graph G with n

vertices can be computed using Algorithm 3 in O(n2) time.
Proof. We present Algorithm 3, which computes the value of a maximum weight

independent set of G. A slight modification to Algorithm 3 returns a maximum
weight independent set of G, instead of its value. First, we construct the partial order
(V ′

B ,≺) defined on the bounded vertices V ′
B = VB∪{vs, vt} such that vi ≺ vj whenever

vivj /∈ E and ci < cj . This can be done in O(n2) time. Then, we sort the bounded
vertices of V ′

B such that ci < cj whenever i < j. This can be done in O(n log n) time.
As a preprocessing step, we compute for every bounded vertex vj ∈ V ′

B the set Rj

and its weight w(Rj) in linear O(n) time by visiting at most all unbounded vertices
vk ∈ VU . Thus, all values w(Rj) are computed in O(n2) time.

We associate with each bounded vertex vj ∈ V ′
B a cumulative weight W (vj)

defined as follows:

W (vs) = 0,(2)

W (vj) = (w(vj) + w(Rj)) + max
vi≺vj

{W (vi) + w(Li(j))} for every vj ∈ V ′
B \ {vs}.

The cumulative weightW (vj) of an arbitrary bounded vertex vj ∈ V ′
B equals the max-

imum weight of an independent set S of vertices vk (both bounded and unbounded)
for which bk ≤ bj and vj ∈ S. Initially all values W (vj) are set to zero.

In the main part of Algorithm 3, we process sequentially all bounded vertices
vi ∈ V ′

B . For every such vertex vi, we update sequentially the cumulative weights

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1812 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

W (vj) for all bounded vertices vj ∈ V ′
B with vi ≺ vj by comparing the current value of

W (vj) with the value (w(vj) + w(Rj)) +W (vi) + w(Li(j)) and by storing the greatest
of them in W (vj). After all bounded vertices of V ′

B have been processed, the value of
the maximum weight independent set of G is stored in W (vt), due to Lemma 4 and
Observation 3.

While processing the bounded vertex vi, we compute the values w(Li(j)) sequen-
tially for every j, where vi ≺ vj , as follows. Let vj1 , vj2 be two bounded vertices that
are visited consecutively by the algorithm during the process of vertex vi. Then, due
to Observation 3, we compute the value w(Li(j2)) by adding to the previous value
w(Li(j1)) the weights of all unbounded vertices vk ∈ VU , whose upper end points ck
lie between cj1 and cj2 .

Since we visit all bounded and all unbounded vertices of the graph at most once
during the process of vi, this can be done in O(n) time. Thus, since there are in
total at most n + 2 bounded vertices vi ∈ V ′

B , Algorithm 3 returns the value of the
maximum weight independent set of G in O(n2) time. Finally, observe that storing at
every step of Algorithm 3 the independent sets that correspond to the values W (vi)
and removing at the end the vertices vs and vt, the algorithm returns at the same
time a maximum weight independent set of G, instead of its value.

5. Conclusions and further research. In this article we proposed the first
nontrivial intersection model for general tolerance graphs, given by parallelepipeds
in the three-dimensional space. This representation generalizes the parallelogram
representation of bounded tolerance graphs. Using this representation, we presented
improved algorithms for computing a minimum coloring, a maximum clique, and a
maximum weight independent set on a tolerance graph. The running times of the first
two algorithms are optimal. It can be expected that this representation will prove
useful in improving the running time of other algorithms for the class of tolerance
graphs.

As mentioned in section 1, the complexity of the recognition problem for tolerance
and bounded tolerance graphs is possibly the main open problem in this class of
graphs. Even when the input graph is known to be a tolerance graph, it is not known
how to obtain a tolerance representation for it [23]. Moreover, given a tolerance graph,
it is not known how to decide in polynomial time whether it is a bounded tolerance
graph [23].

REFERENCES

[1] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley, Proper and unit tolerance graphs,
Discrete Appl. Math., 60 (1995), pp. 99–117.

[2] A. H. Busch, A characterization of triangle-free tolerance graphs, Discrete Appl. Math., 154
(2006), pp. 471–477.

[3] A. H. Busch and G. Isaak, Recognizing bipartite tolerance graphs in linear time, in Pro-
ceedings of the 33rd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), Lecture Notes in Comput. Sci. 4769, 2007, pp. 12–20.

[4] R. Diestel, Graph Theory, 3rd ed., Springer-Verlag, Berlin, 2005.
[5] S. Felsner, Tolerance graphs and orders, J. Graph Theory, 28 (1998), pp. 129–140.
[6] S. Felsner, R. Müller, and L. Wernisch, Trapezoid graphs and generalizations, geometry

and algorithms, Discrete Appl. Math., 74 (1997), pp. 13–32.
[7] P. C. Fishburn and W. T. Trotter, Split semiorders, Discrete Math., 195 (1999), pp. 111–

126.
[8] M. L. Fredman, On computing the length of longest increasing subsequences, Discrete Math.,

11 (1975), pp. 29–35.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NEW INTERSECTION MODEL FOR TOLERANCE GRAPHS 1813

[9] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Ann. Discrete Math. 57,
North-Holland, Amsterdam, 2004.

[10] M. C. Golumbic and C. L. Monma, A generalization of interval graphs with tolerances, in
Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and
Computing, Congr. Numer., 35 (1982), pp. 321–331.

[11] M. C. Golumbic, C. L. Monma, and W. T. Trotter, Tolerance graphs, Discrete Appl. Math.,
9 (1984), pp. 157–170.

[12] M. C. Golumbic and A. Siani, Coloring algorithms for tolerance graphs: Reasoning and
scheduling with interval constraints, in Proceedings of the Joint International Con-
ferences on Artificial Intelligence, Automated Reasoning, and Symbolic Computation
(AISC/Calculemus), 2002, pp. 196–207.

[13] M. C. Golumbic and A. N. Trenk, Tolerance Graphs, Camb. Stud. Adv. Math. 89, Cambridge
University Press, Cambridge, 2004.

[14] M. Grötshcel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[15] R. B. Hayward and R. Shamir, A note on tolerance graph recognition, Discrete Appl. Math.,
143 (2004), pp. 307–311.

[16] G. Isaak, K. L. Nyman, and A. N. Trenk, A hierarchy of classes of bounded bitolerance
orders, Ars Comb., 69 (2003).

[17] M. S. Jacobson and F. R. McMorris, Sum-tolerance proper interval graphs are precisely
sum-tolerance unit interval graphs, J. Comb. Inf. Syst. Sci., 16 (1991), pp. 25–28.

[18] M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian, Max-tolerance
graphs as intersection graphs: Cliques, cycles, and recognition, in Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp. 832–841.

[19] J. M. Keil and P. Belleville, Dominating the complements of bounded tolerance graphs and
the complements of trapezoid graphs, Discrete Appl. Math., 140 (2004), pp. 73–89.

[20] L. Langley, Interval Tolerance Orders and Dimension, Ph.D. thesis, Dartmouth College,
Hanover, NH, 1993.

[21] T.-H. Ma and J. P. Spinrad, On the 2-chain subgraph cover and related problems, J. Algo-
rithms, 17 (1994), pp. 251–268.

[22] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM, Philadel-
phia, 1999.

[23] G. Narasimhan and R. Manber, Stability and chromatic number of tolerance graphs, Discrete
Appl. Math., 36 (1992), pp. 47–56.

[24] S. P. Ryan, Trapezoid order classification, Order, 15 (1998), pp. 341–354.
[25] J. P. Spinrad, Efficient Graph Representations, Fields Inst. Commun. 19, American Mathe-

matical Society, Providence, RI, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

