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Abstract

Evolutionary dynamics has been traditionally studied in the context of homogeneous populations,
mainly described by the Moran process (Moran, Proceedings of the Cambridge Philosophical Society,
54:60–71, 1958). Recently, this approach has been generalized in (Lieberman et al., Nature, 433:312–316,
2005) by arranging individuals on the nodes of a network (in general, directed). In this setting, the
existence of directed arcs enables the simulation of extreme phenomena, where the fixation probability of
a randomly placed mutant (i.e., the probability that the offspring of the mutant eventually spread over the
whole population) is arbitrarily small or large. On the other hand, undirected networks (i.e., undirected
graphs) seem to have a smoother behavior, and thus it is more challenging to find suppressors/amplifiers
of selection, that is, graphs with smaller/greater fixation probability than the complete graph (i.e., the
homogeneous population). In this paper we focus on undirected graphs. We present the first class of
undirected graphs which act as suppressors of selection, by achieving a fixation probability that is at most
one half of that of the complete graph, as the number of vertices increases. Moreover, we provide some
generic upper and lower bounds for the fixation probability of general undirected graphs. As our main
contribution, we introduce the natural alternative of the model proposed in (Lieberman et al., Nature,
433:312–316, 2005). In our new evolutionary model, all individuals interact simultaneously and the result
is a compromise between aggressive and non-aggressive individuals. We prove that our new model of
mutual influences admits a potential function, which guarantees the convergence of the system for any
graph topology and any initial fitness vector of the individuals. Furthermore, we prove fast convergence
to the stable state for the case of the complete graph, as well as we provide almost tight bounds on the
limit fitness of the individuals. Apart from being important on its own, this new evolutionary model
appears to be useful also in the abstract modeling of control mechanisms over invading populations in
networks. We demonstrate this by introducing and analyzing two alternative control approaches, for
which we bound the time needed to stabilize to the “healthy” state of the system.

Keywords: Evolutionary dynamics, undirected graphs, fixation probability, potential function,
Markov chain, fitness, population structure.

1 Introduction

Evolutionary dynamics has been well studied (see [4,10,17,25,27–29]), mainly in the context of homogeneous
populations, described by the Moran process [21,23]. In addition, population dynamics has been extensively
studied also from the perspective of the strategic interaction in evolutionary game theory, cf. for instance [13–
16, 26]. One of the main targets of evolutionary game theory is evolutionary dynamics (see [14, 30]). Such
dynamics usually examines the propagation of mutants with a given fitness in a population, whose initial
members (resident individuals) have different fitnesses. In fact, “evolutionary stability” is the case where no
mutant can invade and dominate the population. The evolutionary models and the dynamics we consider
here belong to this framework. In addition, however, we consider structured populations (i.e., in the form of
an undirected graph) and we study how the underlying graph structure affects the evolutionary dynamics.
We study in this paper two kinds of evolutionary dynamics. Namely, the “all or nothing” case (where either
the mutant takes over the whole graph or dies out) and the “aggregation” case (more similar in spirit to
classical evolutionary game theory, where the mutant’s fitness aggregates with the population fitness and
generates eventually a homogeneous crowd with a new fitness).

In a recent article, Lieberman, Hauert, and Nowak proposed a generalization of the Moran process by ar-
ranging individuals on a connected network (i.e., graph) [19] (see also [24]). In this model, vertices correspond
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to individuals of the population and weighted edges represent the reproductive rates between the adjacent
vertices. That is, the population structure is translated into a network (i.e., graph) structure. Furthermore,
individuals (i.e., vertices) are partitioned into two types: aggressive and non-aggressive. The degree of (rel-
ative) aggressiveness of an individual is measured by its relative fitness; in particular, non-aggressive and
aggressive individuals are assumed to have relative fitness 1 and r ≥ 1, respectively. This modeling approach
initiates an ambitious direction of interdisciplinary research, which combines classical aspects of computer
science (such as combinatorial structures and complex network topologies), probabilistic calculus (discrete
Markov chains), and fundamental aspects of evolutionary game theory (such as evolutionary dynamics).

In the model of [19], one mutant with relative fitness r ≥ 1 is introduced into a given population of resident
individuals, each having relative fitness 1. At each time step, an individual is chosen for reproduction with a
probability proportional to its fitness, while its offspring replaces a randomly chosen neighboring individual in
the population. Once u has been selected for reproduction, the probability that vertex u places its offspring
into position v is given by the weight wuv of the directed arc 〈uv〉. Note that for every vertex u, the weights wuv
of the several directed arcs 〈uv〉 may be different to each other. This process stops when either all vertices of
the graph become mutants (fixation of the graph) or they all become non-mutants (extinction of the mutants).
Several similar models have been previously studied, describing for instance influence propagation in social
networks (such as the decreasing cascade model [18,22]), dynamic monopolies [6], particle interactions (such
as the voter model, the antivoter model, and the exclusion process [1, 12, 20]), etc. However, the dynamics
emerging from these models do not consider different fitnesses for the individuals.

The fixation probability fG of a graph G = (V,E) is the probability that eventually fixation occurs, i.e., the
probability that an initially introduced mutant, placed uniformly at random on a vertex of G, eventually
spreads over the whole population V , replacing all resident individuals. One of the main characteristics
in this model is that at every iteration of the process, a “battle” takes place between aggressive and non-
aggressive individuals, while the process stabilizes only when one of the two teams of individuals takes over the
whole population. This kind of behavior of the individuals can be interpreted as an all-or-nothing strategy,
in the following sense: if the underlying undirected graph is connected, the vertices become eventually either
all mutants (fixation of the graph) or all non-mutants (extinction of the mutants in the graph).

Consider a directed graph, in which for every two vertices u, v, if the directed arc 〈uv〉 exists then the
directed arc 〈vu〉 exists as well, and additionally wuv = wvu. Such a graph is called a symmetric directed
graph [19]. Note here that symmetric directed graphs do not coincide with undirected graphs. Indeed, in an
undirected graph, although for every arc 〈uv〉 the arc 〈vu〉 exists as well, it may be that the weights of these
two arcs are different, i.e., wuv 6= wvu. Lieberman et al. [19] proved that the fixation probability for every
symmetric directed graph is equal to that of the complete graph (i.e., the homogeneous population of the
Moran process), which tends to 1− 1

r as the size n of the population grows. Moreover, exploiting vertices with
zero in-degree or zero out-degree (“upstream” and “downstream” populations, respectively), they provided
several examples of directed graphs with arbitrarily small and arbitrarily large fixation probability [19].
Furthermore, the existence of directions on the arcs leads to examples where neither fixation nor extinction
is possible (e.g., a graph with two sources).

In contrast, general undirected graphs (i.e., when 〈uv〉 ∈ E if and only if 〈vu〉 ∈ E for every u, v) appear to
have a smoother behavior, as the above process eventually reaches fixation or extinction with probability 1.
Furthermore, the coexistence of both directions at every edge in an undirected graph seems to make it more
difficult to find suppressors or amplifiers of selection (i.e., graphs with smaller or greater fixation probability
than the complete graph, respectively), or even to derive non-trivial upper and lower bound for the fixation
probability on general undirected graphs. This is the main reason why only little progress has been made so
far in this direction and why most of the recent work focuses mainly on the exact or numerical computation
of the fixation probability for very special cases of undirected graphs, e.g., the star and the path [7–9].

Our contribution. In this paper we overcome this difficulty for undirected graphs and we provide for the
fitness values 1 < r < 4

3 the first class of undirected graphs that act as suppressors of selection in the model
of [19], as the number of vertices increases. This is a very simple class of graphs (called clique-wheels), where
each member Gn has a clique of size n ≥ 3 and an induced cycle of the same size n with a perfect matching
between them. We prove that, when the mutant is introduced to a clique vertex of Gn, then the probability
of fixation tends to zero as n grows. Furthermore, we prove that, when the mutant is introduced to a cycle
vertex of Gn, then the probability of fixation when 1 < r < 4

3 is at most 1− 1
r as n grows (i.e., bounded by

the value of the homogeneous population of the Moran process). Therefore, since the clique and the cycle
have the same number n of vertices in Gn, the fixation probability fGn of Gn is at most 1

2 (1 − 1
r ) as n

increases (for instance it is necessary that n
log7 n

> 1), i.e., Gn is a suppressor of selection. Furthermore,

we provide for the model of [19] the first non-trivial upper and lower bounds for the fixation probability in
general undirected graphs. In particular, we first provide a generic upper bound depending on the degrees of
some local neighborhood. Second, we present another upper and lower bound, depending on the maximum
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ratio between the degrees of two neighboring vertices.
As our main contribution, we introduce in this paper the natural alternative of the all-or-nothing approach

of [19], which can be interpreted as an aggregation strategy. In this aggregation model, all individuals interact
simultaneously and the result is a compromise between the aggressive and non-aggressive individuals. Both
of these two alternative models for evolutionary dynamics coexist in several domains of interaction between
individuals, e.g., in biology (natural selection vs. mutation of species). With this new model, we try to
capture systems like those described in [30], where the intrusion of a mutant generates a new a-posteriori
population type which is the result of the aggregation of residents and mutants. However, the difference of
our model from the models of [30] is that our interactions take into account the underlying graph structure
and the locality of the invaders. In particular, another motivation for our models comes from biological
networks, in which the interacting individuals (vertices) correspond to cells of an organ and advantageous
mutants correspond to viral cells or cancer. Regarding the proposed model of mutual influences, we first
prove that it admits a potential function. This potential function guarantees that for any graph topology
and any initial fitness vector, the system converges to a stable state, where all individuals have the same
fitness. Furthermore, we analyze the long-term behavior of this model for the complete graph. In particular,
we prove fast convergence to the stable state, as well as we provide almost tight bounds on the limit fitness
of the individuals.

Apart from being interesting on its own, this new evolutionary model also enables the abstract modeling
of new control mechanisms over invading populations in networks. We demonstrate this by introducing and
analyzing the behavior of two alternative control approaches. In both scenarios we periodically modify the
fitness of a small fraction of individuals in the current population, which is arranged on a complete graph
with n vertices. In the first scenario, we proceed in phases. Namely, after each modification, we let the
system stabilize before we perform the next modification. In the second scenario, we modify the fitness of a
small fraction of individuals at each step. In both alternatives, we stop performing these modifications of the
population whenever the fitness of every individual becomes sufficiently close to 1 (which is considered to be
the “healthy” state of the system). For the first scenario, we prove that the number of phases needed for the
system to stabilize in the healthy state is logarithmic in r− 1 and independent of n. For the second scenario,
we prove that the number of iterations needed for the system to stabilize in the healthy state is linear in n
and proportional to r ln(r − 1). Related recovery control mechanisms have been studied also in the context
of epidemic spreading in the SIR and SIS models (see e.g. [2, 3, 5, 11]).

Notation. In an undirected graph G = (V,E), the edge between vertices u ∈ V and v ∈ V is denoted
by uv ∈ E, and in this case u and v are said to be adjacent in G. If the graph G is directed, we denote
by 〈uv〉 the arc from u to v. For every vertex u ∈ V in an undirected graph G = (V,E), we denote by
N(u) = {v ∈ V | uv ∈ E} the set of neighbors of u in G and by deg(u) = |N(u)|. Furthermore, for any k ≥ 1,
we denote for simplicity [k] = {1, 2, . . . , k}.
Organization of the paper. We discuss in Section 2 the two alternative models for evolutionary dynamics
on graphs. In particular, we formally present in Section 2.1 the model of [19] and then we introduce in
Section 2.2 our new model of mutual influences. In Section 3 we first provide generic upper and lower bounds
for the fixation probability in the model of [19] for arbitrary undirected graphs. Then we present in Section 3.3
the first class of undirected graphs which act as suppressors of selection in the model of [19], when 1 < r < 4

3
and as the number of vertices increases. In Section 4 we analyze our new evolutionary model of mutual
influences. In particular, we first prove in Section 4.1 the convergence of the model by using a potential
function, and then we analyze in Section 4.2 the long-term behavior of this model for the case of a complete
graph. In Section 5 we demonstrate the use of our new model in analyzing the behavior of two alternative
invasion control mechanisms. Finally, we discuss the presented results and further research in Section 6.

2 All-or-nothing vs. aggregation

In this section we formally define the model of [19] for undirected graphs and we introduce our new model
of mutual influences. Similarly to [19], we assume that the underlying graph is connected and that for every
edge uv of an undirected graph wuv = 1

deg u and wvu = 1
deg v , i.e., once a vertex u has been chosen for

reproduction, it chooses one of its neighbors uniformly at random.

2.1 The model of Lieberman, Hauert, and Nowak (an all-or-nothing approach)

Let G = (V,E) be a connected undirected graph with n vertices. In the model of [19], an individual is chosen
for reproduction with a probability proportional to its fitness. Thus, if S denotes the current set of mutants,
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the probability that a particular mutant is selected for reproduction equals

r

|S| · r + n− |S| . (1)

Thus, using (1), we can describe this process of [19] by a Markov chain with state space S = 2V (i.e., the set
of all subsets of V ) and transition probability matrix P , where for any two states S1, S2 ⊆ V ,

PS1,S2
=



1
|S1|r+n−|S1| ·

∑
u∈N(v)∩S1

r
deg(u) , if S2 = S1 ∪ {v} and v /∈ S1,

1
|S1|r+n−|S1| ·

∑
u∈N(v)\S2

1
deg(u) , if S1 = S2 ∪ {v} and v /∈ S2,

1
|S1|r+n−|S1| ·

( ∑
u∈S1

r·|N(u)∩S1|
deg(u) +

∑
u∈V \S1

|N(u)\S1|
deg(u)

)
, if S2 = S1,

0, otherwise.

(2)

Notice that in the above Markov chain there are two absorbing states, namely ∅ and V , which describe
the cases where the vertices of G are all non-mutants or all mutants, respectively. Since G is connected, the
above Markov chain reaches with probability 1 one of these two absorbing states, i.e., it either reaches the
state ∅ or the state V . If we denote by hv the probability of absorption at state V , given that we start with a

single mutant placed initially on vertex v, then by definition fG =
∑
v hv
n . Note that hv depends on the graph

G, as well as on the particular vertex v. Generalizing this notation, let hS be the probability of absorption
at V given that we start at state S ⊆ V , and let h = [hS ]S⊆V . Then, it follows that vector h is the unique
solution of the linear system h = P · h with boundary conditions h∅ = 0 and hV = 1.

Observe that the state space S = 2V of this Markov chain has size 2n, i.e., the matrix P = [PS1,S2
] in (2)

has dimension 2n × 2n. To the best of our knowledge, most prior work on computing fixation probabilities
of undirected graphs has been restricted to graphs with a high degree of symmetry, which reduces the
size of the linear system, for example to regular graphs, stars, paths, and graphs with a small number of
vertices [7–10, 19, 24]. In particular, for the case of regular graphs, the above Markov chain is equivalent
to a birth-death process with n − 1 transient (non-absorbing) states, where the forward bias at every state
(i.e., the ratio of the forward probability over the backward probability) is equal to r. In this case, the fixation
probability is equal to

ρ =
1

1 +
∑n−1
i=1

1
ri

=
1− 1

r

1− 1
rn

, (3)

cf. [24, Chapter 8]. It is worth mentioning that, even for the case of paths, there is no known exact or
approximate formula for the fixation probability [9].

2.2 An evolutionary model of mutual influences (an aggregation approach)

The evolutionary model of [19] constitutes a sequential process, in every step of which only two individuals
interact and the process eventually reaches one of two extreme states. However, in many evolutionary
processes, all individuals may interact simultaneously at each time step, while some individuals have greater
influence to the rest of the population than others. This observation leads naturally to the following model
for evolution on graphs, which can be thought as a smooth version of the model presented in [19].

Consider a population of size n and a proportion α ∈ [0, 1] of newly introduced mutants with relative
fitness r. The topology of the population is given in general by a directed graph G = (V,E) with |V | = n
vertices, where the directed arcs of E describe the allowed interactions between the individuals. At each time
step, every individual u ∈ V of the population influences every individual v ∈ V , for which 〈uv〉 ∈ E, while
the degree of this influence is proportional to the fitness of u and to the weight wuv of the arc 〈uv〉. Note
that we can assume without loss of generality that the weights wuv on the arcs are normalized, i.e., for every
fixed vertex u ∈ V it holds

∑
〈uv〉∈E wuv = 1 . Although this model can be defined in general for directed

graphs with arbitrary arc weights wuv, we will focus in the following on the case where G is an undirected
graph and wuv = 1

deg(u) for all edges uv ∈ E.

Formally, let V = {u1, u2, . . . , un} be the set of vertices and rui(k) be the fitness of the vertex ui ∈ V at
iteration k ≥ 0. Let Σ(k) denote the sum of the fitnesses of all vertices at iteration k, i.e., Σ(k) =

∑n
i=1 rui(k).

Then the vector r(k + 1) with the fitnesses rui(k + 1) of the vertices ui ∈ V at the next iteration k + 1 is
given by

[ru1
(k + 1), ru2

(k + 1), . . . , run(k + 1)]T = P (k) · [ru1
(k), ru2

(k), . . . , run(k)]T , (4)

i.e.,
r(k + 1) = P (k) · r(k). (5)
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In the latter equation, the elements of the square matrix P (k) = [Pij(k)]ni,j=1 depend on the iteration k and
they are given as follows:

Pij(k) =


ruj (k)

deg(uj)Σ(k) , if i 6= j and uiuj ∈ E,
0, if i 6= j and uiuj /∈ E,
1−∑j 6=i Pij(k), if i = j.

(6)

Note by (5) and (6) that after the first iteration, the fitness of every individual in our new evolutionary
model of mutual influences equals the expected fitness of this individual in the model of [19] (cf. Section 2.1).
However, this correlation of the two models is not maintained in the next iterations and the two models
behave differently as the processes evolve.

In particular, in the case where G is the complete graph, i.e., deg(ui) = n − 1 for every vertex ui, the
matrix P (k) becomes

P (k) =



1− ru2 (k)+...+run (k)

(n−1)Σ(k)

ru2 (k)

(n−1)Σ(k) · · · run (k)
(n−1)Σ(k)

ru1 (k)

(n−1)Σ(k) 1− ru1 (k)+ru3 (k)+...+run (k)

(n−1)Σ(k) · · · run (k)
(n−1)Σ(k)

· · · · · · · · · · · ·
ru1 (k)

(n−1)Σ(k)

ru2 (k)

(n−1)Σ(k) · · · 1− ru1 (k)+...+run−1
(k)

(n−1)Σ(k)


. (7)

The system given by (5) and (6) can be defined for every initial fitness vector r(0). However, in the case
where there is initially a proportion α ∈ [0, 1] of newly introduced mutants with relative fitness r, the initial
condition r(0) of the system in (4) is a vector with αn entries equal to r and with (1−α)n entries equal to 1.

Observation 1 Note that the recursive equation (5) is a non-linear equation on the fitness values ruj (k) of
the vertices at iteration k.

Since by (6) the sum of every row of the matrix P (k) equals one, the fitness rui(k) of vertex ui after the
(k + 1)-th iteration of the process is a convex combination of the fitnesses of the neighbors of ui after the
k-th iteration. Therefore, in particular, the fitness of every vertex ui at every iteration k ≥ 0 lies between
the smallest and the greatest initial fitness of the vertices, as the next observation states.

Observation 2 Let rmin and rmax be the smallest and the greatest initial fitness in r(0), respectively. Then
rmin ≤ rui(k) ≤ rmax for every ui ∈ V and every k ≥ 0.

Degree of influence. Suppose that initially αn mutants (for some α ∈ [0, 1]) with relative fitness r ≥ 1
are introduced in graph G on a subset S ⊆ V of its vertices. Then, as we prove in Theorem 5, after a certain
number of iterations the fitness vector r(k) converges to a vector [rS0 , r

S
0 , . . . , r

S
0 ]T , for some value rS0 . This

limit fitness rS0 depends in general on the initial relative fitness r of the mutants, on their initial number αn,
as well as on their initial position on the vertices of S ⊆ V . Visually, if mutants and non-mutants would be
encoded by different colors such as blue and red, respectively, then the limit fitness rS0 could be thought as a
mixture of these two colors, i.e., as the “degree of purple color” that all the vertices obtain after sufficiently
many iterations, given that the mutants are initially placed at the vertices of S. In the case where the αn
mutants are initially placed with uniform probability to the vertices of G, we can define the limit fitness r0

of G as

r0 =

∑
S⊆V, |S|=αn

rS0(
n
αn

) .

For a given initial value of r, the bigger is r0 the stronger is the effect of natural selection in G.
Since rS0 is a convex combination of r and 1, there exists a value fG,S(r) ∈ [0, 1], such that

rS0 = fG,S(r) · r + (1− fG,S(r)) · 1. Then, the value fG,S(r) is the degree of influence of the graph G, given
that the mutants are initially placed at the vertices of S. In the case where the mutants are initially placed
with uniform probability at the vertices of G, we can define the degree of influence of G as

fG(r) =

∑
S⊆V, |S|=αn

fG,S(r)(
n
αn

) .
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Number of iterations to stability. For some graphs G, the fitness vector r(k) reaches exactly the limit
fitness vector [r0, r0, . . . , r0]T (for instance, the complete graph with two vertices and one mutant not only
reaches this limit in exactly one iteration, but also the degree of influence is exactly the fixation probability
of this simple graph). However, for other graphs G the fitness vector r(k) converges to [r0, r0, . . . , r0]T

(cf. Theorem 5 below), but it never becomes equal to it. In the first case, one can compute (exactly or
approximately) the number of iterations needed to reach the limit fitness vector. In the second case, given an
arbitrary ε > 0, one can compute the number of iterations needed to come ε-close to the limit fitness vector.

3 Analysis of the all-or-nothing model

In this section we present analytic results on the evolutionary model of [19], which is based on the sequential
interaction among the individuals. In particular, we first present non-trivial upper and lower bounds for the
fixation probability, depending on the degrees of vertices. Then we present for 1 < r < 4

3 the first class of
undirected graphs that act as suppressors of selection in the model of [19], as the number of vertices increases.

Recall from the preamble of Section 2.2 that, similarly to [19], we assumed that wuv = 1
deg u and wvu =

1
deg v for every edge uv of an undirected graph G = (V,E). It is easy to see that this formulation is equivalent
to assigning to every edge e = uv ∈ E the weight we = wuv = wvu = 1, since also in this case, once a
vertex u has been chosen for reproduction, it chooses one of its neighbors uniformly at random. A natural
generalization of this weight assignment is to consider G as a complete graph, where every edge e in the clique
is assigned a non-negative weight we ≥ 0, and we is not necessarily an integer. Note that, whenever we = 0,
it is as if the edge e is not present in G. Then, once a vertex u has been chosen for reproduction, u chooses
any other vertex v with probability wuv∑

x 6=u wux
.

Note that, if we do not impose any additional constraint on the weights, we can simulate multigraphs by
just setting the weight of an edge to be equal to the multiplicity of this edge. Furthermore, we can construct
graphs with arbitrary small fixation probability. For instance, consider an undirected star with n leaves,
where one of the edges has weight an arbitrary small ε > 0 and all the other edges have weight 1. Then,
the leaf that is incident to the edge with weight ε acts as a source in the graph as ε → 0. Thus, the only
chance to reach fixation is when we initially place the mutant at the source, i.e., the fixation probability of
this graph tends to 1

n+1 as ε→ 0. Therefore, it seems that the difficulty to construct strong suppressors lies
in the fact that unweighted undirected graphs can not simulate sources. For this reason, we consider in the
remainder of this paper only unweighted undirected graphs.

3.1 A generic upper bound approach

In the next theorem we provide a generic upper bound of the fixation probability of undirected graphs,
depending on the degrees of the vertices in some local neighborhood. In the next theorem, the quantities Qu
and Quv depend also on the graph G, however we avoid writing QGu and QGuv, respectively, in order to keep
the notation as simple as possible.

Theorem 1 Let G = (V,E) be an undirected graph. For any uv ∈ E, let Qu =
∑
x∈N(u)

1
deg x and Quv =∑

x∈N(u)\{v}
1

deg x +
∑
x∈N(v)\{u}

1
deg x . Then

fG ≤ max
uv∈E

{
r2

r2 + rQu + QuQuv
2

}
. (8)

Proof. For the proof we construct a simple Markov chain M̃, in which the probability of reaching a specific
absorbing state is at least the probability of fixation in the original Markov chain. Then, in order to provide
an upper bound of the fixation probability in the original Markov chain, we provide an upper bound on the
probability of reaching this specific absorbing state in M̃.

Let u be a choice for the initial vertex that maximizes the probability of fixation. Furthermore, assume
that we end the process in favor of the mutants when the corresponding Markov chain describing the model
of [19] reaches three mutants. To favor fixation even more, since u maximizes the fixation probability, we
assume that, whenever we reach two mutants and a backward step happens (i.e., a step that reduces the
number of mutants), then we backtrack to state u (even if vertex u was the one that became non-mutant).
Finally, given that we start at vertex u and we increase the number of mutants by one, we assume that the
neighbor v of u, which maximizes the forward bias of the state {u, v}, becomes a mutant. Imposing these
constraints (and eliminating self loops), we get a Markov chain M̃, shown in Figure 1, that dominates the
original Markov chain. That is, the probability that M̃ reaches the state of three mutants, given that we
start at u, is an upper bound of the fixation probability fG of G.
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p1 p2

q1 q2
0 3u u, v

1 1

Figure 1: The Markov chain M̃.

For the Markov chain M̃, we have that

q1 =

∑
x∈N(u)

1
deg x

r +
∑
x∈N(u)

1
deg x

=
Qu

r +Qu
= 1− p1,

where N(u) is the set of neighbors of u. Also,

q2 =

∑
x∈N(u)\{v}

1
deg x +

∑
x∈N(v)\{u}

1
deg x

r(1− 1
deg u ) + r(1− 1

deg v ) +
∑
x∈N(u)\{v}

1
deg x +

∑
x∈N(v)\{u}

1
deg x

=
Quv

r(2− 1
deg u − 1

deg v ) +Quv
= 1− p2.

Let now h̃u (resp. h̃uv) denote the probability of reaching three mutants, starting from u (resp. starting from
the state {u, v}) in M̃. We have that

h̃u = p1h̃uv = p1(p2 + q2h̃u)⇔

h̃u =
p1p2

1− p1q2
=

r2

r2 + rQu + QuQuv
2− 1

deg u− 1
deg v

≤ r2

r2 + rQu + QuQuv
2

.

This completes the proof of the theorem.

Consider for instance a bipartite graph G = (U, V,E), where deg u = d1 for every vertex u ∈ U and
deg v = d2 for every vertex v ∈ V . Then any edge of E has one vertex in U and one vertex in V . Using
the above notation, consider now an arbitrary edge uv ∈ E, where u ∈ U and v ∈ V . Then Qu = d1

d2
and

Quv = d1−1
d2

+ d2−1
d1

. The right side of (8) is maximized when d1 < d2, and thus in this case Theorem 1 implies

that fG ≤ r2

r2+r
d1
d2

+
d1
2d2

(
d1−1
d2

+
d2−1
d1

) . In particular, for the star graph with n+ 1 vertices, we have d1 = 1 and

d2 = n. But, as shown in [19], the fixation probability of the star is asymptotically equal to 1− 1
r2 , whereas

the above bound gives fstar ≤ r2

r2+r 1
n+n−1

2n

= 1− 1
2r2+1+o(1) .

3.2 Upper and lower bounds depending on degrees

In the following theorem we provide upper and lower bounds for the fixation probability of undirected graphs,
depending on the maximum ratio between the degrees of two neighboring vertices.

Theorem 2 Let G = (V,E) be an undirected graph, where deg(v)
deg(u) ≤ λ whenever uv ∈ E. Then, the fixation

probability fG of G, when the fitness of the mutant is r, is upper (resp. lower) bounded by the fixation
probability of the clique for mutant fitness r1 = rλ (resp. for mutant fitness r2 = r

λ). That is,

1− λ
r

1−
(
λ
r

)n ≤ fG ≤ 1− 1
rλ

1−
(

1
rλ

)n .
Proof. For an arbitrary state S ⊆ V of the Markov Chain (that corresponds to the set of mutants in that
state), let ρ+(S) (resp. ρ−(S)) denote the probability that the number of mutants increases (resp. decreases).

In the case where G is a clique, the forward bias ρ+(S)
ρ−(S) at state S is equal to r, for every state S [19, 24].

Then,

ρ+(S) =
∑

{uv∈E | u∈S, v/∈S}

r

n− |S|+ r|S|
1

deg(u)
(9)

and

ρ−(S) =
∑

{uv∈E | u∈S, v/∈S}

1

n− |S|+ r|S|
1

deg(v)
. (10)
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Now, since by assumption deg(v)
deg(u) ≤ λ whenever uv ∈ E, it follows that

1

λ
·

∑
{uv∈E | u∈S, v/∈S}

1

deg(v)
≤

∑
{uv∈E | u∈S, v/∈S}

1

deg(u)
≤ λ ·

∑
{uv∈E | u∈S, v/∈S}

1

deg(v)
. (11)

By (9), (10), and (11) we get the following upper and lower bounds for the forward bias at state S.

r

λ
≤ ρ+(S)

ρ−(S)
≤ rλ. (12)

Notice that the upper and lower bounds of (12) for the forward bias at state S are independent of S. Therefore,
the process stochastically dominates a birth-death process with forward bias r

λ , while it is stochastically
dominated by a birth-death process with forward bias rλ (cf. equation (3)). This completes the proof of the
theorem.

3.3 The undirected suppressor

In this section we provide the first class of undirected graphs (which we call clique-wheels) that act as
suppressors of selection when 1 < r < 4

3 , as the number of vertices increases. In particular, we prove that for
these values the fitness r the fixation probability of sufficiently large members of this class is at most 1

2 (1− 1
r ),

i.e., the half the fixation probability of the complete graph, as n→∞. An example of a clique-wheel graph
Gn is depicted in Figure 2(a). This graph consists of a clique of size n ≥ 3 and an induced cycle of the same
size n with a perfect matching between them. We will refer in the following to the vertices of the inner clique
as clique vertices and to the vertices of the outer cycle as ring vertices.

n-cliqueGn :

(a)

· · ·
S1S0 S2 S3

F1 F2 F3

α1 α2

β1

β2

γ1 γ2 γ3

S n
log7n

S n
log7n

−1S n
log7n

−2

F n
log7n

−2 F n
log7n

−1

α n
log7n

−1

β n
log7n

−1

γ n
log7n

−1

(b)

Figure 2: (a) The clique-wheel graph Gn and (b) the state graph of a relaxed Markov chain for computing
an upper bound of h1 = hclique.

Denote by hclique (resp. hring) the probability that all the vertices of Gn become mutants, given that we
start with one mutant in the clique (resp. with one mutant in the ring). We first provide in the next lemma
an upper bound on hclique.

Lemma 1 For any r ∈
(
1, 4

3

)
,

hclique ≤
7

6n
(

4
3r − 1

) + o

(
1

n

)
.

Proof. Denote by Sk the state, in which exactly k ≥ 0 clique vertices are mutants and all ring vertices are
non-mutants. Note that S0 is the empty state. Denote by Fk the set of states where at least one ring vertex of
Gn and exactly k ≥ 0 clique vertices are mutants. With a slight abuse of notation, we refer in the remainder
of the proof to Fk as being one state rather than a set of states. Furthermore, for every k ≥ 0, denote by
hk (resp. by hFk) the probability that, starting at the state Sk (resp. Fk), we eventually reach the full state
(i.e., the state where all vertices are mutants). Note that h0 = 0 and h1 = hclique, since S0 is the empty state
and S1 is the state with only one mutant in the clique. In order to compute an upper bound of h1, we define
a relaxation M of the Markov process, in which, once we are in the state S n

log7 n
or in any of the states Fk,

where k ≥ 1, then we move to the full state (i.e., the state where all vertices are mutants) with probability
1. That is, in the Markov chain M, h n

log7 n
= 1 and hFk = 1 for every k ≥ 1. It is then clear that the value

of h1 in M is greater than or equal to the value of h1 in the original Markov chain. The Markov chain M
is depicted in Figure 2(b), where we eliminated self loops and we omitted (for simplicity of the figure) the
transitions of the Markov chain to the full state.
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For any k = 1, . . . , n
log7 n

− 1 in this Markov chain,

hk = αkhk+1 + βkhk−1 + γk, (13)

where

αk =
r k(n−k)

n

r k(n−k+1)
n + k

(
1
3 + n−k

n

) ,
βk =

k
(

1
3 + n−k

n

)
r k(n−k+1)

n + k
(

1
3 + n−k

n

) , (14)

γk =
r kn

r k(n−k+1)
n + k

(
1
3 + n−k

n

) .
Notice now by (14) that

βk
αk

=
4
3n− k
r(n− k)

>
4

3r
> 1, (15)

since r ∈
(
1, 4

3

)
by assumption. Furthermore, since 1

1− 1
log7 n

≤ 7
6 for sufficiently large n, it follows that for

every k = 1, 2, . . . , n
log7 n

− 1,

γk
αk

=
1

n− k ≤
7

6n
, (16)

Now, since αk + βk + γk = 1, (13) implies by (15) and (16) that

hk+1 − hk =
βk
αk

(hk − hk−1)− γk
αk

(1− hk)

≥ 4

3r
(hk − hk−1)− 7

6n
.

Thus, since h0 = 0 and hk ≥ hk−1 for all k = 1, . . . , n
log7 n

, it follows that for every k,

hk+1 − hk ≥
(

4

3r

)k
(h1 − h0)− 7

6n
·
k−1∑
i=0

(
4

3r

)i

=

(
4

3r

)k
h1 −

7

6n
·
(

4
3r

)k − 1
4
3r − 1

.

Consequently, since h n
log7 n

= 1 in the relaxed Markov chain, we have that

1− h1 =

n
log7 n

−1∑
k=1

(hk+1 − hk)

≥
n

log7 n
−1∑

k=1

[(
4

3r

)k
h1 −

7

6n
·
(

4
3r

)k − 1
4
3r − 1

]
⇒

h1

n
log7 n

−1∑
k=0

(
4

3r

)k
≤ 1 +

7

6n
(

4
3r − 1

) n
log7 n

−1∑
k=0

[(
4

3r

)k
− 1

]
,

and thus

h1 ≤
7

6n
(

4
3r − 1

) +
1∑ n

log7 n
−1

k=0

(
4
3r

)k .
This completes the proof of the lemma, since 4

3r > 1.

The next corollary follows by the proof of Lemma 1.

Corollary 1 Starting with one mutant in the clique, the probability that at least one ring vertex becomes a
mutant, or that we eventually reach n

log7 n
mutants in the clique, is at most 7

6n( 4
3r−1)

+ o
(

1
n

)
.
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v0 v1 v2
q

p p

qq

p1

vmvm−1

1

Figure 3: The Markov chain M.

In the remainder of this section, we will also provide an upper bound on hring, thus bounding the fixation
probability fGn of Gn (cf. Theorem 4). Consider the Markov chain M that is depicted in Figure 3. Our
analysis will use the following auxiliary lemma which concerns the expected time to absorption of this Markov
chain.

Lemma 2 Let p 6= q and p + q = 1. Then, as m tends to infinity, the expected number of steps needed for
M to reach vm, given that we start at v1, satisfies

µ1 =

{
em ln q

p+o(m) if p < q
m
p−q + o(m) if p > q

.

Proof. For i = 0, 1, . . . ,m, let µi denote the expected number of steps needed to reach vm, given that we
start at vi. Clearly, µm = 0 and µ0 = 1 + µ1. Furthermore, for i = 1, . . . ,m− 1, it follows that

µi = 1 + pµi+1 + qµi−1,

i.e.,

µi+1 − µi =
q

p
(µi − µi−1)− 1

p

=

(
q

p

)i
(µ1 − µ0)− 1

p

i−1∑
j=0

(
q

p

)j

= −
(
q

p

)i
− 1

q − p

((
q

p

)i
− 1

)
.

Consequently, we have that

m−1∑
i=1

[µi+1 − µi] = −µ1 ⇔

µ1 =

m−1∑
i=1

[(
1 +

1

q − p

)(
q

p

)i
− 1

q − p

]
⇔

µ1 =

(
1 +

1

q − p

) ( q
p

)m
− q

p

q
p − 1

− m− 1

q − p .

Thus, for large m, this completes the proof of the lemma.

Denote in the following byM1 the Markov chain of the stochastic process defined in [19] (see Section 2.1
for an overview), when the underlying graph is the clique-wheel Gn, cf. Figure 2(a). The next definition will
be useful for the discussion below.

Definition 1 (Ring steps) A transition of the Markov chain M1 is called a ring step if it results in a
change of the number of mutants in the outer ring (i.e., ring vertices).

We now present some domination statements that simplify the Markov chain M1. More specifically, all
these statements will increase the probability of reaching fixation when we start with one mutant in the ring,
such that we finally get an upper bound on hring.

D1: Let v be a vertex on the outer ring, and let v′ be its (unique) neighbor in the clique. Let v be a mutant
and v′ be a non-mutant. We will forbid transitions of the Markov chain M1, where v′ places its copy
on vertex v.

D2: Fixation is forced when either of the following happens:

10



A1: The outer ring reaches log n mutants.

A2: The number of ring steps in order to reach log n mutants in the ring is more than log2 n.

A3: The clique reaches n mutants.

A4: A mutant in the clique places a copy of itself on a currently non-mutant of the outer ring.

Let now M2 be the modified Markov chain after these domination statements are imposed. That is, M2

is obtained fromM1 by applying the following modifications: (a) We replace each transition S → S′ specified
in domination statement D1 (i.e., where a non-mutant v′ in the clique replaces a mutant v in the ring by a
copy of it) by a loop S → S with the same probability. (b) We make a transition from any state specified in
domination statement D2 to the absorbing state V (i.e., the full state, where all vertices are mutants) with
probability 1. The following definitions will be useful in what follows.

Definition 2 (Offspring) If a vertex u places its copy on a vertex v at time t, then we say that v is an
offspring of u at time t. Furthermore, if a vertex v′ is an offspring of u, and if v′ places its copy on a vertex
v′′ at time t, then we say that v′′ is an offspring of u at time t. Moreover, if v is an offspring of u at time t,
it remains so until a vertex x places its copy on v at time t′ > t, where x is not an offspring of u.

Notice in Definition 2 that u is not necessarily a mutant at time t.

Definition 3 (Birth in the clique) We will say that a vertex v′ is born in the clique if and only if its
(unique) neighbor v in the outer ring is a mutant and makes a transition to the clique (i.e., v places its
offspring in v′).

Notice in Definition 3 that, before v′ is born in the clique, it is irrelevant whether v′ is a mutant or a
non-mutant. We only need that v is a mutant. Furthermore, the above definition allows for a specific vertex
to be born more than once (i.e., at different time steps). The proof of our main theorem can now be reduced
to a collection of lemmas. Lemma 3 concerns the behavior of the ring.

Lemma 3 Let B1 be the stochastic process describing the ring steps in Markov chain M2. Given that we do
not have absorption at A4, then B1 is a birth-death process with forward bias equal to r. Furthermore, given
that we start with a single mutant on the ring, the following hold:

(1) The probability that the number of mutants in the outer ring reaches log n before absorption at A2, A3

or A4 is at most
1− 1

r

1−( 1
r )

logn .

(2) The probability that more than log2 n ring steps are needed in order to reach log n mutants in the ring,

or to reach absorption in A2, A3, or A4 is at most O
(

1
logn

)
.

Proof. Recall that we do not allow transitions where the clique affects the number of mutants in the outer
ring (by the domination statements D1 and A4). Then, it can be easily seen that the forward bias of the

birth-death process B1 (i.e., the ratio of the forward probability over the backward probability) is
2r
W

1
3

2
W

1
3

= r,

where W is the sum of the fitness of every vertex in the graph. Thus, part (1) of the lemma follows by
equation (3) (for an overview of birth-death processes, see also [23,24]).

For part (2), let X denote the number of ring steps needed in order to reach log n mutants in the ring, or
to reach absorption in A2, A3 or A4. Then X is stochastically dominated by the number of steps needed for
Markov chainM (cf. Figure 3) to reach vm, with m = log n and p = r

r+1 . Hence, by Lemma 2 and Markov’s
inequality, we get that

Pr(X ≥ log2 n) ≤ E[X] · 1

log2 n
≤
(
r + 1

r − 1
log n+ o(log n)

)
· 1

log2 n
= O

(
1

log n

)
.

This completes the proof of the lemma.

The next lemma bounds the number of vertices that are born in the clique (see Definition 3).

Lemma 4 Given that we start with a single mutant on the ring, the probability that we have more than log7 n

births in the clique is at most O
(

1
logn

)
.
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Proof. For the proof, we will ignore for the moment what happens in the clique and how the clique affects
the ring, since these steps are either forbidden (by D1) or lead to absorption (by A4).

Let Y be the number of births in the clique (see Definition 3) that we observe between two ring steps.
Notice that at any time before absorption, there will be exactly 2 non-mutants in the outer ring that can
perform a ring step (see Definition 1). Furthermore, if the number of mutants in the ring is more than 2,
then not all mutants can affect the number of mutants in the ring. We now restrict ourselves, to observe only
ring-involved moves (forgetting about the clique), that is, transitions where only vertices of the ring that can
cause a ring step or a birth in the clique are chosen. Given that M2 (i.e., the modified Markov chain) has
not been absorbed, the probability that a ring step happens next is

pstep =
2(1 + r)

2 + zr

1

3
,

where z is the number of mutants in the outer ring. Similarly, the probability that a birth in the clique
happens next is

pbirth =
zr

2 + zr

1

3
.

Consequently, the random variable Y + 1 is stochastically dominated by a geometric random variable with
probability of success

p =
pstep

pstep + pbirth
=

2r + 2

zr + 2r + 2
≥ 1

log n
,

where in the last inequality we used the observation that at any time before absorption, the number of
mutants in the ring is at most log n because of A1. But then, by Markov’s inequality, we have that

Pr(Y + 1 ≥ log5 n+ 1) ≤
1
p

log5 n+ 1
≤ 1

log4 n
.

But by part (2) of Lemma 3, the probability that there are more than log7 n births in the clique before
the Markov chain is absorbed is by Boole’s inequality at most

log2 nPr(Y ≥ log5 n) +O

(
1

log n

)
≤ O

(
1

log n

)
,

The last inequality comes from the fact that, in order to get at least log7 n births within log2 n ring steps,
there must be at least log5 n births between at least one pair of consecutive ring steps. This completes the
proof of the lemma.

The following lemma states that it is highly unlikely that the clique will affect the outer ring, or that the
number of mutants in the clique will reach n.

Lemma 5 Given that we start with a single mutant on the ring, the probability of absorption at A3 or A4 is

at most O
(

1
logn

)
.

Proof. For the purposes of the proof, we assign to each birth in the clique a distinct label. Notice that,

by Lemma 4, we will use at most log7 n labels with probability at least 1−O
(

1
logn

)
. If we end up using

more than log7 n labels (which happens with probability at most O
(

1
logn

)
by Lemma 4), then we stop the

process and assume that we have reached one of the absorbing states. Furthermore, whenever a mutant v in
the clique with label i replaces one of its neighbors with an offspring, then the label of v is inherited by its
offspring.

In order for M2 to reach absorption at A3, the clique must have n mutants. Since each of these vertices
has a label j ∈ [log7 n], there exists at least one label i such that at least n

log7 n
vertices have label i. Similarly,

if M2 reaches absorption at A4 and v is the corresponding affected ring vertex, then there exists a label i,
such that v has label i. We will call a label i winner if there are at least n

log7 n
vertices in the clique that have

label i, or the outer ring is affected by a clique vertex of label i. Clearly, if M2 reaches absorption at A3 of
A4, there must be at least one winner.

Recall that, by Corollary 1, the probability that a single mutant in the clique either reaches n
log7 n

offspring

or affects the outer ring is at most 7

6n( 4
3r−1)

+ o
(

1
n

)
. Consider now a particular label i. Then, if all the other

mutants of the graph that do not have label i (i.e., mutants in the ring or in the clique with label j 6= i) had
fitness 1, then the probability that i becomes a winner is by Corollary 1 at most 7

6n( 4
3r−1)

+ o
(

1
n

)
. The fact
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that the other mutants that do not have label i have fitness r can only reduce the probability that i becomes
a winner. Therefore, considering all different labels i ∈ [log7 n] and using Boole’s inequality, we conclude that
the probability of reaching absorption at A3 or A4 is at most

log7 n

(
7

6n
(

4
3r − 1

) + o

(
1

n

))
+O

(
1

log n

)
= O

(
1

log n

)
,

where the term O
(

1
logn

)
in the left side corresponds to the probability that we have more than log7 n labels.

This completes the proof of the lemma.

Finally, the following theorem concerns the probability of absorption of M2.

Theorem 3 For n large, given that we start with a single mutant on the ring, the probability that M2 is
absorbed at A1 is at most (1 + o(1))

(
1− 1

r

)
. Furthermore, the probability of absorption at A2, A3, or A4 is

at most O
(

1
logn

)
.

Proof. The bounds on the absorption at A1 or A2 follow from Lemma 3, while the bounds on absorption at
A3 or A4 follow from Lemma 5.

Recall now that M2 (the modified Markov chain) dominates M1 (the original Markov chain). Further-
more, recall that the clique-wheel graph Gn has n clique vertices and n ring vertices, and thus the fixation
probability of Gn is fGn = 1

2 (hclique + hring). Therefore, the next theorem is implied by Theorem 3 and
Lemma 1.

Theorem 4 For the Markov chainM1, and any r ∈
(
1, 4

3

)
, hring ≤ (1+o(1))

(
1− 1

r

)
. Therefore, as n→∞,

the fixation probability of the clique-wheel graph Gn in Figure 2(a) is

fGn ≤
1

2

(
1− 1

r

)
+ o(1).

The proof of Theorem 4 relies heavily on the bound r < 4
3 for the fitness r. Unfortunately we could not

extend our results to greater values of r; in particular it remains an open question whether the clique wheel
graphs act asymptotically as suppressors of selection when r ≥ 4

3 .

4 Analysis of the aggregation model

In this section, we provide analytic results on the new evolutionary model of mutual influences. More
specifically, in Section 4.1 we prove that this model admits a potential function for arbitrary undirected
graphs and arbitrary initial fitness vectors, which implies that the corresponding dynamical systems converge
to a stable state. Furthermore, in Section 4.2 we prove fast convergence of the dynamical systems for the
case of a complete graph, and we provide almost tight upper and lower bounds on the limit fitness to which
the system converges.

4.1 Potential and convergence in general undirected graphs

In the following theorem we prove convergence of the new model of mutual influences using a potential
function.

Theorem 5 Let G = (V,E) be a connected undirected graph. Let r(0) be an initial fitness vector of G, and
let rmin and rmax be the smallest and the greatest initial fitness in r(0), respectively. Then, in the model of
mutual influences, the fitness vector r(k) converges to a vector [r0, r0, . . . , r0]T as k → ∞, for some value
r0 ∈ [rmin, rmax].

Proof. Denote the vertices of G by V = {u1, u2, . . . , un}. Let k ≥ 0. Then (6) implies that for any
i = 1, 2, . . . , n, the element rui(k + 1) of the vector r(k + 1) is

rui(k + 1) =
1

Σ(k)

∑
uj∈N(ui)

ruj (k)

deg(uj)
· ruj (k) +

1− 1

Σ(k)

∑
uj∈N(ui)

ruj (k)

deg(uj)

 · rui(k)

= rui(k) +
1

Σ(k)

∑
uj∈N(ui)

ruj (k) · ruj (k)− rui(k)

deg(uj)
,
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and thus
rui(k + 1)

deg(ui)
=

rui(k)

deg(ui)
+

1

Σ(k)

∑
uj∈N(ui)

ruj (k) · ruj (k)− rui(k)

deg(ui) deg(uj)
. (17)

Therefore, by summing up the equations in (17) for every i = 1, 2, . . . , n it follows that

∑
ui∈V

rui(k + 1)

deg(ui)
=

∑
ui∈V

rui(k)

deg(ui)
+

1

Σ(k)

∑
uiuj∈E

(ruj (k)− rui(k))2

deg(ui) deg(uj)
(18)

≥
∑
ui∈V

rui(k)

deg(ui)
.

Define now the potential function φ(k) =
∑
ui∈V

rui (k)

deg(ui)
for every iteration k ≥ 0 of the process. Note by

Observation 2 that Σ(k) =
∑
ui∈V rui(k) ≤ nrmax is a trivial upper bound for Σ(k). Therefore, (18) implies

that

φ(k + 1)− φ(k) =
1

Σ(k)

∑
uiuj∈E

(ruj (k)− rui(k))2

deg(ui) deg(uj)
(19)

≥ 1

nrmax

∑
uiuj∈E

(ruj (k)− rui(k))2

deg(ui) deg(uj)
>

1

n3rmax

∑
uiuj∈E

(ruj (k)− rui(k))2.

Furthermore, note that rmax ·
∑
ui∈V

1
deg(ui)

< nrmax is a trivial upper bound for φ(k). Therefore, since

φ(k + 1) ≥ φ(k) for every k ≥ 0 by (18), it follows that φ(k) converges to some value φ0 as k → ∞, where

φ(0) ≤ φ0 ≤ nrmax. Consider now an arbitrary ε > 0 and let ε′ = ε2

n3rmax
. Then, since φ(k) −→

k→∞
φ0, there

exists k0 ∈ N, such that |φ(k + 1)− φ(k)| < ε′ for every k ≥ k0. Therefore, (19) implies that for every edge
uiuj ∈ E of G and for every k ≥ k0,

(ruj (k)− rui(k))2 ≤
∑

upuq∈E
(rup(k)− ruq (k))2

≤ n3rmax · |φ(k + 1)− φ(k)| ≤ n3rmax · ε′ = ε2.

Thus, for every ε > 0, there exists k0 ∈ N, such that |ruj (k) − rui(k)| < ε for every k ≥ k0 and for every
edge uiuj ∈ E of G. Therefore, since G is assumed to be connected, all values ru(k), where u ∈ V , converge
to the same value r0 as k → ∞. Furthermore, since ru(k) ∈ [rmin, rmax] by Observation 2, it follows that
r0 ∈ [rmin, rmax] as well. This completes the proof of the theorem.

4.2 Analysis of the complete graph

The next theorem provides an analysis for the limit fitness value r0 and the convergence time to this value,
in the case of a complete graph (i.e., a homogeneous population).

Theorem 6 Let G = (V,E) be the complete graph with n vertices and ε > 0. Let α ∈ [0, 1] be the proportion
of initially introduced mutants with relative fitness r ≥ 1 in G, and let r0 be the limit fitness of G. Then
|ru(k)− rv(k)| < ε for every u, v ∈ V , when

k ≥ (n− 2) · ln
(
r − 1

ε

)
.

Furthermore, for the limit fitness r0,

r0 ≤ 1 + α(r − 1) +
α(1− α)

1 + α(r − 1)
· (r − 1)2

2
(20)

and

r0 ≥ 1 + α(r − 1) +
√

(1 + α(r − 1))2 + 2α(1− α)(r − 1)2

2
(21)

≥ 1 + α(r − 1).
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Proof. Since G is symmetric, we do not distinguish among the different placements S ⊆ V of the αn initially
introduced mutants. Furthermore, at every iteration k ≥ 0, there exist by symmetry two different fitnesses
r1(k) and r2(k) for the vertices of S and of V \ S, respectively. Thus, it suffices to compute only r1(k) and
r2(k) for every k ≥ 0. Let ∆(k) = r1(k)− r2(k). Then, ∆(0) = r − 1. It follows now by (4) and (7) that for
every k ≥ 0

r1(k + 1) =

(
1− (1− α)nr2(k)

(n− 1)Σ(k)

)
· r1(k) +

(1− α)nr2(k)

(n− 1)Σ(k)
· r2(k) (22)

= r1(k)−∆(k)
(1− α)nr2(k)

(n− 1)Σ(k)
.

Similarly,

r2(k + 1) =
αnr1(k)

(n− 1)Σ(k)
· r1(k) +

(
1− αnr1(k)

(n− 1)Σ(k)

)
· r2(k) (23)

= r2(k) + ∆(k)
αnr1(k)

(n− 1)Σ(k)
,

where Σ(k) = αnr1(k) + (1− α)nr2(k). Subtracting now (23) from (22), it follows that

∆(k + 1) = ∆(k)−∆(k) · Σ(k)

(n− 1) · Σ(k)

= ∆(k)
n− 2

n− 1
,

and thus, since ∆(0) = r − 1, it follows that for every k ≥ 0

∆(k) = (r − 1) ·
(
n− 2

n− 1

)k
. (24)

Therefore, in particular, ∆(k) > 0 for every k ≥ 0 if and only if r > 1. Let now ε > 0 be arbitrary. Then
|∆(k)| ≤ ε if and only if (

n− 2

n− 1

)k
≤ ε

r − 1
⇔(

1 +
1

n− 2

)k
≥ r − 1

ε
. (25)

However,
(

1 + 1
n−2

)n−2

→ e as n→∞. Thus, for sufficiently large n, (25) is satisfied when e
k

n−2 ≥ r−1
ε , or

equivalently when

k ≥ (n− 2) · ln
(
r − 1

ε

)
. (26)

Recall by Theorem 5 that r1(k) → r0 and r2(k) → r0 for some value r0, as k → ∞, and thus also
αr1(k) + (1− α)r2(k)→ r0 as k →∞. Furthermore, it follows by (22) and (23) that

αr1(k + 1) + (1− α)r2(k + 1) = αr1(k) + (1− α)r2(k) +
α(1− α)

(αr1(k) + (1− α)r2(k))
· ∆2(k)

n− 1
. (27)

That is, αr1(k)+(1−α)r2(k) is a non-decreasing function of k, and thus αr1(k)+(1−α)r2(k) ≥ αr+(1−α).
Therefore, for every k ≥ 0,

αr1(k) + (1− α)r2(k) ≤ 1 + α(r − 1) +
α(1− α)

1 + α(r − 1)
· 1

n− 1

∞∑
k=0

∆2(k). (28)

The sum
∑∞
k=0 ∆2(k) can be computed by (24) as

∞∑
k=0

∆2(k) = (r − 1)2 · 1

1−
(
n−2
n−1

)2 = (r − 1)2 (n− 1)2

2n− 3
. (29)
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Substituting now (29) into (28), it follows that

αr1(k) + (1− α)r2(k) ≤ 1 + α(r − 1) +
α(1− α)

1 + α(r − 1)
· (r − 1)2 n− 1

2n− 3
. (30)

Therefore, since n−1
2n−3 → 1

2 as n → ∞, and since αr1(k) + (1 − α)r2(k) → r0 as k → ∞, it follows by (30)
that for sufficiently large n and k,

r0 ≤ 1 + α(r − 1) +
α(1− α)

1 + α(r − 1)
· (r − 1)2

2
. (31)

Recall by (27) that αr1(k) + (1 − α)r2(k) is non-decreasing on k, and thus αr1(k) + (1 − α)r2(k) ≤ r0.
Therefore, it follows by (27) and (29) that for every k ≥ 0,

αr1(k) + (1− α)r2(k) ≥ 1 + α(r − 1) +
α(1− α)

r0
· (r − 1)2 n− 1

2n− 3
.

Thus, since n−1
2n−3 → 1

2 as n→∞ and αr1(k) + (1−α)r2(k)→ r0 as k →∞, it follows similarly to the above
that for sufficiently large n and k,

r0 ≥ 1 + α(r − 1) +
α(1− α)

r0
· (r − 1)2

2
,

and thus

r2
0 − r0(1 + α(r − 1))− α(1− α)(r − 1)2

2
≥ 0. (32)

Therefore, since r0 > 0, it follows by solving the trinomial in (32) that

r0 ≥
1 + α(r − 1) +

√
(1 + α(r − 1))2 + 2α(1− α)(r − 1)2

2
. (33)

The statement of the theorem follows now by (26), (31), and (33).

The next corollary follows from Theorem 6.

Corollary 2 Let G = (V,E) be the complete graph with n vertices. Suppose that initially exactly one mutant

with relative fitness r ≥ 1 is placed in G and let r0 be the limit fitness of G. Then 1 + r−1
n ≤ r0 ≤ 1 + r2−1

2n .

Proof. Since we have initially one mutant, it follows that α = 1
n . Then, substituting this value of α in (21),

we obtain the lower bound r0 ≥ 1 + r−1
n . For the upper bound of r0, it follows by substituting α in (20) that

r0 ≤ 1 +
r − 1

n
+

1
n
n−1
n

r
n +

(
1− 1

n

) · (r − 1)2

2

= 1 +
r − 1

n

(
1 +

n− 1

r + (n− 1)
· r − 1

2

)
≤ 1 +

r − 1

n

(
1 +

r − 1

2

)
= 1 +

r2 − 1

2n
.

This completes the proof of the corollary.

5 Invasion control mechanisms

As stated in the introduction of this paper, our new evolutionary model of mutual influences can be used to
model control mechanisms over invading populations in networks. We demonstrate this by presenting two
alternative scenarios in Sections 5.1 and 5.2. In both considered scenarios, we assume that αn individuals of
relative fitness r (the rest being of fitness 1) are introduced in the complete graph with n vertices. Then, as
the process evolves, we periodically choose a small fraction β ∈ [0, 1] of individuals in the current population
and we reduce their current fitnesses to a value that is considered to correspond to the healthy state of the
system (without loss of generality, this value in our setting is 1). In the remainder of this section, we call
these modified individuals “stabilizers”, as they help the population to resist the invasion of the mutants.
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5.1 Control of invasion in phases

In the first scenario of controlling the invasion of advantageous mutants in networks, we insert stabilizers to
the population in phases, as follows. In each phase k ≥ 1, we let the process evolve until all fitnesses {rv | v ∈
V } become ε-relatively-close to their fixed point r

(k)
0 (i.e., until they ε-approximate r

(k)
0 ). That is, until

|rv−r(k)0 |
r
(k)
0

< ε for every v ∈ V . Note by Theorem 5 that, at every phase, the fitness values always ε-approximate

such a limit fitness r
(k)
0 . After the end of each phase, we introduce βn stabilizers, where β ∈ [0, 1]. That is,

we replace βn vertices (arbitrarily chosen) by individuals of fitness 1, i.e., by resident individuals. Clearly, the
more the number of phases, the closer the fixed point at the end of each phase will be to 1. In the following
theorem we bound the number of phases needed until the system stabilizes, i.e., until the fitness of every
vertex becomes sufficiently close to 1.

Theorem 7 Let G = (V,E) be the complete graph with n vertices. Let α ∈ [0, 1] be the proportion of initially
introduced mutants with relative fitness r ≥ 1 in G and let β ∈ [0, 1] be the proportion of the stabilizers

introduced at every phase. Let r
(k)
0 be the limit fitness after phase k and let ε, δ > 0, be such that β

2 >
√
ε and

δ > 4
3

√
ε. Finally, let each phase k run until the fitnesses ε-approximate their fixed point r

(k)
0 . Then, after

1− ln
(
ε+ (1 + ε) 1+α

2 (r − 1)
)
− ln

(
δ − 4

3

√
ε
)

ln(1 + ε) + ln
(

1− β
2

)
phases, the relative fitness of every vertex u ∈ V is at most 1 + δ.

Proof. Consider the first phase, where initially there exist αn mutants with relative fitness r and (1 − α)n

resident individuals with fitness 1 each. Then, since r ≥ 1, it follows by (20) for the fixed point r
(1)
0 after the

first phase that

r
(1)
0 ≤ 1 + α(r − 1) ·

(
1 +

(1− α)(r − 1)

2(1 + α(r − 1))

)
= 1 +

α(r − 1)

2
·
(

1 +
1 + (r − 1)

1 + α(r − 1)

)
≤ 1 +

α(r − 1)

2
·
(

1 +
1

α

)
,

i.e.,

r
(1)
0 ≤ 1 +

1 + α

2
(r − 1). (34)

Suppose that we let each phase k ≥ 1 run until the fitnesses ε-approximate their fixed point r
(k)
0 . Note that,

at the start of the process, (1 − α)n vertices have fitness 1 and αn vertices have fitness r. Similarly, before

the kth phase starts, βn vertices have fitness 1 and (1−β)n vertices have fitness at most (1 +ε)r
(k−1)
0 . Then,

we obtain similarly to (34) that the fixed point r
(k)
0 at iteration k is in the worst case

r
(k)
0 ≤ 1 +

1 + (1− β)

2

(
(1 + ε)r

(k−1)
0 − 1

)
= 1 +

(
1− β

2

)(
(1 + ε)r

(k−1)
0 − 1

)
.

Therefore

(1 + ε)r
(k)
0 ≤ (1 + ε) + (1 + ε)

(
1− β

2

)(
(1 + ε)r

(k−1)
0 − 1

)
,

and thus

(1 + ε)r
(k)
0 − 1 ≤ ε+ (1 + ε)

(
1− β

2

)(
(1 + ε)r

(k−1)
0 − 1

)
.

Let now λ = (1 + ε)
(

1− β
2

)
. Then the last inequality becomes

(1 + ε)r
(k)
0 − 1 ≤ ε+ λ

(
(1 + ε)r

(k−1)
0 − 1

)
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and by induction we have

(1 + ε)r
(k)
0 − 1 ≤ ε

k−2∑
i=0

λi + λk−1
(

(1 + ε)r
(1)
0 − 1

)
= ε

1− λk−1

1− λ + λk−1
(

(1 + ε)r
(1)
0 − 1

)
.

Therefore, (34) implies that

(1 + ε)r
(k)
0 − 1 ≤ ε1− λk−1

1− λ + λk−1

(
ε+ (1 + ε)

1 + α

2
(r − 1)

)
. (35)

At the end of the kth phase, the relative fitness of each vertex is at most (1+ε)r
(k)
0 . Now, in order to compute

at least how many phases are needed to reach a relative fitness (1 + ε)r
(k)
0 ≤ 1 + δ for every vertex u ∈ V , it

suffices by (35) to compute the smallest value of k, such that

ε
1− λk−1

1− λ + λk−1

(
ε+ (1 + ε)

1 + α

2
(r − 1)

)
≤ δ. (36)

Recall now that
√
ε < β

2 ≤ 1
2 by assumption. Therefore λ = (1 + ε)

(
1− β

2

)
< (1 + ε)(1 −√ε), i.e., λ < 1.

Thus 1− λk−1 < 1 and it suffices from (36) to compute the smallest number k for which

ε

1− λ + λk−1

(
ε+ (1 + ε)

1 + α

2
(r − 1)

)
≤ δ. (37)

Note now that

ε

1− λ =
ε

1− (1 + ε)
(

1− β
2

)
=

ε
β
2 (1 + ε)− ε

.

Thus, since β
2 >
√
ε by assumption, it follows that

ε

1− λ <
ε√

ε(1 + ε)− ε =

√
ε

1 + ε−√ε . (38)

However 1 + ε−√ε ≥ 3
4 for every ε ∈ (0, 1), and thus it follows by (38) that ε

1−λ <
4
3

√
ε. Therefore it suffices

from (37) to compute the smallest number k for which

4

3

√
ε+ λk−1

(
ε+ (1 + ε)

1 + α

2
(r − 1)

)
≤ δ.

That is,

λk−1 ≤ δ − 4
3

√
ε

ε+ (1 + ε) 1+α
2 (r − 1)

,

or equivalently

k ≥ 1− ln
(
ε+ (1 + ε) 1+α

2 (r − 1)
)
− ln

(
δ − 4

3

√
ε
)

ln(1 + ε) + ln
(

1− β
2

) .

This completes the proof of the theorem.

5.2 Continuous control of invasion

In this section we present another variation of controlling the invasion of advantageous mutants, using our
new evolutionary model. In this variation, we do not proceed in phases; we rather introduce at every
single iteration of the process βn stabilizers, where β ∈ [0, 1] is a small proportion of the individuals of the
population. In the remainder of this section, we assume that at every iteration the βn stabilizers with relative
fitness 1 are the same. This assumption provides a worst case bound on the number of iterations needed to
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get every vertex to fitness at most 1 + δ. This is because, at each iteration, we select the βn vertices with
the smallest fitness and reset their fitness to 1. Since that is the smallest possible change we could make to
βn vertices, it takes the longest possible time to reach the fixed point. Note that being able to choose βn
non-mutants to reset to fitness 1 means we are only analysing cases where α + β ≤ 1; note however that
this is still the interesting case, since this way we investigate how a small number of βn stabilizers (i.e., for
a small constant β) impacts on the stabilization process.

Theorem 8 Let G = (V,E) be the complete graph with n vertices. Let α ∈ [0, 1] be the proportion of initially
introduced mutants with relative fitness r ≥ 1 in G and let β ∈ [0, 1] be the proportion of the stabilizers
introduced at every iteration. Then, for every δ > 0, after

k ≥
(
r

β
(n− 1)− 1

)
· ln
(
r − 1

δ

)
.

iterations, the relative fitness of every vertex u ∈ V is at most 1 + δ.

Proof. Recall that we assumed for simplicity reasons that at every iteration the βn individuals with relative
fitness 1 are the same. Note furthermore that at very iteration k we have by symmetry three different fitnesses
on the vertices: (a) the αn initial mutants with fitness r1(k), (b) the βn stabilizers with fitness 1, and (c)
the rest (1 − α − β)n individuals with fitness r2(k), where 1 ≤ r2(k) ≤ r1(k) by Observation 2. Note that
r2(0) = 1. Let γ = 1− α− β. Then, we obtain similarly to (22) and (23) in the proof of Theorem 6 that for
every k ≥ 0

r1(k + 1) =

(
1− (γr2(k) + β)n

(n− 1)Σ(k)

)
· r1(k) +

γr2(k)n

(n− 1)Σ(k)
· r2(k) +

βn

(n− 1)Σ(k)
(39)

= r1(k)− 1

(n− 1)Σ(k)
(γnr2(k)(r1(k)− r2(k)) + βn(r1(k)− 1))

and

r2(k + 1) =
αr1(k)n

(n− 1)Σ(k)
· r1(k) +

(
1− (αr1(k) + β)n

(n− 1)Σ(k)

)
· r2(k) +

βn

(n− 1)Σ(k)
(40)

= r2(k) +
1

(n− 1)Σ(k)
(αnr1(k)(r1(k)− r2(k))− βn(r2(k)− 1)) ,

where Σ(k) = n(αr1(k) + γr2(k) + β). It follows now by (39) and (40) that

r1(k + 1)− r2(k + 1) = r1(k)− r2(k)

− (αnr1(k) + γnr2(k))(r1(k)− r2(k)) + βn(r1(k)− r2(k))

(n− 1)Σ(k)

= r1(k)− r2(k)− Σ(k)(r1(k)− r2(k))

(n− 1)Σ(k)
,

and thus

r1(k + 1)− r2(k + 1) =
n− 2

n− 1
(r1(k)− r2(k)).

Therefore, since r2(0) = 1 and r1(0) = r ≥ 1, it follows that for every k ≥ 0,

r1(k)− r2(k) = (r − 1) ·
(
n− 2

n− 1

)k
. (41)

By substitution of (41) into (39) it follows that

r1(k + 1) = r1(k)− n

(n− 1)Σ(k)

(
γr2(k)(r − 1)

(
n− 2

n− 1

)k
+ β(r1(k)− 1)

)
. (42)

Define now ∆(k) = r1(k)− 1. Then, it follows by (42) that

∆(k + 1) = ∆(k) ·
(

1− βn

(n− 1)Σ(k)

)
− γnr2(k)

(n− 1)Σ(k)
(r − 1)

(
n− 2

n− 1

)k
(43)

< ∆(k) ·
(

1− βn

(n− 1)Σ(k)

)
.
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Note now that βn
Σ(k) ≥

β
r , and thus (43) implies that

∆(k + 1) ≤ ∆(k) ·
(

1− β

r(n− 1)

)
. (44)

Denote now for the purposes of the proof λ = 1 − β
r(n−1) =

n−1− βr
n−1 . Then, it follows by the system of

inequalities in (44) that for every k ≥ 0

∆(k) ≤ ∆(0) · λk (45)

= (r − 1) · λk.

In order to compute at least how many iterations are needed such that r1(k) ≤ 1+δ, i.e., ∆(k) ≤ δ, it suffices
by (45) to compute the smallest value of k, such that

(r − 1) · λk ≤ δ,

i.e.,

1

λk
=

(
n− 1

n− 1− β
r

)k
≥ r − 1

δ
⇔ (46)

(
1 +

1
r
β (n− 1)− 1

)k
≥ r − 1

δ
.

However,
(

1 + 1
r
β (n−1)−1

) r
β (n−1)−1

≤ e for every n ≥ 1. Thus (46) is satisfied when

e
k

r
β

(n−1)−1 ≥ r − 1

δ
,

or equivalently when

k ≥
(
r

β
(n− 1)− 1

)
· ln
(
r − 1

δ

)
.

This completes the proof of the theorem.

Observation 3 The bound in Theorem 8 of the number of iterations needed to achieve everywhere a suffi-
ciently small relative fitness is independent of the proportion α ∈ [0, 1] of initially placed mutants in the graph.
Instead, it depends only on the initial relative fitness r of the mutants and on the proportion β ∈ [0, 1] of the
vertices, to which we introduce the stabilizers. Note that the independence of this bound from α comes from
the fact that all terms involving α (via γ and Σ(k)) were lost between equations (43) and (44) by discarding
the substracted term and using βn

Σ(k) ≥
β
r . As such, the independence from α is a consequence of our analysis

and not a fundamental property of the system.

6 Concluding remarks

In this paper we investigated alternative models for evolutionary dynamics on graphs. In particular, we first
considered the evolutionary model proposed in [19], where vertices of the graph correspond to individuals of
the population. We provided in this model generic upper and lower bounds for the fixation probability on
a general graph G and we presented the first class of undirected graphs (called clique-wheels) that act as
suppressors of selection when 1 < r < 4

3 . Specifically, we proved that the fixation probability of the clique-
wheel graphs is at most one half of the fixation probability of the complete graph (i.e., the homogeneous
population) as the number of vertices increases. An interesting open question in this model is whether there
exist functions f1(r) > 0 and f2(r) < 1 (independent of the size of the input graph), such that the fixation
probability of every undirected graph G with at least two vertices lies between f1(r) and f2(r). Another line
of future research is to investigate the behavior of the model of [19] in the case where there are more than
two types of individuals (aggressive vs. non-aggressive) in the graph.

As our main contribution, we introduced in this paper a new evolutionary model based on mutual in-
fluences between individuals. In contrast to the model presented in [19], in this new model all individuals
interact simultaneously and the result is a compromise between aggressive and non-aggressive individuals. In
other words, the behavior of the individuals in our new model and in the model of [19] can be interpreted as
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an “aggregation” vs. an “all-or-nothing” strategy, respectively. We prove that our new evolutionary model
admits a potential function, which guarantees the convergence of the system for any graph topology and any
initial fitnesses on the vertices of the underlying graph. Furthermore, we provide almost tight bounds on the
limit fitness for the case of a complete graph, as well as a bound on the number of steps needed to approx-
imate the stable state. Finally, our new model appears to be useful also in the abstract modeling of new
control mechanisms over invading populations in networks. As an example, we demonstrated its usefulness
by analyzing the behavior of two alternative control approaches. Many interesting open questions lie ahead
in our new model. For instance, what is the speed of convergence and what is the limit fitness in arbitrary
undirected graphs? What happens if many types of individuals simultaneously interact at every iteration?

Acknowledgment. Paul G. Spirakis wishes to thank Josep Dı́az, Leslie Ann Goldberg, and Maria Serna,
for many inspiring discussions on the model of [19].
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