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Abstract
A novel approach is presented in this paper for improving anisotropic diffusion PDE models,
based on the Perona–Malik equation. A solution is proposed from an engineering perspective
to adaptively estimate the parameters of the regularizing function in this equation. The goal of
such a new adaptive diffusion scheme is to better preserve edges when the anisotropic
diffusion PDE models are applied to image enhancement tasks. The proposed adaptive
parameter estimation in the anisotropic diffusion PDE model involves self-organizing maps
and Bayesian inference to define edge probabilities accurately. The proposed modifications
attempt to capture not only simple edges but also difficult textural edges and incorporate their
probability in the anisotropic diffusion model. In the context of the application of PDE models
to image processing such adaptive schemes are closely related to the discrete image
representation problem and the investigation of more suitable discretization algorithms using
constraints derived from image processing theory. The proposed adaptive anisotropic diffusion
model illustrates these concepts when it is numerically approximated by various discretization
schemes in a database of magnetic resonance images (MRI), where it is shown to be efficient
in image filtering and restoration applications.

Keywords: anisotropic diffusion PDEs, PDE discretization, image inpainting, Bayesian
inference, self-organizing maps, edge-stopping diffusion

1. Introduction

While various PDE models have been used for 15 years and are
widely applied nowadays in image processing and computer
vision [1], including restoration, filtering, segmentation and
object tracking, the perspective adopted in the majority of
the relevant reports is the view of an applied mathematician,
attempting to prove theorems and devise exact numerical
methods for solving them. However, such solutions are
exact for the continuous PDEs. The discrete approximations
involved in image processing yielded unsatisfactory results.

There is a need to investigate, from an engineering perspective,
how to incorporate sophisticated image processing algorithms
in the discretization schemes used in the numerical analysis
of continuous PDE models when applied to image processing
tasks in order to achieve good results.

There are only a few reports in the literature presenting the
computational perspective of the available PDE models with
respect to image processing models suitably incorporated in
these PDE methods. The majority of efforts are focused on
devising new continuous PDE models and analyzing their
solutions in general mathematical spaces, having example
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image datasets as application, but they pay less attention
to enhancing the results of the existing PDE models by
incorporating sophisticated image processing algorithms in
their numerical solution. To apply PDE models in image
processing efficiently it is important to merge the two
fields, namely, numerical analysis of PDE models and image
processing techniques. The goal of this paper is to illustrate
this concept in the application of anisotropic diffusion PDE
models in image enhancement. It is shown that such PDE
models could be improved if sophisticated edge-stopping
diffusion schemes were incorporated in the models and their
numerical solutions.

For image enhancement using anisotropic diffusion PDE
models, it is necessary to preserve edges [1] and especially
textural edges. To this end, a modification of the anisotropic
diffusion model of Perona–Malik [4] is presented by adaptively
estimating the parameters introduced in the regularization
function involved. Such an adaptive estimation is based
on Bayesian inference and self-organization schemes. The
results achieved, which are illustrated in section 5 of
the paper with respect to image filtering and restoration
applications, show that many other PDE models for image
inpainting [2], attempting to prevent edge blurring, could
be enhanced by integrating suitable image processing
techniques in their formalism and their discretization and
numerical approximation, through adaptive estimation of
model parameters. It is, therefore, important to critically
overview the principles of these PDE models as well as
their associated model parameters. This overview will
be naturally focused, however, on anisotropic diffusion
PDEs. The proposed adaptive anisotropic diffusion model
is numerically approximated using different discretization
schemes to investigate their suitability. More specifically, the
finite difference method (FDM) and the radial basis function
(RBF) discretizing scheme are employed to solve the proposed
PDE models.

2. Image inpainting PDE models preventing edge
blurring

PDEs have led to an entire new field in image processing and
computer vision. They offer several advantages.

• Reinterpretation of traditional techniques under a
novel unifying framework. This includes many
known techniques such as convolution, filtering and
morphological operations of dilation/erosion.

• More invariances could be offered with respect to classical
techniques.

• Better mathematical modeling, connection with physical
phenomena and better approximation to the geometry
(Euclidean or generalized) of the problem. Guaranteed
mathematical results with respect to well-posedness are
available, such as proving that the numerical algorithms
involved are stable.

• Shape recognition, structure-preserving filtering, object
segmentation could be performed within a new more
intuitive framework.

Regarding image inpainting [2], there are a variety of
available PDE models proposed mainly to smooth and denoise
images. In the last two decades, the use of nonlinear PDEs
for image smoothing and denoising has met with tremendous
success [1]. Before nonlinear PDEs were introduced, images
were denoised by linear filtering, which is equivalent to using
a noisy image as an initial condition for the heat equation.
Although this method removes high frequency noise, it also
badly blurs edges. To prevent blurring, a number of authors
suggested using a nonlinear diffusion equation or a variational
PDE model. Since the present paper investigates a novel
way of preserving edges when the anisotropic diffusion PDE
models are applied, by integrating an adaptive strategy for
model parameter estimation, it is important to summarize both
diffusion and variational approaches.

Among the equations belonging in the first category the
most famous example is the Perona–Malik equation [3, 4].
On the other hand, among the most famous examples of
PDEs belonging in the second category is the variational
Mumford–Shah model [1, 3, 5] as well as the total variation
(TV) model [6, 7]. Although effective, the methods produce
piecewise constant images, often giving ‘blocky’ results. The
Perona–Malik equation for instance behaves as a backward
heat equation and instantly creates jumps (i.e. shocks) in
unpredictable locations [8]. Such results occur either because
of the PDE model, which might not be representative of the
image dynamical system, or because of the discretization and
numerical approximation schemes involved.

In an attempt to improve upon the piecewise constant
images resulting from second-order image diffusions, fourth-
order diffusions have been mainly suggested for image
denoising. Examples include the ‘low curvature image
simplifier’ (LCIS) equation of Tumblin and Turk [8, 9] as
well as similar higher order PDE models [10]. Other attempts
include imposing constraints in the diffusion PDE models [11].
The adaptive anisotropic diffusion scheme proposed herein
could be viewed as belonging in such a line of research.

The main trend is, therefore, investigation of nonlinear
PDE models, although it might be difficult or even impossible
to analyze. Moreover, the majority of and the most useful
image analysis techniques are nonlinear, which is due to the
inability of linear systems to successfully model important
problems. The best known vision problem modeled via PDEs
is that of multiscale analysis, which is a useful and often
required framework for many tasks such as feature/object
detection, motion detection, stereo and multi-band frequency
analysis or even image enhancement as is the case in this study.

Consider a multiscale operator, Tt , mapping an input
image f to an output image Tt (f ), which results from the
interaction of f with some kernel function dependent on
a continuous scale parameter t � 0, i.e. Tt (f )(x, y) =
u(x, y, t). The scale-space function u(x, y, t) holds all the
history of transforming f through all the scales and can
be viewed as the output of Tt at any fixed scale t. The
evolution of u in scale space as a continuous dynamical
system can be modeled by evolution PDEs of the type
ut (x, y, t) = function(uxx, uxy, uyy, ux, uy, u, x, y, t) and u
can be viewed as the solution of the PDE with the initial
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condition u(x, y, 0) = f (x, y). This multiscale analysis
offers a unified framework for applying diffusion models
to image processing tasks and, more specifically, to image
enhancement. The most important PDE models and their
variations for solving image enhancement problems are
summarized below, taking into account their strategies in
preventing edge blurring.

2.1. Linear heat-diffusion PDE

The most investigated PDE method for smoothing images is
to apply a linear diffusion process for modeling the Gaussian
scale space [12]. The convolution of an image with a Gaussian
function of increasing variance is equivalent from a physical
point of view to linear diffusion filtering. The connection
of Gaussian convolution and linear diffusion filtering extends
its limits to multiscale analysis. When it is not clear in
advance what is the right scale, it is desirable to have an
image representation at multiple scales. Diffusion could be
thought of as a physical process that equilibrates concentration
differences without creating or destroying the mass. The
equilibration property is expressed by Fick’s law:

j = −D · ∇u, (1)

which states that the concentration gradient ∇u causes a flux j ,
aiming to compensate the gradient. The relation between ∇u
and j is described by the diffusion tensor D, a positive definite
symmetric matrix. The case where ∇u and j are parallel is
called isotropic. Then the diffusion tensor may be replaced by
a positive scalar-valued diffusivity g. In the general anisotropic
case, ∇u and j are not parallel.

The observation that diffusion only transports mass
without destroying it or creating a new mass is expressed by
the continuity equation:

∂tu = −div(j), (2)

where t denotes the time. By connecting Fick’s law with the
continuity equation the formalism ends up with the diffusion
equation:

∂tu = div(D · ∇u). (3)

Equation (3) appears in many physical transport processes.
In image processing concentration can be associated with the
gray value at a certain location.

2.2. Anisotropic diffusion PDE models

Since linear filtering causes edge blurring and linear shifting,
the development of anisotropic nonlinear diffusion PDEs for
multiscale directional image smoothing and edge detection
was motivated. Perona and Malik [4] proposed a nonlinear
diffusion method for avoiding the blurring and localization
problems of linear diffusion filtering (hence Tt nonlinear).
This Perona–Malik scheme appears to be the finite difference
discretization of a nonlinear PDE not followed by a theory
of well-posedness. It was known that, despite its success at
its intended purpose, the scheme is very sensitive to noise
and the choice of parameters such as the resolution of the
digital image—a fact intimately connected with the lack of

a continuum PDE theory. The work of Lions et al [13]
replaced the Perona–Malik scheme with one that has all the
desirable characteristics of the original, as well as a rigorously
established continuum limit. A scale space is an image
representation at a continuum of scales, embedding the image
into its family of gradually simplified versions [13]. The
practical implication is much more stable behavior with respect
to the presence of noise and different resolutions.

Computationally, solving the modified Perona–Malik
anisotropic diffusion equation, mainly following Rothe’s
approximation in time and the finite element method in space,
involves the PDE

∂ u/∂t − div(g(|∇Gσ ⊗ u|)∇u) = f (u0 − u),

with u(x, y, 0) = u0(x, y) (4)

together with zero Neumann boundary conditions and initial
condition representing the processed image. Here, g(s) tends
to 0 for s tending to infinity. It causes the selective smoothing
of the image regions and retention of the edges on which the
‘Gaussian gradient’ is large (Gσ is the smoothing kernel of
the convolution denoted by the operator ⊗ in equation (4)).
Such image analysis is included in the so-called nonlinear
scale-space theory.

2.3. Variational PDE models

The variational approach to the image denoising problem
seeks to exhibit the ‘restored’ image as the minimizer of a
functional defined over the space of all images. The first task
is clearly to decide which space of functions to take images
from. For example, Sobolev spaces are ill-suited for this
purpose since their elements cannot have discontinuities. Such
discontinuities need to be allowed because one of the most
important features of images, namely ‘edges’, corresponds
squarely to this type of behavior.

A variational approach has been proposed [5] for the
solution of the image segmentation problem, where the
segmentation is obtained by finding the minimizer of an energy
function, given an original image. The correct space of
functions for energy minimization turns out to be a subset of
functions of bounded variations. The Mumford–Shah model
is a non-typical variational problem, whose analysis led to a
wealth of new mathematics. Numerical implementation of
the Mumford–Shah model has also been a subject of intense
mathematical research. The energy is very difficult to handle
since it requires minimization over subsets. The work of
Ambrosio and Tortorelli [1] has rigorously shown how to
approximate it in the sense of Gamma convergence by elliptic
functionals. In a different vein, the work of Chan and Vese
[1] has shown how the level set method of Osher and Sethian
can be effectively utilized in the minimization of these types
of energies.

Another successful example of the variational and PDE
methods is the TV minimization [6]. An improved version of
the latter technique that is based on the connectivity principle
is the curvature-driven diffusion (CCD) inpainting scheme
[3, 14].
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3. Methods for anisotropic diffusion PDE numerical
solution and discretization

The numerical solution of PDEs has been dominated by FDM,
finite element methods (FEM) and finite volume methods
(FVM). These methods can be derived from the assumptions of
the local interpolation schemes. These methods require a mesh
to support the localized approximations. The construction of
a mesh in three or more dimensions is a non-trivial problem.
Typically with only these methods the function is continuous
across meshes, but not its partial derivatives.

In practice, only low-order approximations are used
because of the polynomial snaking problem. While higher
order schemes are necessary for more accurate approximations
of the spatial derivatives, they are not sufficient without
monotonicity constraints. Because of the low-order schemes
typically employed, the spatial truncation errors can only be
controlled by using progressively smaller meshes. The mesh
spacing, h, must be sufficiently fine to capture the functions of
the partial derivative behavior and to avoid unnecessarily large
amounts of numerical artifacts contaminating the solution.
Spectral methods while offering very high order spatial
schemes typically depend upon tensor product grids in higher
dimensions [15].

In the last decade the idea of using mesh-free methods for
the numerical solution of PDEs has received much attention
[16, 17] including RBF-based methods and wavelets [18, 19].
In this paper, the solutions offered by the proposed adaptive
anisotropic diffusion scheme are compared when the relevant
PDEs are numerically solved with the FDM method as well as
with the RBF mesh-free technique.

3.1. Solving PDEs with radial basis functions (RBFs)

The idea of numerically solving PDEs based on RBFs mostly
deals with elliptic problems, although some efforts have
been made to solve time-dependent parabolic or hyperbolic
problems. RBFs were first introduced to scattered data fitting
and to the numerical solution of PDEs [15]. This was done
in the form of globally supported RBFs and specifically of
multiquadrics (MQ) φ(r) =

√
r2 + c2 of thin plate splines

φ(r) = r2 log r , or Gaussians φ(r) = e−c2r2
, where r = ‖x‖

with c �= 0 a parameter.
For the solution of the scattered data fitting problem [20]

an RBF-based expansion of the form

s(x) =
n∑

j=1

cjφ(‖x − xj‖2),

is involved and then the coefficients cj are determined by
satisfying the interpolation conditions

s(xi) = f (xi), i = 1, 2, . . . , n,

where f is a known function that generates the data to be
fitted. There exists a trade-off that the spectral convergence is
achieved at the cost of instability.

Galperin and Zheng [21] argue that all collocation
methods are intrinsically ill-conditioned. Ill-posed and
badly formulated problems can possess equivalent solutions

that represent physical reality despite the mathematical
nonexistence of an exact solution. Only Galperin, Pan and
Zheng [22] have used global optimization on a few limited
problems, with extraordinary results.

Although it is clear that the numerical solutions of
PDE, ODE, integral and integro-differential equations would
greatly benefit from the global optimization, the major
implementation impediment is the lack of robust multi-
parameter global optimization software. Unfortunately,
gradient-based methods are ill-conditioned, and converge
rapidly only under certain restricted conditions. In addition,
gradient methods pose the risk of being trapped in a local
minimum, rather than in the global minimum. Ferrari and
Galperin [23] have published a software package of a fast
one-dimensional adaptive cubic algorithm. It is hopeful that
fast multi-dimensional global optimization software packages
would be developed soon.

Therefore, there are serious limitations to the applicability
of global methods, and for large dimension problems the
solution should employ localization schemes [24]. The
localization of the basis functions leads to locally (compactly)
supported RBFs. One of the most popular compactly
supported RBFs has been proposed by Wendland [24] to use
compactly supported RBFs in the context of scattered data
fitting or to solve PDEs; a hierarchical strategy has been
developed leading to a multilevel algorithm, in which residuals
are fitted iteratively and are used to update the solution.
More recently, co-volume methods for solving PDE-based
diffusion models for noise removal, with applications to 3D
scanners and object recognition, have been proposed [28]. The
discretization of these PDE models is numerically improved
by using a higher order optimal recovery based on RBFs.
However, RBF-based discretization of PDE models in image
processing is a research area that still has not been investigated
in depth, especially for image denoising.

4. The proposed adaptive anisotropic diffusion edge
preserving PDE model

The nonlinear PDE equation of Perona and Malik [4] is
considered,

∂u/∂t = div(g(|∇u|)∇u), with u(x, y, 0) = u0(x, y)

(5)

as well as the modified anisotropic diffusion model, proposed
in [13] to remove the inconsistencies of the Perona–Malik
model,

∂ u/∂t = div(g(|∇Gσ ⊗ u|)∇u),

with u(x, y, 0) = u0(x, y). (6)

The latter anisotropic diffusion model is a special case of
equation (4) and it is the model investigated and improved
by incorporating an adaptive scheme for estimating its
parameters. In the above equations (5) and (6), g is a smooth
non-increasing function with g(0) = 1, g(s) � 0 and lim g(s) =
0 for s → ∞. These properties of g function show that the
diffusion is a conditional process such that when |∇u| is large,
the diffusion is small and the position of edges is kept. If,
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on the other hand, |∇u| is small, then the diffusion is large and
the image in the neighborhood of the point (x, y) is smoothed.
The g functions most widely used are

g(s) = 1/(1 + s2/λ2) and g(s) = 1/eλs . (7)

The former of these functions is employed in this paper, that
is, g(s) = 1/(1 + s2/λ2) in the proposed adaptive anisotropic
diffusion model. The parameter of this model is, therefore,
the coefficient λ, and an adaptive scheme is suggested for its
estimation to improve the corresponding anisotropic diffusion
model in terms of better preserving edges.

In the proposed adaptive scheme, the coefficient λ(x, y) is
adaptive and could be defined as the inverse probability that the
point (x, y) belongs to an image u edge. If such a probability
p(x, y) is small and p(x, y) → 0, then the function g(s) takes
on its largest value and g(s) → 1. Therefore, the diffusion
increases. On the other hand, if p(x, y) → 1, then the function
g(s) takes on smaller values and the diffusion is small. That
is, a definition of λ(x, y) = 1/p(x, y) is reasonable in terms
of achieving an edge-preserving diffusion model. Such an
enhancement is important for the anisotropic diffusion model
since |∇u| values are only noisy estimates of edge existence,
being the only guidance for the diffusion process. Therefore,
the basic idea underlying the proposed adaptive scheme is that
edge preservation could be enhanced by incorporating more
guidance in the diffusion process with regard to edge detection.

To estimate p(x, y) in the proposed adaptive anisotropic
diffusion model, a two-stage methodology is involved. The
self-organizing feature map (SOM) of Kohonen [25] is the first
step while the Bayesian inference procedure is the second stage
performed in order to fine tune SOM probability estimates.

First, regarding SOM application for estimating edge
probabilities p(x, y), the image u(x, y,t) is considered for each
iteration t of the anisotropic diffusion PDE solution process,
and the next steps are followed.

(1) The N × N image u(x, y,t) is raster scanned by M ×
M sliding windows having central points (x, y). For
each such point (x, y) its gradient |∇u|(x,y) is estimated
to become an input characteristic of the SOM network.
The output SOM map consists of K × K processing
elements, that is, K × K codebook vectors of M × M
dimensions each. The goal of SOM is to cluster |∇u|(x,y)

space in edge and nonedge points providing a measure
of such a probability. SOM is known as a topology-
preserving map [25], having the capability to cluster
input space keeping its probability distribution. It is
not known, however, how to extract such a posteriori
probability distribution measures from winning codebook
vectors. A posteriori probability estimation is known
only in multilayer perceptron (MLP) neural networks. In
the following it is demonstrated how a solution could be
provided for such a SOM network too.

(2) After the SOM map convergence process is finished
following the known Kohonen algorithm [25], its
codebook vectors encode the topological space of
the |∇u|(x,y) domain by preserving the input vectors’
probability distribution and are estimated as the weight
vectors associated with the SOM map. Let Cb1(I1×1, . . . .,

Figure 1. The cross-neighborhood used in the SOM network.

Ix ,y, . . . IM×M ), Cb2(I1×1, . . . .,Ix ,y, . . . IM×M ),. CbK×K

(I1×1, . . . .,Ix ,y, . . . IM×M ) stand for these codebook
vectors and (I1×1, . . . .,Ix ,y, . . . IM×M ) for the inputs of the
SOM network, belonging to the M × M sliding window
on the |∇u|(x,y) domain. (x, y) is the central point of this
window with the input value |∇u|(x,y).

(3) The SOM weight Cbwin(Ix ,y) corresponding to the
winning element/codebook Cbwin, when an input vector
(I1×1, . . . .,Ix ,y, . . . IM×M ) is presented to the network, is
a measure of |∇u|(x,y) in terms of topology-preserving
clustering. It could be considered as a good representative
of |∇u|(x,y), with its noisy characteristics removed. This
follows from the encoding properties of SOM [25]
codebook vectors and it is important to derive a less
noisy estimate of |∇u|(x,y), since such an estimate only
offers the capability to identify edge areas. Therefore,
if |Cbwin(Ix ,y)| is large with respect to all other Cbr (Ix ,y)
codebook vectors weights, then it is more probable that
(x, y) belongs to an edge area.

(4) Therefore, if

p 0(x, y) = [Cbr(Ix,y) − min{Cbr(Ix,y)}]/
[max{Cbr(Ix,y)} − min{Cbr(Ix,y)}], (8)

then p0(x, y) could be a measure of the probability that (x, y)
belongs to an edge area of image u(x, y). That is, p0(x, y) over
the image space u(x, y, t) is an initial estimate of the probability
distribution p(x, y) of edge areas in the image space u(x, y). It
has been demonstrated, by the above-described scheme, how
a SOM network could provide a measure of the probability
distribution of its input space.

Regarding the second stage of the proposed adaptive
anisotropic diffusion scheme, it is based on Bayesian inference
[25]. The proposed algorithm amounts to minimizing
the following objective function, and it is similar to the one
proposed in [26]:

| P0 − P|2/(2σ 2) + (3/2)
∑

x,y
log{α2 + (x�xy)

2 + (y�xy)
2}
(9)

with regard to P, which is the unknown probability distribution
to be reconstructed from the initial estimates p0(x, y) given
in P0. The first term comes from the likelihood term and
the second one from the prior knowledge term of the well-
known Bayesian formulation. The second term symbols arise
from the imposed 2D Lorentzian prior knowledge. x�xy and
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Figure 2. A gray-scale MRI image and its edges detected by applying a Sobel filter to the original image. There is no Gaussian noise
applied.

Table 1. Quantitative results with regards to reconstruction/filtering performance of the various methodologies involved, under different
Gaussian noise levels imposed on the original images. 45 images randomly chosen from the collection of [27] have been used.

Discretization scheme/numerical approximation method

Proposed adaptive
parameter estimation
anisotropic diffusion
PDE model

Standard modified
Perona–Malik
anisotropic diffusion
PDE model of
equation (6)

Gaussian noise level (SNR = 50 dB) Mean SSE Mean dB Mean SSE Mean dB
FDM (Crank–Nicholson) 2.45E3 19.60 3.62E3 16.26
RBF mesh-free (Wendland [24]) 2.31E3 20.56 3.41E3 16.97

Gaussian noise level (SNR = 20 dB) Mean SSE Mean dB Mean SSE Mean dB
FDM (Crank–Nicholson) 4.08E3 14.30 4.82E3 12.22
RBF mesh-free (Wendland [24]) 3.52E3 15.24 4.11E3 13.1

Gaussian noise level (SNR = 10 dB) Mean SSE Mean dB Mean SSE Mean dB
FDM (Crank–Nicholson) 4.96E3 13.60 5.72E3 11.73
RBF mesh-free (Wendland [24]) 4.67E3 14.1 5.53E3 12.68

y�xy are the probability differences in the x- and y-directions
respectively and α is a Lorentz distribution-width parameter.
If it is assumed that PP(p) is the prior, which imposes prior
knowledge conditions about the edge probability distribution
on the reconstruction algorithm, then the second term of (9)
comes as follows.

The starting point is that PP(p) could be obviously
expanded into PP(p) = PP(p0,0) PP(p1,0|p0,0) PP(p2,0|p0,0,
p1,0) . . . . If it is assumed that the probability px ,y depends only
on its left neighbor (px−1,y), then the previous PP(p) expansion
takes on the form PP(p) = �(x,y) PP(px ,y|px−1,y), provided
that the boundaries are ignored. Next, it is considered that
PP(px ,y| px−1,y) is a function only of the difference between
the corresponding probabilities. This difference is written
down as x�xy = px ,y – px−1,y. It has been shown that the
probability density function of x�xy is Lorentzian shaped (see
[26]). These assumptions and calculations lead directly to
compute the prior knowledge in the Bayesian reconstruction
approach as in (9) and the herein proposed objective function
of (9) is minimized using the conjugate gradients optimization
methodology.

Therefore, during the first stage of the proposed scheme
the initial estimates p0(x, y) of the edge area probability
distribution are obtained and during the second stage the edge

probability distribution space p(x, y) is reconstructed. In the
following, λ(x, y) could be defined as λ(x, y) = 1/p(x, y), as
already mentioned. This final step concludes the proposed
adaptive parameter estimation scheme as a novel modification
of the anisotropic diffusion model under investigation.

5. Experimental evaluation of the proposed adaptive
diffusion model

An experimental study has been conducted in order to
evaluate the proposed adaptive anisotropic diffusion PDE
model described in section 4 as compared to the standard
modified Perona–Malik anisotropic diffusion PDE model [13]
of equation (6), and numerically solved using the discretization
schemes outlined in section 3 above, namely, the finite
difference method (involving the Crank–Nicholson scheme)
as well as the RBF mesh-free technique (involving the scheme
proposed by Wendland [24]). All simulations have been
performed in the MATLAB version 6.5 system.

The methods involved have been applied to an MRI image
database which has been downloaded from the Internet [27].
These images have 256 by 256 dimensions and the present
difficulties for image analysis are due to their fine edges. This
is why MRI image databases have been selected as the basis
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(a) (b)

(c) (d)

Figure 3. The edges of the MRI image of figure 2 (and the
corresponding reconstructions), reconstructed by applying: (a)
proposed adaptive anisotropic diffusion model in the original image
under noise level with SNR = 50 dB; (b) standard modified
Perona–Malik anisotropic diffusion model of equation (6) in the
original image under noise level with SNR = 50 dB; (c) proposed
adaptive anisotropic diffusion model in the original image under
noise level with SNR = 10 dB; (d) standard modified Perona–Malik
anisotropic diffusion model of equation (6) in the original image
under noise level with SNR = 10 dB. In all these cases, the FDM
method of the Crank–Nicholson scheme is used to numerically
approximate the PDE models, and the edges are detected using a
standard Sobel filter on the best outcome of each corresponding
PDE model, and a standard contour following method.

of this experimental study. The sliding window used by the
SOM network in the proposed adaptive scheme has 5 × 5
dimensions, while the neighborhood used in all numerical
approximations is the usual cross-neighborhood of four points
as shown next.

Concerning the measures involved to quantitatively
compare the performance of the various models in terms
of image reconstruction/filtering, the usually used sum of
squared errors (SSE) between the original MRI image pixel
intensities and the corresponding pixel intensities of the
reconstructed/filtered image has been employed as well as
the RMS error in dB [26].

The quantitative results obtained by the different PDE
models involved are outlined in table 1. These results
show a superiority of the proposed adaptive parameter
estimation anisotropic diffusion PDE model in terms of image
reconstruction performance. The results illustrated in table 1
have been derived using 45 images randomly selected from
the above-mentioned database. The best mean values of the
reconstruction errors obtained from this sample of images,
after a certain number of iterations in the numerical solution,
different for each PDE model (so as to obtain best performance
for each model) are reported herein under different noise levels.

The above results show that the proposed anisotropic
diffusion scheme presents better performance compared to
the standard anisotropic diffusion model (modified Perona–
Malik model of equation (6)), in terms of image reconstruction
under different noise levels and under different discretization
schemes. Moreover, qualitative results obtained involving the
methods outlined in table 1, regarding edge preservation, are
outlined in figure 3.

Figure 2 presents an MRI image and its edges detected
involving the standard Sobel algorithm, under no noise
conditions.

Figure 3 clearly illustrates the edge preservation properties
of the proposed PDE model when its results are compared with
the ones obtained by applying the standard anisotropic PDE
model of equation (6).

6. Conclusions

A novel methodology is presented in this paper for improving
anisotropic diffusion PDE models, based on the Perona–
Malik equation, suggesting an image-analysis-derived scheme
to adaptively estimate the parameters of the regularizing
function involved in this equation. The goal of such a new
adaptive diffusion scheme is to better preserve edges when
the anisotropic diffusion PDE models are applied to image
enhancement. The proposed adaptive parameter estimation in
the anisotropic diffusion PDE model involves self-organizing
maps and Bayesian inference to define edge probabilities
more accurately. As illustrated in the extensive experimental
study conducted, the proposed modifications achieve capturing
not only of simple edges but also of the more difficult
textural edges. In the context of PDE models application
to image processing of such adaptive schemes is closely
related to the discrete image representation problem and
the investigation of more suitable discretization algorithms
using constraints derived from image processing theory. It
is necessary to investigate, from an engineering perspective,
how to incorporate sophisticated image processing algorithms
in the discretization schemes used in the numerical analysis
of continuous PDE models when applied to image processing
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to achieve good results. The proposed adaptive anisotropic
diffusion model illustrates these concepts in a set of MRI
images, although it is a first step in the improvement of
anisotropic diffusion PDE models of Perona–Malik type.
Another important step might be the application of more
robust discretization schemes, like the MD-WDF approach in
numerically approximating the involved PDEs [29]. Finally,
since the proposed scheme increases computational needs, it is
important to investigate faster algorithms in achieving similar
edge preserving results.
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