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Abstract

We consider the following fundamental parallel machines scheduling problem in which the
input consists of n jobs to be scheduled on a set of identical machines of bounded capacity g,
which is the maximal number of jobs that can be processed simultaneously by a single machine.
Each job is associated with a time interval during which it should be processed from start to
end (and in one of our extensions it has to be scheduled also in a continuous number of days;
this corresponds to a two-dimensional variant of the problem). We consider two versions of the
problem. In the scheduling minimization version the goal is to minimize the total busy time of
machines used to schedule all jobs. In the resource allocation maximization version the goal is
to maximize the number of jobs that can be scheduled for processing under a budget constraint
given in terms of busy time. This is the first study of the maximization version of the problem.
The minimization problem is known to be NP-Hard, thus the maximization problem is also
NP-Hard. We consider various special cases, identify cases where an optimal solution can be
computed in polynomial time, and mainly provide constant factor approximation algorithms
for both minimization and maximization problems. Some of our results improve upon the best
known results for this job scheduling problem. Our study has applications in energy-aware
scheduling, cloud computing, switching cost optimization as well as wavelength assignments in
optical networks.
Keywords: Interval scheduling, busy time, resource allocation, approximation algorithms.

1 Introduction

Problem Statement: Job scheduling on parallel machines has been widely studied (see, e.g., the
surveys in [5, 20]). In particular, much attention was given to interval scheduling [19], where jobs
are given as intervals on the real line, each representing the time interval during which a job should
be processed; each job has to be processed on some machine, and it is commonly assumed that a
machine can process a single job at any given time.

In this paper we consider interval scheduling with bounded parallelism. Formally, the input is
a set of n jobs J = {J1, . . . , Jn}. Each job, Jj , is associated with an interval [sj, cj ] during which
it should be processed. Also, given is the parallelism parameter, or capacity g ≥ 1, which is the
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maximal number of jobs that can be processed simultaneously by a single machine. At any given
point t in time a machine Mi is said to be busy if there is at least one job Jj scheduled to it such
that t ∈ [sj , cj ], otherwise Mi is said to be idle at time t. We call the time period in which a
machine Mi is busy its busy period, and denote its length by busyi. In this work we study two
optimization problems MinBusy and MaxThroughput. In MinBusy we focus on minimizing
the total busy times over all machines, denoted by

∑

i busyi. Note that the number of machines
used is part of the output. A solution that minimizes the total busy time may not be optimal in
terms of the number of machines used. In MaxThroughput, the resource allocation version of
the problem, we are given the total machine busy time T and the objective is to maximize the
number of scheduled jobs subject to T .

The input to our scheduling problems can be viewed as an interval graph, which is the intersec-
tion graph of a set of intervals on the real line. It has one vertex for each interval in the set, and
an edge between every pair of vertices corresponding to intersecting intervals. In our setting, each
vertex corresponds to a job, and there is an edge between two jobs whose processing times overlap.

Applications: Our scheduling problems can be directly interpreted as energy-aware scheduling

problems in cluster systems. These problems focus on minimizing the energy consumption of a set
of machines (see, e.g., [27] and the references therein) which can be measured by the amount of
time the machines are switched on and processing, i.e. busy time. It is common that a machine
has a capacity on the number of jobs that can be processed at any given time, like in our problems.

Another application of the studied problems comes from cloud computing (see, e.g., [23,
26]). Commercial cloud computing provides computing resources with specified computing units.
Clients with computation tasks require certain computing units of computing resources over a
period of time. Clients are charged in proportion to the total amount of computing time of the
computing resource. The clients would like to make the most of their money, so they would
minimize the charges they have to pay (i.e. minimize the amount of computing time used) or
maximize the amount of tasks they can compute with a budget on the charge. This is in analogy to
our minimization and maximization problems, respectively. The simple scenario where each client
requires the same amount of computing resources corresponds to our setting where the machines
are identical and each job requires the same proportion of their capacity.

Our study is also motivated by problems in optical network design (see, e.g., [9, 11, 12]).
Optical wavelength-division multiplexing (WDM) is the leading technology that enables us to deal
with the enormous growth of traffic in communication networks, like the Internet. In an optical
network, communications between nodes are realized by lightpaths, which are assigned a certain
color. As the energy of the signal along a lightpath decreases, regenerators are needed and the
hardware cost is proportional to the length of the lightpaths. Furthermore, connections can be
“groomed” so that a regenerator can be shared by at most g connections, i.e. at any node, at
most g connections can have the same color sharing the regenerator there. This is known as
traffic grooming. The regenerator optimization problem on the path topology is in analogy to our
scheduling problem in the sense that the regenerator cost measured in terms of length of lightpaths
corresponds to the busy time while grooming corresponds to the machine capacity.

Another application concerning optical networks is wavelength assignment (see, e.g., [28]).
Given a set of connections along the line, each needs to be assigned a wavelength. A fiber can carry
at most W wavelengths. Two overlapping connections carried by the same fiber cannot share a
wavelength. The wavelength assignment problem is in analogy to our scheduling problem in the
sense that the length of fiber used corresponds to the busy time while the amount W of wavelengths
that the optical fiber can carry corresponds to the machine capacity.

Related Work: Some of the earlier work on interval scheduling considers the problem of scheduling
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a valid subset of jobs whose total weight is maximized, i.e., a maximum weight independent set (see,
e.g., [3] and the comprehensive surveys in [17,18]). There is wide literature on real-time scheduling,
where each job has to be processed on some machine during a time interval between its release
time and due date. There are also studies on real-time scheduling, where each machine has some
capacity and each job has a demand of a certain machine capacity; however, to the best of our
knowledge, all of this prior work refers to different flavor of the model than the one presented here
(see, e.g., [3,6,8,24]). It is also common to consider both minimization and maximization versions
of the same scheduling problem (see e.g., [4]), but in that model the machines have unit capacity.

Our study also relates to batch scheduling of conflicting jobs, where the conflicts are given as
an interval graph. In p-batch scheduling model (see, e.g., Chapter 8 in [5]) a set of jobs can be
processed jointly. All the jobs in the batch start simultaneously, and the completion time of a batch
is the last completion time of any job in the batch. (For known results on batch scheduling, see,
e.g., [5].) Our scheduling problem differs from batch scheduling in several aspects. In our problems,
each machine can process g jobs simultaneously, for some g ≥ 1, the jobs need not be partitioned to
batches, i.e., each job can start at different time. Also, while in known batch scheduling problems
the set of machines is given, we assume that any number of machines can be used for the solution.
Finally, while common measures in batch scheduling refer to the maximum completion time of a
batch, or a function of the completion times of the jobs, we consider the total busy times of the
machines.

Previous Work: The complexity of MinBusy was studied in [28], showing that the problem is
NP-Hard already for g = 2. The work [13] considered the problem where jobs are given as intervals
on the line with unit demand on capacity. For this version of the problem it gives a 4-approximation
algorithm for general inputs, and better bounds for some subclasses of inputs. In particular, 2-
approximation algorithms were given for instances where no job interval is properly contained
in another, and instances where any two job intervals intersect, i.e., the input forms a clique (see
same approximation but different algorithm and analysis in [14]). The work [16] extends the results
of [13], considering the case where each job has a different demand on machine capacity.

The minimization problem MinBusy studied in this paper is related to the problems studied
in [13, 16]. As will be discussed in Section 5, some of our results directly improve upon existing
results for these scheduling problems. As for the maximization problem, we are not aware of works
that present and study this problem.

Our Contribution: As mentioned above MinBusy is NP-Hard already for g = 2. We consider two
special cases (clique instances, where all jobs share a common time, and proper instances, where
no job interval is properly contained in another one). We also consider a two-dimensional variant
that each job is to be processed during given continuous hours over some given continuous days.
We show the following results:

• A polynomial-time algorithm for clique instances when g = 2 (Lemma 3.1).

• A
g·Hg

Hg+g−1-approximation algorithm for clique instances, where Hg is the g-th harmonic num-

ber, for any fixed value of g (Lemma 3.2).

• A (2− 1/g)-approximation algorithm for proper instances (Theorem 3.1).

• A polynomial-time algorithm for proper clique instances, based on an interesting combinato-
rial property of optimal solutions (Theorem 3.2).

• For the scheduling of 2-dimensional intervals, we define γk, k ∈ {1, 2} to be the ratio be-
tween the longest and the shortest interval on dimension k. We present a min(g, 13.82 ·
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log min(γ1, γ2) +O(1))-approximation algorithm (Theorem 3.3).

We show that MaxThroughput is NP-Hard whenever MinBusy is NP-Hard. For
MaxThroughput we show the following:

• A 4-approximation algorithm for clique instances for any g (Theorem 4.1).

• A polynomial-time algorithm for proper clique instances for any g (Theorem 4.2).

It turns out the algorithms and analysis of the results for MaxThroughput are more involved
than those for MinBusy, apparently due to an inherent hardness of the former.

Organization of the paper: In Section 2 we present some preliminaries. MinBusy is studied in
Section 3, and MaxThroughput in Section 4. In Section 5 we first summarize our results, then
we discuss extensions and further research directions.

2 Notations and Preliminaries

Definitions: Unless otherwise specified, we use lower case letters for indices and specific times, and

upper case letters for jobs, time intervals and machines. Moreover, we use calligraphic characters
for sets of jobs, intervals and machines.

Definition 2.1 Given a time interval I = [sI , cI ] with start time sI and completion time cI , the
length of I is len(I) = cI − sI . This extends to a set I of intervals; namely, the length of I is
len(I) =

∑

I∈I len(I).

Definition 2.2 For a set I of intervals we define SPAN(I)
def
= ∪I and span(I)

def
= len(SPAN(I))

and we refer to both of them as the span of a set of intervals, when the intention is clear from
the context. Two intervals are said to be overlapping if their intersection contains more than one
point.

Note that span(I) ≤ len(I) and equality holds if and only if I is a set of pairwise non-overlapping
intervals.

A job J is given by a time interval during which it is supposed to be processed. We use jobs
and time intervals interchangeably throughout the paper.

As we do not aim at optimizing the number of machines, we assume that the given set M =
{M1,M2, . . .} of machines is infinite.

A (partial) schedule, is a (partial) function from the set J of jobs to the set M of machines.
Given a parallelism parameter g, a schedule is valid if every machine processes at most g jobs at any
given time. In other words every machine has g threads of execution, each of which can process at
most one job at any given time. In this definition a job [sJ , cJ ] is considered as not being processed
at time cJ . For instance, a machine processing jobs [1, 2], [2, 3], [1, 3] is considered to be processing
two jobs during the interval [1, 3] including time 2. Note that this is consistent with the definition
of the term overlapping, and equivalent to saying that the intervals do not contain their completion
time, i.e. are half-open intervals.

Given a schedule s : J → M, we denote by J s
i the set of jobs assigned to machine Mi by

schedule s, i.e. J s
i

def
= s−1(Mi). The cost of machine Mi in this schedule is the length of its busy

interval, i.e. busysi
def
= span(J s

i ).
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Given a partial schedule s, we denote the set of jobs scheduled by it as J s def
= ∪iJ

s
i . The

cost costs of s is the sum
∑

i busy
s
i of the busy times of all machines. The throughput tputs of s is

def
= |J s|. When there is no ambiguity for the schedule under consideration, we omit the superscripts
(e.g. we use Ji as a shorthand for J s

i , etc.).
We consider two problem variants: MinBusy is the problem of minimizing the total cost of

scheduling all the jobs, and MaxThroughput is the problem of maximizing the throughput of
the schedule subject to a budget given in terms of total busy time. These two problems are defined
as follows:

MinBusy

Input: (J , g), where J is a set of jobs (i.e. time intervals), and g is
the parallelism parameter.
Output: A valid schedule s : J →M.
Objective: Minimize costs.

MaxThroughput

Input: (J , g, T ) where J is a set of jobs, g is the parallelism parameter
and T is a budget given in terms of total busy time.
Output: A valid partial schedule s : J →M such that costs ≤ T .
Objective: Maximize tputs.

Without loss of generality we assume that each machine is busy along a contiguous time interval,
i.e. that SPAN(J s

i ) is an interval. Otherwise we can replace the machine with several machines
that satisfy the assumption, changing neither the feasibility nor the total busy time of the schedule.

For MinBusy we assume that the interval graph induced by the jobs is connected; otherwise,
the problem can be solved by considering each connected component separately.
Special cases: A set of jobs J is a clique set if there is a time t common to all the jobs in J .

It is known that this happens if and only if the corresponding interval graph is a clique. When
J is a clique set we term the corresponding instance ((J , g) or (J , g, T )) a clique instance. A
clique instance in which all jobs have the same start time or the same completion time is termed a
one-sided edge instance.

A set of jobs J is proper if no job in the set properly includes another. Note that in this case
for two jobs J, J ′ ∈ J we have sJ ≤ sJ ′ if and only if cJ ≤ cJ ′ . We denote this fact as J ≤ J ′

and without loss of generality we assume J1 ≤ J2 ≤ . . . ≤ Jn. When J is proper we term the
corresponding instance a proper instance.
Approximation algorithms: We consider polynomial-time exact and approximation algorithms

and analyze their worst case performance. Given an instance of MinBusy or MaxThroughput,
we denote by s∗ an optimal schedule of this instance. The cost of s∗ is denoted by cost∗ and its
throughput by tput∗. An algorithm A for MinBusy is a ρ-approximation for ρ ≥ 1, if for any
instance the cost of the schedule returned by it is at most ρ · cost∗. For MaxThroughput, A is a
ρ-approximation for ρ ≥ 1 if for any instance the throughput of the schedule returned by it is at
least (1/ρ) · tput∗.
Basic observations: The next observation gives two immediate lower bounds for the cost of any

solution of MinBusy.

Observation 2.1 For any instance (J , g) of MinBusy and a valid schedule s for it the following
bounds hold:
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• The parallelism bound: costs ≥ len(J )
g

.

• The span bound: costs ≥ span(J ).

• The length bound: costs ≤ len(J ).

The parallelism bound holds since g is the maximum parallelism that can be achieved in any
solution. The span bound holds since at any time t ∈ ∪J at least one machine is working. The
length bound holds because at any time that some machine is busy at least one job is being
processed.
By the parallelism bound and length bound we conclude

Proposition 2.1 Any schedule (algorithm) is a g-approximation for MinBusy.

Proof: costs ≤ len(J ) ≤ g · cost∗.
�

We also observe that MaxThroughput is NP-Hard whenever MinBusy is NP-Hard.

Proposition 2.2 There is a polynomial-time reduction from MinBusy to MaxThroughput.

Proof: Given an instance (J , g) of MinBusy where the values {sJ , cJ : J ∈ J} are rational num-
bers p1/q1, p2/q2, · · · , we first multiply them by

∏

qi so that all the values are integers. Note that
the size of the input remains polynomial in the original size because every number qi appears in
at most 2 |J | − 1 numbers of the modified instance. We can now perform a binary search between
the lower bound len(J )/g of cost∗ and its upper bound len(J ). At each iteration we set T to be
equal to the guessed value of cost∗ and solve the instance (J , g, T ) of MaxThroughput. In the
next iteration we guess a smaller value cost∗ if and only if tput∗(J , g, T ) ≥ tput(J ), i.e. all the jobs
can be scheduled within the guessed budget. We stop when the difference between the last feasible
cost guessed and the last infeasible cost guessed is at most 1.

�

We note that the hardness of MaxThroughput with respect to MinBusy stems from the fact
that one has to decide which subset of the jobs to schedule.

Proposition 2.3 If there is a polynomial-time algorithm solving MinBusy optimally and a
polynomial-time computable family 1 X ⊆ 2J of subsets of J with at least one set J s∗ ∈ X
corresponding to some optimal schedule s∗, then MaxThroughput can be solved optimally.

Proof: Given an instance (J , g, T ) of MaxThroughput, for each set J ′ ∈ X solve the instance
(J ′, g) of MinBusy. Among all sets J ′ with cost∗(J ′) ≤ T choose one with maximum throughput
and return the schedule s returned for this instance. Leave the jobs J \ J ′ unscheduled.

�

For the schedule s̄ that assigns every job to a different machine, i.e. s̄(Ji) = Mi we have
costs̄ = len(J ). For any schedule s we define the saving savs of s (in cost, relative to s̄) achieved by

s as savs
def
= len(J )− costs. As far as optimal schedules are concerned MinBusy can equivalently

be reformulated as the problem of maximizing savs. However when sub-optimal schedules are
considered, the two definitions differ in terms of approximation ratio of a schedule. The following
Lemma relates these ratios.

1Also of polynomial size. This assumption holds whenever the set is represented by an explicit list of its elements.
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Lemma 2.1 If a schedule is a ρ-approximation to the saving maximization problem for some ρ ≥ 1,
then it is a (1/ρ+ (1− 1/ρ) g)-approximation to MinBusy.

Proof: Let ρ′ = 1/ρ, and let s be a schedule satisfying our assumption, i.e. savs ≥ ρ′ · sav∗. We
have

costs − cost∗ = sav∗ − savs ≤ (1− ρ′)sav∗

= (1− ρ′)(len(J )− cost∗)

= (1− ρ′)len(J ) + (ρ′ − 1)cost∗

thus

costs ≤ (1− ρ′)len(J ) + ρ′ · cost∗

≤ (1− ρ′)g · cost∗ + ρ′ · cost∗

=
(

ρ′ + (1− ρ′)g
)

cost∗

where the second inequality follows from the parallelism bound.
�

3 Cost Minimization

In this section we study special cases, namely clique instances, proper instances and proper clique
instances (in Sections 3.1, 3.2 and 3.3, respectively). We also investigate a generalization of the
problem to the two dimensional case, i.e. where the jobs are given with rectangular intervals
(Section 3.4).

3.1 Clique Instances

In this section we consider clique instances. We show (in Lemma 3.1) a polynomial-time algorithm
for the case g = 2 and (in Lemma 3.2) an approximation algorithm with a better ratio for small
values of g (improving upon the 2-approximation algorithm of [13] for these cases). We first observe
the following for one-sided clique instances.

Observation 3.1 For one-sided clique instances of MinBusy an optimal solution can be obtained
by sorting the jobs in non-increasing order of their lengths and grouping them in groups of g in this
order (where the last group possibly contains less than g jobs).

Consider the edge weighted graph Gm = (J , Em) where eij = {Ji, Jj} ∈ Em if the jobs Ji and
Jj overlap. The weight of eij is the size of the overlap. When the parallelism parameter is g = 2, in
any valid schedule at most two jobs can share a machine. In other words, a schedule corresponds
to a matching in the graph Gm where savs is equal the weight of the matching. Therefore the
minimization of costs is equivalent to the maximization of savs, i.e the weight of the matching. As
maximum weighted matching is well known to be solvable in polynomial-time, we conclude

Lemma 3.1 There exists a polynomial-time algorithm for clique instances of MinBusy when g =
2.

Using a similar argument as in Lemma 3.1, the MinBusy problem is equivalent to g-dimensional

weighted matching, which admits a 2(g+1)
3 -approximation [1]. By Lemma 2.1 this implies a 2g2−g+3

2(g+1) -
approximation for MinBusy. However using a direct approach we improve this result in the below
lemma.
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Lemma 3.2 For any fixed value of g, there is a
g·Hg

Hg+g−1-approximation algorithm for clique in-
stances of MinBusy, where Hg is the g-th harmonic number.

Proof: As we consider clique instances, a schedule s is valid if and only if for any machine Mi,
|J s

i | ≤ g. If we associate with each Q ⊆ J such that |Q| ≤ g a weight of span(Q), the problem
is equivalent to the problem of finding a minimum weight set cover of J with subsets of size at
most g. As g is fixed we can calculate the weights of all possible subsets and run the well-known
Hg-approximation algorithm for set cover.

We can improve the result using the parallelism bound of PB = len(J )/g. We modify the
costs of the sets, so that they reflect the excess cost from this lower bound. Formally, for each
Q ⊆ J we assign weight(Q) = span(Q) − len(Q)/g. The weight corresponding to a schedule s is
weight(s) =

∑

i (span(J
s
i )− len(J s

i )/g) =
∑

i span(J
s
i )− len(J )/g = costs−PB. For the schedule

s returned by the algorithm we have

weight(s) ≤ Hg · weight(s
∗)

costs − PB ≤ Hgcost
∗ −Hg · PB

costs ≤ Hgcost
∗ − (Hg − 1) · PB (1)

and by the length bound, we have

costs ≤ len(J ) = g · PB . (2)

We choose 0 ≤ ρ ≤ 1, satisfying ρ(Hg − 1) = (1 − ρ)g, and multiply inequality (1) by ρ, and
inequality (2) by 1− ρ. Summing up the resulting inequalities we get

costs ≤ ρ ·Hg · cost
∗

Since ρ = g
Hg+g−1 , the algorithm is a

g·Hg

Hg+g−1 -approximation.
�

It can be verified taking the derivative with respect to g, that the function
g·Hg

Hg+g−1 is monoton-
ically increasing. The value of the function is less than 2 for g ≤ 6.

Note that the algorithm used in the last lemma is another exact algorithm for g = 2, since
the set cover problem can be solved optimally when the sizes of the sets are at most 2. However,
we have chosen to present both algorithms (lemmata 3.1 and 3.2) as they are based on different
techniques and therefore might be extended in different directions to solve different extensions of
the problem.

3.2 Proper Instances

In this section we present the algorithm BestCut and show that it is a (2 − 1/g)-approximation
for proper instances, thus improving upon the 2-approximation algorithm presented in [13]. Recall
that we assume without loss of generality that a) the (interval graph corresponding to the) instance
is connected, and b) J1 ≤ J2 ≤ ... ≤ Jn, i.e. the sequence of the jobs’ start times is non-decreasing.
The algorithm calculates g valid solutions s1, . . . , sg and returns the best one. The solutions are
valid because in each solution si, every machine j is assigned the set J i

j of at most g jobs. Moreover,
every machine except possibly the first and last machines is assigned exactly g jobs.

Theorem 3.1 Algorithm BestCut is a (2−1/g)-approximation for proper instances of MinBusy.
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Algorithm 1 BestCut(J , g)

1: for i = 1 to g do

2: J i
0 = {J1, . . . , Ji}; . J i

j is the set of jobs to be assigned to machine j in schedule i.
3: for j = 1 to b(|J | − 1)/gc do
4: J i

j =
{

Ji+g(j−1)+1, . . . , Ji+g·j

}

5: end for

6: si =
{

J i
0 ,J

i
1 , . . .

}

7: end for

8: s← argmin
{

costs
i
| s1, s2, . . . , sg

}

9: return s

Proof: For every i and j,
∣

∣

∣
J i
j

∣

∣

∣
≤ g, therefore the schedule s returned by the algorithm is valid.

We first give an upper bound to sav∗: by the span bound we have cost∗ ≥ span(J ). On the other

hand span(J ) = len(J ) −
∑|J |−1

k=1 |Ik|, where Ik is the overlap Jk ∩ Jk+1 of the jobs Jk and Jk+1.

Therefore cost∗ ≥ len(J )−
∑|J |−1

k=1 |Ik|, or equivalently

sav∗ ≤

|J |−1
∑

k=1

|Ik|. (3)

We proceed by calculating costs. For every 1 ≤ i ≤ g, costs
i
= span(J i

0) +
∑

j>0 span(J
i
j ).

Moreover span(J i
0) = len(J i

0)−
∑i−1

k=1 |Ik| and span(J i
j ) = len(J i

j )−
∑i+g·j−1

k=i+g(j−1)+1 |Ik|. Therefore

costs
i
= len(J )−

∑|J |−1
k=1 |Ik|+

∑

j≥0 |Ii+g·j|, or equivalently savs
i
=

∑|J |−1
k=1 |Ik| −

∑

j≥0 |Ii+g·j| .
Then

g
∑

i=1

savs
i

= g

|J |−1
∑

k=1

|Ik| −

g
∑

i=1

∑

j≥0

|Ii+g·j|

= (g − 1)

|J |−1
∑

k=1

|Ik|

savs = max
1≤i≤g

savs
i

≥
g − 1

g

|J |−1
∑

k=1

|Ik| (4)

Combining (3) and (4) we conclude that BestCut is a g
g−1 -approximation for the saving maxi-

mization problem. Substituting this for ρ in Lemma 2.1 we get the 2 − 1
g
approximation ratio for

MinBusy.
�

3.3 Proper Clique Instances

In this section we consider instances that are both clique instances and proper instances. We start
with a simple observation and some definitions regarding proper instances.

Property 3.1 Consider any two jobs Ji and Ji′ in a proper instance. If i ≤ i′, then we have
si ≤ si′ and ci ≤ ci′ .
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We say that a subset Q ⊆ J of jobs is consecutive in J (or simply consecutive) if Q =
{Ji, Ji+1, · · · , Jj} for some 1 ≤ i ≤ j ≤ n. We show in Lemma 3.3 that there is an optimal schedule
such that the jobs allocated to every machine are consecutive. To prove this lemma, we introduce
the notion of conflicting triple. Consider a schedule s such that there is at least one machine Mi

for which the subset Ji is not consecutive. Then there exists at least one triple of distinct jobs
Ja ≤ Jb ≤ Jc such that s(Ja) = s(Jc) = Mi and s(Jb) 6= Mi. We call such a triple of jobs a
conflicting triple 〈a, b, c〉 of s. A conflicting triple 〈a, b, c〉 is said to be maximal if Ja (resp. Jc) is
the leftmost (resp. rightmost) job scheduled on Mi in s. Furthermore, a conflicting triple 〈a, b, c〉 is
said to be a rightmost conflicting triple if there exists no conflicting triple 〈a′, b′, c′〉 of s such that
b′ > b. Note that a rightmost conflicting triple is not necessarily unique. We now state a property
of rightmost conflicting triples.

Property 3.2 Consider a schedule s and a rightmost conflicting triple 〈a, b, c〉 of s. (i) All jobs
from Jb+1, · · · , Jc are all scheduled on the same machine. (ii) The job Jb is the rightmost job
scheduled on machine s(Jb).

Proof: (i) If there is a job Jd with b < d < c that is scheduled on a machine different from s(Jc),
then 〈a, d, c〉 is a conflicting triple of s with d > b. This contradicts the fact that 〈a, b, c〉 is a
rightmost conflicting triple of s.

(ii) If there is a job Je with e > b that is scheduled on the same machine s(Jb), then either
〈a, e, c〉 is a conflicting triple (if b < e < c) or 〈b, c, e〉 is a conflicting triple (if e > c). In either case,
it contradicts the fact that 〈a, b, c〉 is a rightmost conflicting triple of s.

�

We now give a framework of the proof of Lemma 3.3. Suppose on the contrary that in every
optimal schedule there exists at least one conflicting triple. We consider an optimal schedule s∗ in
which the value b of a rightmost conflicting triple 〈a, b, c〉 is the smallest. That is, every optimal
schedule s′ has a rightmost conflicting triple 〈a′, b′, c′〉 with b′ ≥ b. We say that this optimal
schedule s∗ has a smallest rightmost conflicting triple. The proof works by constructing from s∗

another optimal schedule s∗∗ and showing that for every conflicting triple 〈a∗∗, b∗∗, c∗∗〉 of s∗∗, we
have b∗∗ < b. This contradicts the definition of s∗ being an optimal schedule having a smallest
rightmost conflicting triple.

Lemma 3.3 Given a proper clique instance of MinBusy, there is an optimal schedule such that
for every machine Mi, the subset Ji is consecutive in J .

Proof: Assume, by contradiction, that the lemma does not hold, i.e. that every optimal schedule
has a conflicting triple. Let s∗ be an optimal schedule with a smallest rightmost conflicting triple
〈a, b, c〉. Let also s∗(Ja) = s∗(Jc) = Mi and s∗(Jb) = Mi′ 6= Mi. Without loss of generality, we
assume that 〈a, b, c〉 is a maximal conflicting triple.

We now construct another optimal schedule s∗∗ that has a rightmost conflicting triple 〈a′, b′, c′〉
with b′ < b, which is a contradiction to the definition of s∗. The schedule s∗∗ is obtained from s∗

by rescheduling some jobs scheduled on Mi and Mi′ . Specifically, for every index x, if s∗(Jx) ∈
{Mi,Mi′} then s∗∗(Jx) ∈ {Mi,Mi′}, and otherwise s∗∗(Jx) = s∗(Jx). Since the instance is a clique
instance, a schedule s is valid if and only if |J s

i | ≤ g for each machine Mi. This property will be
preserved when obtaining s∗∗ from s∗.

Construction, validity and optimality of s∗∗: Let k be the smallest index, for which s∗(Jk) =
Mi′ ; clearly k 6= a, and also k ≤ b by Property 3.2. We distinguish between the following two cases
regarding k and a.
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Jk

Jb
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(b)

Figure 1: The subset of jobs scheduled on Mi,Mi′ (represented by solid and dashed lines, respec-
tively) in an optimal schedule s∗ of a proper clique instance, where (a) k < a and (b) a < k.

Case 1: k < a (see Figure 1(a)). We construct the schedule s∗∗ by exchanging the machine
assignments of Ja and Jb, i.e., s∗∗(Ja) = Mi′ , s∗∗(Jb) = Mi, and s∗∗(Jx) = s∗(Jx) for every
x /∈ {a, b}. The schedule s∗∗ remains a valid schedule. Since Ja is the leftmost job scheduled on Mi

and Jb is the rightmost job scheduled on Mi′ in s∗ (Property 3.2(ii)), it follows that span(J s∗∗

i ) ≤
span(J s∗

i ) and span(J s∗∗

i′ ) ≤ span(J s∗

i′ ), i.e. s∗∗ is optimal.
Case 2: a < k ≤ b Figure 1(b)). Consider the set J s∗

i ∪J
s∗

i′ . Since a < k, the leftmost (indexed
from a to k− 1) and the rightmost jobs (indexed from b+1 to c) in J s∗

i ∪J
s∗

i′ are scheduled on Mi

in s∗. For the sake of the following discussion in which only these jobs are relevant we re-index jobs
in J s∗

i ∪ J
s∗

i′ such that the indices are consecutive and a = 0. We have c+ 1 =
∣

∣J s∗

i ∪ J
s∗

i′

∣

∣ ≤ 2g.
We have also c+1 ≤ b+g because all the c−b jobs between Jb+1 and Jc and one job Ja are assigned
to one machine, namely Mi. Let x = min {g, b}. s∗∗ assigns all the jobs from J0 to Jx−1 to Mi,
and all the subsequent jobs to Mi′ . The number of jobs assigned to Mi is x = min {g, b} ≤ g. The
number of jobs assigned to Mi′ is c + 1 − x = c+ 1 −min {g, b}. If g < b then x = c + 1− g ≤ g,
otherwise x = c+ 1− b ≤ g. Therefore s∗∗ is valid.

In s∗, the total cost of Mi and Mi′ is span({J0, Jc})+ span({Jk, Jb}) = cc− s0 + cb− sk. In s∗∗,
the cost of Mi and Mi′ is span({Ja, Jx}) + span({Jx+1, Jc}) = cx − s0 + cc− sx+1. In order to show
that s∗∗ is optimal, it suffices to show that cx − sx+1 ≤ cb − sk. Indeed, as x ≤ b, by Property 3.1
we have cx ≤ cb. Furthermore as k ≤ g and k ≤ b we have k ≤ x < x + 1, and by Property 3.1,
sk ≤ sx+1.

Rightmost conflicting triple of s
∗∗: To complete the proof, it remains to show that any

rightmost conflicting triple 〈a∗∗, b∗∗, c∗∗〉 of the constructed optimal schedule s∗∗ satisfies b∗∗ < b.
Note that, as jobs assigned to other machines will be relevant, we revert to the original indices in
the rest of the discussion.

If the machines assigned to Jb∗∗ and Jc∗∗ in s∗∗ are in {Mi,Mi′}, then s∗∗ is constructed in
Case 1 where k < a because in Case 2 where a < k, there is no conflicting triple in s∗∗ with
machines in {Mi,Mi′}. In the construction in Case 1, we have b∗∗ < b.

Otherwise, one of the jobs Jb∗∗ , Jc∗∗ is scheduled on Mi′′ /∈ {Mi,Mi′} by s∗∗. Then s∗∗ may be
constructed in any of the two cases a < k or k < a. Suppose on the contrary that b∗∗ ≥ b. We
further consider two cases.

Case A: b∗∗ > c. I.e., c∗∗ > b∗∗ > c > b. Since c and b are the largest indices for which
s∗(Jc) = Mi and s∗(Jb) = Mi′ , respectively (the former due to 〈a, b, c〉 being a maximal conflicting
triple while the latter due to Property 3.2(ii)), it follows that Ja∗∗ , Jb∗∗ , Jc∗∗ are all scheduled on
machines different from Mi,Mi′ in both s∗ and s∗∗. Therefore 〈a∗∗, b∗∗, c∗∗〉 is also a conflicting
triple in s∗, where b∗∗ > b, contradicting that 〈a, b, c〉 is a rightmost conflicting triple of s∗.
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Case B: b ≤ b∗∗ ≤ c. By Property 3.2(i), all jobs from Jb+1 to Jc are scheduled on Mi in
s∗, and thus in particular s∗(Jb∗∗) ∈ {Mi,Mi′}. Furthermore, by the construction of s∗∗ in both
Cases 1 and 2, it follows that s∗∗(Jb∗∗) = Mi′ . Therefore s∗∗(Jc∗∗) = Mi′′ by assumption, where
i′′ /∈ {i, i′}, and thus also s∗(Jc∗∗) = Mi′′ , implying that c∗∗ > c (again due to Property 3.2(i)).
Therefore, 〈a∗∗, c, c∗∗〉 is a conflicting triple of s∗, where c > b, contradicting that 〈a, b, c〉 is a
rightmost conflicting triple of s∗.

Summarizing Cases A and B, we have b∗∗ < b. This means that all conflicting triples of the
optimal schedule s∗∗ have b∗∗ < b, contradicting the definition of s∗. In conclusion, there exists an
optimal schedule s∗, such that for every machine Mi, the subset Ji is consecutive. �

Using Lemma 3.3 we design a polynomial-time dynamic programming algorithm to find an
optimal schedule. Let us consider a proper clique instance consisting of n jobs J1 ≤ J2 ≤ . . . ≤
Jn. We denote by cost∗(i) the cost of an optimal schedule of the sub-instance consisting of the
leftmost i jobs, and by cost∗(i, j) the minimum cost of those schedules of the same sub-instance
that assign the same machine to the last (exactly) j jobs. Clearly j ≤ min(g, i), and cost∗(i) =
min1≤j≤min(i,g) cost

∗(i, j). Let Ik be the overlap between jobs Jk and Jk+1.

Algorithm 2 FindBestConsecutive

1: cost∗(1)← cost∗(1, 1)← span(J1)
2: for i = 2 to n do

3: cost∗(i, 1)← |Ji|+ cost∗(i− 1)
4: for j = 2 to min(g, i) do
5: cost∗(i, j)← cost∗(i− 1, j − 1) + |Ji| − |Ii−1|
6: end for

7: end for

Note that the assignments in lines 3 and 5 are correct by Lemma 3.3.
As for the time complexity, if n < g all the jobs are scheduled on the same machine. Otherwise

we run the dynamic programming algorithm FindBestConsecutive. For each job Ji, for i =
1, . . . , n, we have to compute cost∗(i, j) for i = 1, . . . , g. Thus, the total running time of the
algorithm is O(n · g), implying the following theorem.

Theorem 3.2 Given a proper clique instance of MinBusy, FindBestConsecutive computes an
optimal schedule in polynomial time.

3.4 Rectangular Intervals

In this section we consider a generalization of the problem to two dimensions. In graph theoretic
terms we are considering rectangle graphs (i.e., intersection graphs of rectangles), instead of interval
graphs. The problem can be relevant in contexts where rectangle graphs are relevant. For instance,
we can consider periodic jobs that are run in a specific time interval every day, between two given
dates. Another application is the case of a path topology optical networks (see also discussion in
Section 5) in which clients may have communication requests between two points of the network for
a specific time interval. In this generalization all the times, in particular the start and completion
times are pairs of real numbers and jobs are given with rectangular intervals.

Definition 3.1 Given a rectangular interval I = [sI , cI ], where sI = (sI,1, sI,2), c = (cI,1, cI,2) ∈
R×R and sk < ck, for k ∈ {1, 2} we define πk(I) as the projection [sI,k, cI,k] of I in dimension k.

We further define lenk(I)
def
= len(πk(I)) and len(I)

def
= len1(I) · len2(I).
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Definition 3.2 For a set I of rectangular intervals we define SPAN(I)
def
= ∪I and span(I) is

defined as the area of SPAN(I).

Given the above definition of len and span, all the definitions given for the one dimensional case
in Section 2 extend to this case. Moreover it is easy to verify that the span, length and parallelism
bounds hold for this case too.

We also define γk = maxJ∈J lenk(J)
minJ∈J lenk(J)

for k ∈ {1, 2}. In the sequel we assume without loss of

generality γ1 ≤ γ2 and present an O(log γ1)-approximation algorithm.
Algorithm FirstFit (Algorithm 3) is similar to algorithm FirstFit presented in [13] for the one

dimensional case. In this work we adapt the algorithm and its proof to the case of two dimensions.
FirstFit sorts the jobs according to their len2 values and considers them in descending order.
Every job is assigned to the first thread of execution among the threads of the first machine that
is feasible for it.

Algorithm 3 FirstFit(J , g)

1: Sort the jobs in non-increasing order of their lengths in the second dimension, i.e., len2(J1) ≥
len2(J2) ≥ . . . ≥ len2(Jn).

2: for j = 1 to n do . Consider the jobs according to the above order
3: for i = 1 to ∞ do . Consider the machines
4: for τ = 1 to g do . Consider the threads of execution
5: if Jj does not intersect any job assigned to thread τ of Mi then

6: Assign Jj to thread τ of Mi

7: return

8: end if

9: end for

10: end for

11: end for

The following observation is a direct consequence of the behavior of FirstFit.

Observation 3.2 Let J be a job assigned to machine Mi+1 by FirstFit, for some i ≥ 1. Then
for every thread τ of Mi there is a job bτ (J) ∈ Ji such that bτ (J)∩J 6= ∅ and len2(bτ (J)) ≥ len2(J).

The following key lemma is based on the above observation.

Lemma 3.4 For any i ≥ 1,

span(Ji+1) ≤
6γ1 + 3

g
len(Ji).

Proof: Whenever a job J ∈ Ji+1 intersects with more than one job of Ji assigned to the same
thread τ of Mi we fix one of them (arbitrarily) to be bτ (J). Let Ji,τ be the set of jobs assigned by
FirstFit to thread τ of Mi. Clearly bτ : Ji+1 → Ji,τ is a function. We define the set valued inverse
function, in the usual way, as b−1

τ : Ji,τ → 2Ji+1 such that b−1
τ (J ′) = {J ∈ Ji+1 | bτ (J) = J ′}. We

claim that for every J ′ ∈ Ji,τ

span(b−1
τ (J ′)) ≤ (6γ1 + 3) · len(J ′). (5)

Indeed, by Observation 3.2, every job J ∈ b−1
τ (J ′) intersects with J ′ and len2(J) ≤ len2(J

′).
Moreover, len1(J) ≤ γ1 · len1(J

′) by definition of γ1. We conclude that J lies entirely within a
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J ′

len2(J ′)

len1(J ′)

≤ γ1 · len1(J ′)

≤ len2(J ′)

≤ 3 · len2(J ′)

≤ (2γ1 + 1)len1(J ′)

Figure 2: A bounding rectangle of SPAN(b−1
τ (J ′))

bounding rectangle of lengths (2γ1 + 1) · len1(J
′) and 3 · len2(J

′) in the two dimensions. Therefore
SPAN(bτ−1(J ′)) lies entirely within the same rectangle whose area is (2γ1+1)·len1(J

′)·3·len2(J
′) =

(6γ1 + 3) · len(J ′) (see Figure 2).
As bτ is a function, we have Ji+1 = ∪J ′∈Ji,τ

b−1
τ (J ′). Therefore SPAN(Ji+1) =

∪J ′∈Ji,τ
SPAN(b−1

τ (J ′)). Now, we use the union bound and sum up inequality (5) for all the jobs
J ′ ∈ Ji,τ to get

span(Ji+1) ≤
∑

J ′∈Ji,τ

span(b−1
τ (J ′)) ≤ (6γ1 + 3)

∑

J ′∈Ji,τ

len(J ′) = (6γ1 + 3) · len(Ji,τ ).

Summing for all g possible values of τ , we get

g · span(Ji+1) ≤ (6γ1 + 3) ·

g
∑

τ=1

len(Ji,τ ) = (6γ1 + 3) · len(Ji).

�

Lemma 3.5 The approximation ratio of FirstFit is between 6γ1 + 3 and 6γ1 + 4.

Proof: Upper bound: By definition, all the jobs in Ji+1 are assigned to one machine, i.e. Mi+1.

For such a set the cost of the assignment is exactly its span, i.e. FirstFit(Ji+1) = busyi+1 =
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Figure 3: The rectangles in the instance used in the lower bound proof.

span(Ji+1). Let m ≥ 1 be the number of machines used by FirstFit. Then

FirstFit(J ) =

m
∑

i=1

FirstFit(Ji) = span(J1) +
m
∑

i=2

span(Ji)

= span(J1) +
m−1
∑

i=1

span(Ji+1) ≤ span(J ) +
6γ1 + 3

g

m−1
∑

i=1

len(Ji)

< span(J ) + (6γ1 + 3)
len(J )

g

≤ (6γ1 + 4) · cost∗(J )

where the last inequality uses both the span and parallelism bounds.

Lower bound: We will show that for any ε > 0, FirstFit(J )/cost∗(J ) > 6γ1 + 3 − ε. Let ε′,
0 < ε′ < 1, be a real number that depends on ε and γ1 whose value will be determined later. For
ease of discussion, we allow times to be negative. Given a rectangle A = [(s1, s2), (c1, c2)], we denote
by −A the rectangle [(−c1, s2), (−s1, c2)]. We also denote for s1, s2 ≥ 0 by ±(s1, s2) the rectangle
[(−s1,−s2), (s1, s2)] centered at the origin. We define the following rectangles (see Figure 3):
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A = [(1 − ε′, 1− ε′), (1 + 2γ1 − ε′, 3− ε′)]

B = [(1 − ε′,−1), (1 + 2γ1 − ε′, 1)]

C = [(1 − ε′,−3 + ε′), (1 + 2γ1 − ε′,−1 + ε′)]

D = [(−1, 1 − ε′), (1, 3 − ε′)]

E = [(−1,−3 + ε′), (1,−1 + ε′)]

X = ±(1, 1)

Y = ±(1 + 2γ1 − ε′, 3− ε′)

(6)

The following facts are easy to verify:

• len1(A) = len1(B) = len1(C) = 2γ1, len1(D) = len1(E) = len1(X) = 2, len1(Y ) = 2(1+2γ1−
ε′),

• len2(A) = len2(B) = len2(C) = len2(D) = len2(E) = len2(X) = 2, len2(Y ) = 2(3− ε′),

• A,C,−A,−C are pairwise disjoint (because ε′ < 1),

• D ∩ E = ∅, B ∩ −B = ∅ (because ε′ < 1),

• X intersects with each one of A,B,C,D,E,−A,−B and −C,

• A,B,D are pairwise intersecting, C,B,E are pairwise intersecting,

• Y = X ∪A ∪B ∪ C ∪D ∪ E ∪ −A ∪ −B ∪−C.

Consider the input consisting of g ·(g−3) copies of X and g copies of A,B,C,D,E,−A,−B,−C.

We first note that maxJ∈J len1(J)
minJ∈J len1(J)

= 2γ1
2 = γ1 as required.

A possible solution is to assign all the copies of g(g− 3) rectangles X to g− 3 machines, and to
assign all the g copies of each rectangle type to one machine. This solution is feasible because each
machine is processing g jobs. In such a solution the busy time of each one of the g− 3 machines is
span(X) and the busy time of the other machines are span(A), span(B), . . .. Therefore

cost∗(J ) ≤ (g−3)span(X)+2(span(A)+span(B)+span(C))+span(D)+span(E) = 4(g−3)+24γ1+8.

On the other hand, FirstFit sorts the jobs by their len2. As they are all equal, breaking ties
arbitrarily it might consider them in the following order: g − 3 copies of X, one copy of each one
of A, C, −A, −C, B, −B, D, E, g − 3 copies of X, one copy of each one of A, C, −A, −C, B,
−B, D, E, and so on 2. The jobs X are assigned to the first g − 3 threads of execution of the first
machine. As all the other jobs intersect X these threads cannot process any other jobs. The jobs
A, C, −A, −C are assigned to the (g − 2)th thread of execution of the first machine. As all the
other jobs intersect one of these rectangles this thread cannot process any other jobs. The jobs B
and −B are assigned to thread number g − 1 of the first machine. As these jobs intersect with all
the rest, this thread too is not usable by other jobs. The jobs D,E are assigned to the last thread

2For any variant of FirstFit that does not break ties arbitrarily the instance can be modified by altering the len2

value of each rectangle slightly so that the total cost is not affected and the stated order is enforced.
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of the first machine. Similarly, this thread is not usable by any other job. The algorithm continues
in the same way and fills g machines in the same way. Therefore

FirstFit(J ) =

g
∑

i=1

span(Ji) = g · span(Y ) = 4g(1 + 2γ1 − ε′)(3 − ε′).

We conclude that the approximation ratio of FirstFit is at least

4g(1 + 2γ1 − ε′)(3 − ε′)

4(g − 3) + 24γ1 + 8
=

g(1 + 2γ1 − ε′)(3− ε′)

g + 6γ1 − 1
=

(1 + 2γ1 − ε′)(3− ε′)

1 + 6γ1−1
g

.

For any γ1 ≥ 1 one can choose g sufficiently big to make the denominator arbitrarily close to 1,
and ε′ sufficiently small to make the nominator close to 6γ1+3. Therefore, the approximation ratio
can be made arbitrarily close to 6γ1 + 3.

�

Algorithm 4 BucketFirstFit(J , g, β)

1: Let ` = minJ∈J len1(J).
2: Let γ1 = (maxJ∈J len1(J))/`.
3: for b = 1 to max(

⌈

logβ γ1
⌉

, 1) do

4: Let J (b) =
{

J ∈ J | ` · βb−1 ≤ len1(J) ≤ ` · βb
}

.

5: Schedule the jobs in J (b) to a set of unused machines using algorithm FirstFit.
6: end for

Consider algorithm BucketFirstFit that gets an additional parameter β ≥ 1 and invokes
FirstFit as a subroutine, such that in each invocation the sub-instance J (b) satisfies γ1 ≤ β.
FirstFit is a (6β+4)-approximation on each sub-instance, i.e. costs(J (b)) ≤ (6β+4)·cost∗(J (b)) ≤
(6β + 4) · cost∗(J ). Therefore

costs(J ) =

max(dlogβ γ1e,1)
∑

b=1

costs(J (b))

≤

max(dlogβ γ1e,1)
∑

b=1

(6β + 4)cost∗(J )

= max(
⌈

logβ γ1
⌉

, 1) · (6β + 4) · cost∗(J )

≤ (dlogβ γ1e+ 1) · (6β + 4) · cost∗(J )

≤ (logβ γ1 + 2) · (6β + 4) · cost∗(J )

=

(

6β + 4

log β
· log γ1 +O(β)

)

· cost∗(J )

where the logarithms are base 2 unless written otherwise. Substituting β = 3.3 and recalling our
assumption γ1 ≤ γ2 we get

Theorem 3.3 BucketFirstFit(J , g, 3.3) constitutes a min(g, 13.82 · logmin(γ1, γ2) + O(1))-
approximation algorithm for MinBusy on rectangular intervals.
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4 Throughput Maximization

Although MaxThroughput is at least as hard as MinBusy, it turns out that in some cases we
can achieve similar results as for MinBusy.

4.1 Clique Instances

For one-sided clique instances we note that if a schedule s with costs ≤ T schedules tputs jobs, then
there is a schedule s′ with costs

′
≤ costs ≤ T that schedules the shortest tputs jobs. In particular

there is an optimal schedule that schedules the shortest j jobs for some 0 ≤ j ≤ |J |. By Proposition
2.3 and Observation 3.1 we conclude

Proposition 4.1 One-sided clique instances of MaxThroughput can be solved optimally in poly-
nomial time.

We now present a constant approximation algorithm for clique instances of MaxThroughput.
We start with some terminology. We first fix an arbitrary time t that is common to all the jobs. For
a job J = [sJ , cJ ] we term the sub-interval [sJ , t] (resp. [t, cJ ]) as the left part (resp. right part) of
J . The longer (resp. shorter) among these parts is termed the head (resp. tail) of J , and whenever
these parts have the same length the left part is the head. A job J is left-heavy (resp. right-heavy)
if its left (resp. right) part is the head.

We denote by J (L) (resp. J (R)) the subset of left-heavy (resp. right-heavy) jobs of J . For
X ∈ {L,R}, a subset containing j jobs of J (X) with shortest heads is termed a prefix of size j and
denoted by J (X,j).

The reduced cost of a schedule s of J is the cost of s where each job is replaced by its head,
and we denote it by cost

s
(J ). In other words, in the reduced cost model the tails of the jobs

do not consume machine time. Clearly cost
s
(J ) ≤ costs(J ). Moreover costs(J ) ≤ 2 · cost

s
(J )

because for each machine Mi, span(Ji) is at most twice the longest head of Ji, i.e. at most twice
the busy time of the machine in the reduced cost model. A schedule minimizing cost

s
(J ) is termed

reduced-optimal, and the corresponding reduced cost is denoted by cost
∗
. Note that for J (L), J (R)

and their subsets the calculation of cost
∗
is equivalent to solving a one-sided clique instance under

the normal cost model and this can be done in polynomial time by Proposition 4.1.
We first present Algorithm Alg1 that achieves a constant approximation ratio in most cases.

Alg1 chooses the maximal number j + k of jobs with shortest heads in J (L) and J (R) (j jobs
of J (L,j) and k jobs of J (R,k)), with total reduced machine busy time at most T/2. Alg1 then
schedules the jobs in each one of these sets in a reduced-optimal manner. The algorithm is clearly
correct because the cost of the solution is at most twice its reduced cost, i.e. at most T .

Algorithm 5 Alg1

1: Among all the O
(∣

∣J (L)
∣

∣ ·
∣

∣J (R)
∣

∣

)

possible prefix pairs J (L,j),J (R,k)

2: Choose a pair with cost
∗
(J (L,j)) + cost

∗
J (R,k) ≤ T/2 maximizing j + k.

3: Schedule the jobs of J (L,j) in a reduced-optimal manner.
4: Schedule the jobs of J (R,k) in a reduced-optimal manner.

We now proceed with the performance analysis of Alg1.

Lemma 4.1 If tput∗ > 4g then Alg1 is a 4-approximation algorithm for clique instances of
MaxThroughput.
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Proof: Consider an optimal schedule s∗ and the set J ∗ of jobs scheduled by it. We partition this set
into two sets of left-heavy and right-heavy jobs, namely Q(L) = J ∗ ∩ J (L) and Q(R) = J ∗ ∩ J (R).
Then tput∗ = |J ∗| =

∣

∣Q(L)
∣

∣ +
∣

∣Q(R)
∣

∣ and also T ≥ cost∗(J ∗) ≥ cost
∗
(J ∗) = cost

∗
(Q(L)) +

cost
∗
(Q(R)). The last equality holds because in the reduced cost model each one of the sets Q(L) and

Q(R) incurs cost either before or after time t, but not both. For X ∈ {L,R}, let qX = b
∣

∣Q(X)
∣

∣ /gc

and rX =
∣

∣Q(X)
∣

∣ mod g. Let also q = qL + qR. Then

tput∗ =
∣

∣

∣
Q(L)

∣

∣

∣
+

∣

∣

∣
Q(R)

∣

∣

∣
= g · q + rL + rR.

By the assumption of our lemma tput∗ > 4g. Therefore, q ≥ 3. Let Q(X) = {J0, J1, . . .} where the
jobs are indexed in non-increasing order of their head lengths. In a one-sided clique instance the
minimum cost is obtained by scheduling the first g jobs on one machine, the next g jobs on another
machine and so on. Therefore cost

∗
(Q(X)) is the sum of the head lengths of the first elements of

each set, i.e. len(J0) + len(Jg) + len(J2g) + · · · . As the sequence is non-increasing, the elements in
odd indices of the sequence sum up to at most half of the sum, namely len(Jg) + len(J3g) + · · · ≤
cost

∗
(Q(X))/2. This sum is the reduced cost of the schedule sX that schedules the jobs of every

second group of Q(X) and leaves the rest unscheduled. Let kX = tputsX . We observe that the
reduced cost of a schedule s′X that schedules kX jobs of J (X) with shortest heads (i.e. the prefix
J (X,kX)) is at most cost

sX because jobs are only replaced with jobs with shorter heads. Therefore

cost
s′
X (J (L,kX)) ≤ cost

sX ≤ cost
∗
(Q(X))/2.

Consider the schedule s′ that is obtained by the union of the schedules s′L and s′R. We have

cost
s′

= cost
s′
L(J (L,kL)) + cost

s′
R(J (R,kR)) ≤ cost

∗
/2 ≤ T/2. Observe that Alg1 considers the

prefix pair J (L,kL),J (R,kR) in one of its iterations, thus it will return a schedule with throughput
no less than the throughput of s′, i.e. kL + kR.

We are now ready to finalize the proof using the above facts. Let pX = qX mod 2. sX schedules
the jobs of every second group. The first bqX/2c groups contain g jobs each, and whenever qX is
odd there is a last group with rX jobs. Therefore

kX = g · bqX/2c+ pX · rX = g ·
qX
2

+ pX · rX − pX
g

2
.

The schedule returned by the algorithm contains at least

kL + kR = g ·
q

2
+ pL · rL + pR · rR − (pL + pR)

g

2

jobs. Then the approximation ratio ρ of the algorithm is at most

ρ ≤
g · q + rL + rR

g · q2 + pL · rL + pR · rR − (pL + pR)
g
2

.

We consider three cases depending on pR and pL. Recall that q ≥ 3.

• pL = pR = 0:

ρ ≤
g · q + rL + rR

g · q2
<

g · (q + 2)

g · q2
= 2 +

4

q
< 4.

• pL = 1, pR = 0 (pL = 0, pR = 1 is symmetric):

ρ ≤
g · q + rL + rR
g · q2 + rL −

g
2

≤
g · q + rR
g · q2 −

g
2

<
g · (q + 1)

(q − 1)g2
= 2 +

4

q − 1
≤ 4.
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• pL = pR = 1: In this case qL and qR are both odd, i.e. q is even. Therefore q ≥ 4. Then

ρ ≤
g · q + rL + rR

g · q2 + rL + rR − g
≤

g · q

g · q2 − g
= 2 +

4

q − 2
≤ 4.

�

It remains to find a good approximation for the case tput∗ ≤ 4g. In this case to find a schedule
that schedules g jobs on one machine would be a 4-approximation. We say that an interval I covers
a subset Q ⊆ J of jobs if SPAN(Q) ⊆ I are contained in it. The coverage of I is the subset Q
of J of jobs contained in I. The coverage of some given interval I can clearly be computed in
linear time. Now we observe that in a clique instance, for any subset Q ⊆ J of jobs, SPAN(Q) is
determined by at most two jobs, each one determining one endpoint. In other words there exist
two (not necessarily distinct) jobs Jl, Jr ∈ Q such that SPAN({Jl, Jr}) = SPAN(Q). We conclude
that the number of all possible distinct intervals SPAN(Q) is at most |J |2. Alg2 below is a
polynomial-time algorithm by the preceding discussion.

Algorithm 6 Alg2

1: Try each possible pair Ji, Jj of jobs with span({Ji, Jj}) ≤ T .
2: choose the pair whose span covers the maximum number m of jobs.
3: if m ≤ g then

4: assign all the jobs in the coverage of SPAN({Ji, Jj}) to the same machine.
5: else

6: choose arbitrarily g jobs from the coverage of SPAN({Ji, Jj}).
7: assign them to the same machine.
8: end if

Lemma 4.2 If tput∗ ≤ 4g then Alg2 is a 4-approximation algorithm for clique instances of Max-

Throughput.

Proof: Consider the span SPAN(J ∗) of all jobs scheduled by some optimal schedule s∗. Then
T ≥ cost∗ ≥ span(J ∗). Alg2 will consider this span in one of the iterations therefore the value of
m will be at least tput∗. If tput∗ ≥ g then m ≥ g and the algorithm will schedule g jobs. In this
case the approximation ratio is at most 4g/g = 4. If tput∗ < g then tput∗ ≤ min(m, g) and the
algorithm schedules min(m, g) jobs, therefore optimal.

�

By considering the combined algorithm that runs Alg1 and Alg2 and returns the best of the two
schedules, we conclude by Lemmata 4.1 and 4.2:

Theorem 4.1 There is a 4-approximation algorithm for clique instances of MaxThroughput.

Algorithms Alg1 and Alg2 can be implemented more efficiently by sorting the jobs and cal-
culating the costs of every prefix. The cost of every prefix can be calculated based on the cost
of the previous prefix. Finally for each left prefix, the corresponding best feasible right prefix can
be found at logarithmic time using binary search. As we are interested mainly in approximation
ratios, we have chosen the above description for ease of exposition.
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4.2 Proper Clique Instances

In this section we give a polynomial-time dynamic programming algorithm for proper clique in-
stances of MaxThroughput. We first show, in Lemma 4.3, a structural property of an optimal
solution which is an extension of the consecutiveness property proven in Lemma 3.3. Recall that
without loss of generality J1 ≤ J2 ≤ · · · ≤ Jn, and that a subset Q ⊆ J is said to be consecutive
in J if Q = {Ji, Ji+1, . . . , Jj} for some i ≤ j.

Lemma 4.3 For proper clique instances of MaxThroughput there is an optimal (partial) sched-
ule such that Ji is consecutive in J for every machine Mi.

Note that the statement of Lemma 4.3 is the same as Lemma 3.3 except that an optimal schedule
may be partial, and therefore some jobs may be left unscheduled.
Proof: Let s∗ be a schedule that schedules maximum number of jobs and has minimum cost
among such schedules. Let J ∗ ⊆ J be the set of jobs scheduled by s∗. For each machine Mi, J

∗
i

is consecutive in J ∗ by Lemma 3.3. It remains to prove that J ∗
i is consecutive in J . Assume, by

way of contradiction that for some machine Mi, J
∗
i is consecutive in J ∗ but not consecutive in J .

Then J ∗
i = {Ji1 , Ji2 , · · · , Jik}, where i1 < i2 < · · · < ik and there is at least one non-scheduled job

Jx such that i1 < x < ik. Then we can schedule Jx on Mi and unschedule Ji1 . Since the instance
is a clique instance this still gives a valid schedule and since the instance is a proper instance, Jx is
entirely within the span of J ∗

i , thus the cost can only decrease. This process can be repeated until
J ∗
i is consecutive in J .

�

By Lemma 4.3, each machine processes a set of consecutive jobs in J , and a (possibly empty)
set of consecutive unscheduled jobs are between the jobs of two consecutive machines Mi and Mi+1.
With this observation, we formulate a dynamic program to find the minimum cost of scheduling
a subset of jobs. We define the cost function cost(i, j, u, t) as the minimum cost of scheduling the
instance consisting of the first i jobs of J such that the last machine processes exactly j jobs, the
last (exactly) u jobs are not scheduled and a total of t (out of the i jobs) are not scheduled. A valid
schedule is a scheduling such that cost(n, j, u, t) ≤ T and an optimal schedule is one that has the
minimum value of t. In other words, the maximum throughput is

n−min{t | cost(n, j, u, t) ≤ T} .

cost(i, j, u, t) can be calculated based on previously calculated values cost(i − 1, ?, ?, ?) as follows.
For any 1 ≤ i ≤ n, 1 ≤ j ≤ min(i, g), 0 ≤ u ≤ i− j, and u ≤ t ≤ i− j,

cost(i, j, u, t) =































cost(i− 1, j, u − 1, t− 1)
if u > 0,

cost(i− 1, j − 1, u, t) + |Pi| − |Ii−1|
if u = 0 and j > 1,

minj′,u′ cost(i− 1, j′, u′, t) + |Pi|
if u = 0 and j = 1.

(7)

In the last case, the ranges of j′ and u′ are: 1 ≤ j′ ≤ min(g, i−1− t) and 1 ≤ u′ ≤ min(i−1−j′, u).
When u > 0, the schedule with cost(i, j, u, t) is supposed to have the least u jobs non-scheduled

and thus the schedule of the first i−1 jobs would have the least u−1 jobs non-scheduled, i.e., with
cost(i − 1, j, u − 1, t − 1). When u = 0, it means the last j jobs are supposed to be processed on
the same machine. If j > 1, it means the schedule for the first i− 1 jobs should have the last j − 1
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Algorithm 7 MostThroughputConsecutive

1: cost(1, 1, 0, 0) ← |T |
2: for i = 2 to n do

3: for j = 1 to min(i, g) do
4: for u = 0 to i− j do

5: for t = u to i− j do

6: if u > 0 then

7: cost(i, j, u, t) = cost(i− 1, j, u − 1, t− 1)
8: else

9: if j > 1 then

10: cost(i, j, u, t) = cost(i− 1, j − 1, u, t) + |Pi| − |Ii−1|
11: else

12: cost(i, j, u, t) = min
1≤j′≤min(g,i−1−t)
1≤u′≤min(i−1−j′,u)

cost(i− 1, j′, u′, t) + |Pi|

13: end if

14: end if

15: end for

16: end for

17: end for

18: end for

jobs assigned to the same machine and Ji is scheduled on the same machine as these j − 1 jobs,
then the cost would become cost(i− 1, j − 1, u, t) + |Ji| − |Ii−1|. Otherwise if j = 1, it means that
Ji is scheduled to a new machine and the schedule for the first i − 1 machines can have any valid
value of j′ and u′ and so the cost can be computed as shown in recurrence 7. The 4-dimensional
table can be filled by the dynamic programming algorithm MostThroughputConsecutive. It
contains n3g entries, among which the computation of at most n2 entries requires O(gn) time and
the rest requires O(1) time. We conclude

Theorem 4.2 There exists a polynomial-time algorithm for proper clique instances of Max-

Throughput that computes an optimal schedule in time O(|J |3 · g).

5 Summary, Extensions and Future Work

In this paper we revisited the problem MinBusy and initiated the study of the problem
MaxThroughput of busy time optimization. The full list of results is given in Section 1. In
particular we presented three algorithms for MinBusy improving upon existing ones. Specifi-
cally, we presented a) a polynomial-time optimal algorithm for clique instances when g = 2, b) A

g·Hg

Hg+g−1 -approximation algorithm for clique instances, and c) A (2− 1/g)-approximation algorithm
for proper instances. The second algorithm led to an improvement when g attains small values.

The following open problems are of interest:

• Complexity: The exact complexity of MinBusy and MaxThroughput for clique instances
and for proper instances is still open. In this work approximation algorithms were presented.

• MinBusy and MaxThroughput: We have shown that MaxThroughput is NP-Hard
whenever MinBusy is NP-Hard. The question of whether MaxThroughput is strictly
harder than MinBusy generally or in a special case is open.
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• Approximation algorithms: Another open question is to improve the approximation ratio for
MinBusy and derive approximation ratio for MaxThroughput, both for the general input
instances.

• MaxThroughput: In this paper the throughput is measured by the number of jobs. A
natural question is whether we can extend the results to weighted throughput.

As we have mentioned, our work is closely related to energy-aware scheduling, cloud computing
and optical network design. Our problems can be extended to cover more general problems in these
three applications.

Energy-aware scheduling: As we mentioned in Section 1, machine busy time reflects how long the
processor is switched on and how much energy is used. Energy saving can also be achieved via
other mechanisms.

• Modern processors support Dynamic Voltage Scaling (DVS) (see, e.g., [15, 22, 29]), which
means the processor speed can be scaled up or down. In the context of busy time scheduling,
the scheduler may speed up the processor to shorten the busy time, resulting in shorter time
of processing but higher energy usage per time unit. It is interesting to derive algorithms
that can make a wise tradeoff.

• We assume that we can use as many machines as we like without any overhead. In reality,
switching on a machine from a sleep state requires some energy and it may save energy to
leave a machine to idle if jobs will be scheduled on it again soon [2,7]. To take this advantage,
different optimization criteria have to be considered.

Cloud computing: The following extensions can be interpreted clearly within the context of prob-
lems in cloud computing (see, e.g., [10, 23,26]) as presented in Section 1.

• An extension is to allow jobs requiring different amount of capacities and a machine can
process jobs as long as the sum of capacity required is at most g [16].

• Other extensions are to have different machine types of different computing power, different
capacities, and/or allow migration of jobs with possibly a penalty.

• In this work the jobs are supposed to be processed during the whole period from start time
sj to completion time cj. One may consider also

– jobs that also have processing time pj ≥ cj − sj and have to be processed for pj consec-
utive time units during the interval [sj, cj ] (see e.g. [25]),

– malleable jobs which can be assigned several machines and the actual processing time
depends on the number of machines allocated (see e.g., [21, 25]).

Optical network design: As detailed in Section 1, the scheduling problems studied in this paper
have a direct application to problems in placement of regenerators in optical network design. Our
work is related to two regenerator optimization problems with traffic grooming for network with a
line topology. InMinBusy we are given a set of paths and a grooming factor g and the objective is to
find a valid coloring for all paths with minimum total number of regenerators. InMaxThroughput

we are also given a budget T and the objective is to find a valid coloring with at most T regenerators
that maximizes the number of satisfied paths. Some of our results can be extended to other
topologies. In particular:
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• The algorithm in Observation 3.1 for one-sided clique instances maintains a current machine
with at most g jobs, a new job is added to this machine if it has less than g jobs, otherwise a
new machine with only the new job is created and designated as the current machine. This
extends to tree topologies as follows: We maintain multiple current sets, and process the
paths in non-increasing order. The opening job of a set Ji is the first (i.e. longest) job it
processes. A current set Ji is possible for a new job J if J is contained in the opening path
of Ji and also |Ji| < g. Each path is added to the possible set with the biggest number of
paths.

• Theorem 3.3 is valid in ring topologies. In this case jobs represent communication requests
in a ring optical network that arrive with start and end times. More specifically, a customer
needs an optical communication line between two given notes during a time period. It can be
verified that Lemma 3.4 holds for ring topologies. The conclusion of Theorem 3.3 from this
lemma is topology-independent.

Other extensions include the following:

• In the regenerator placement problem the extension of variable capacity requirement applies,
i.e. input paths require different amount of bandwidth.

• The scheduling problem we considered, in the context of regenerator placement, corresponds
to a requirement that a regenerator needs to be placed in every node along a path. This
requirement can be generalized to the case where a regenerator is only needed within every d
hops, for some constant d.

• Another natural extension is to consider other topologies.
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[27] N. Vasić, M. Barisits, V. Salzgeber, and D. Kostic. Making cluster applications energy-aware. In
Proceedings of the 1st workshop on Automated control for datacenters and clouds, ACDC ’09, pages
37–42, 2009.

[28] P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph coloring. In SODA,
pages 830–831, 2003.

[29] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proc. FOCS, pages
374–382, 1995.

26


