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Abstract

In this paper the necessary and sufficient conditions are given for the solution of a system of parameter

varying linear inequalities of the form A (t)x ≥ b (t) for all t ∈ T , where T is an arbitrary set, x is the

unknown vector, A (t) is a known triangular Toeplitz matrix and b (t) is a known vector. For every t ∈ T

the corresponding inequality defines a polyhedron, in which the solution should exist. The solution of

the linear system is the intersection of the corresponding polyhedrons for every t ∈ T . A general modu-

lar decomposition method has been developed, which is based on the successive reduction of the initial

system of inequalities by reducing iteratively the number of variables and by considering an equivalent

system of inequalities.
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1 Introduction

A wide variety of problems arising in system and control theory can be reduced to constrained optimization

problems, having as design constraints a simple reformulation in terms of linear matrix inequalities [1],[5].

Parameter varying Linear Matrix Inequalities (LMIs) have been proved to be a powerful tool, having

important applications in a vast variety of systems and control theory problems including robustness

analysis, robust control synthesis, stochastic control and identification [3],[2], synthesis of dynamic output

feedback controllers [7], analysis and synthesis of control systems [4], error and sensitivity analysis,

problems encountered in filtering, estimation, etc. Specifically, LMIs appear in the solution of continuous

and discrete-time H∞ control problems, in finding solvability conditions for regular and singular problems,

in parameterization of H∞ and H2 suboptimal controllers, including reduced-order controllers [6], in

finding explicit controller formulas of the H∞ synthesis [1],[5], as well as in multiobjective synthesis and



in linear parameter-varying synthesis.

LMI techniques offer the advantage of operational simplicity in contrast with the classical approaches,

which necessitate the cumbersome material of Riccati equations [1]. Using LMIs, a small number of con-

cepts and principles are sufficient to develop tools, which can then be used in practice. Also, the LMI

techniques are effective numerical tools exploiting a branch of convex programming. Many LMI control

methods make use of Lyapunov variables and possibly additional variables, often called scalings or mul-

tipliers, which in some sense translate how ideal behaviors are altered by uncertainties or perturbations.

Another application of LMIs is the domain of graphical manipulation in dynamic environments, where

the types of interactive controls are restricted by reducing the problem of graphical manipulation to a

constrained optimization problem, dictating how a user configures a set of graphical objects to achieve the

desired goals. Thus, the possible configurations of the objects are represented by the object’s state vector

having a set of real-valued parameters and the graphical interaction problem is reduced to a problem of

resolving the corresponding system of LMIs [8].

In this paper we provide necessary and sufficient conditions for the existence of the solution of the

system of inequalities A (t)x ≥ b (t) , ∀t ∈ T and restrictions of this solution, if such exists, in the general

case, where T may be an infinite, or even a super countable set. Specifically, t is a variable within an

arbitrary set T , which may represent the domain of external disturbances or parameter variations of a

system in the most general form, x ∈ RN is the unknown vector, A (t) ∈ RN×N is a given triangular

Toeplitz matrix dependent on t and b (t) ∈ RN is a given vector of parameters dependent on t. A Toeplitz

matrix A = [aij ] ∈ RN×N is a highly structured matrix, where ai+1,j+1 = ai,j , for each appropriate

i, j ∈ {1, 2, ..., N}, containing at most 2N − 1 different element values. The use of a triangular Toeplitz

matrix finds many applications in control theory and signal processing, since every element of the vector

A (t)x is a discrete-time convolution between the sequence of the functions in A (t) and the sequence

in x and so the inequality A (t)x ≥ b (t) represents a convolution that is greater than or equal to a

given function, at every moment. Also a Toeplitz Matrix is the covariance matrix of a weak stationary

stochastic process.

The case, where T = {t0} is an one-element set, can be solved with various methods, like the ellipsoid-

algorithm [10]. Then, the case of a finite set T is a generalization of the latter case, in the sense that

one can consider |T | times the special problem on an one-element set. On the other hand, the most

general cases, where the set T is infinite and in particular where T is super countable (for example when

T = Rk, k ∈ N), are of major importance and are considered here. Although the system of equations

A (t)x = b (t) , ∀t ∈ T has numerous methods of solutions, there is no available algorithm allowing

computing the solutions of a system of inequalities A (t)x ≥ b (t) , ∀t ∈ T in the general case of infinite

T [11],[9].

The underlying idea in the present paper for the solution of the LMIs A (t)x ≥ b (t) , ∀t ∈ T is the

General Modular (GM) decomposition of the involved inequalities into simpler inequalities, considering



the cases where each element ai (t) of A (t) ∈ RN×N takes zero, positive or negative values. This is

possible, since a given inequality is reduced to different simpler inequalities for different ranges of t ∈ T .

Following this reasoning, in Section 2 an arbitrary inequality with k = 1 variable is decomposed into

three inequalities, the first of them including only known coefficients, including no variable and the

other two expressing explicitly the upper and the lower range respectively of this one variable. Also an

arbitrary inequality, including k ≥ 2 variables is decomposed into four inequalities, each one including

k − 1 variables, using the GM decomposition. In both decompositions we derive a set of inequalities,

which have a solution, if and only if the initial inequality has a solution. In Section 3 the decompositions

described in Section 2 are applied successively k−1 times to an arbitrary inequality with k ≥ 2 variables,

thus arriving at a set of inequalities including exactly one of the k variables. Each of these inequalities of

one variable is further decomposed into three inequalities. The main results of the present contribution

are (a) the necessary and sufficient conditions of the existence of a solution x of the system and (b) the

restrictions of the solution, which are expressed in the form of a hypercube, i.e. the upper and lower

bound for each unknown variable xr, 1 ≤ r ≤ N , in the case where such a solution exists, which are

derived in Section 4 in analytic form.

2 Decomposition of Inequalities

In this section, the decomposition of a given inequality for t ∈ T into simpler inequalities that hold for t

belonging in subsets of T , so that the polynomials ai (t) , i = 1, 2, ..., N take zero, positive and negative

values, are described. These sets constitute a partition of T . Here T is arbitrary and plays the role

of an external parameter-set, which may represent an one- or multidimensional variable (vector) that is

dependent on time and other parameters. This partition of T is given in Definition 1.

Definition 1. Let ai (t) , ∀i ∈ {1, 2, ..., k}, be a certain sequence of functions dependent on t ∈ T , for an

arbitrary set T . Then, we define for each i ∈ {1, 2, ..., k} the partition sets of T :

S1
i = {t ∈ T : ai (t) = 0} , S2

i = {t ∈ T : ai (t) > 0} , S3
i = {t ∈ T : ai (t) < 0} .

The underlying idea is that the partition of the set T into three subsets S1
i , S2

i , S3
i leads to inequalities

having the restriction that the functions ai (t) , ∀i ∈ {1, 2, ..., N} are zero-, positive- or negative-valued

respectively, where ai (t) are the elements of the Toeplitz matrices A (t) ∈ RN×N appearing in the LMIs

A (t)x ≥ b (t) , ∀t ∈ T .

Based on the above approach, in the rest of this Section the following results are presented:

• Lemma 1 describes the Special Decomposition of an arbitrary inequality in k = 1 variable, into

three equivalent inequalities, the first of them having only known quantities with no variables and

the other two expressing explicitly the upper and lower bound for this one variable, in order to



satisfy the initial inequality.

• Theorem 1 provides the necessary and sufficient conditions for the existence of a solution of an

arbitrary inequality in k ≥ 2 variables, in the form of two inequalities each one of them including

k − 1 variables and

• Theorem 2 describes the General Modular (GM) Decomposition of an arbitrary inequality in k ≥ 2

variables into four equivalent inequalities, each one of them including k − 1 variables.

Lemma 1 (Special Decomposition of inequalities in one variable). There exists x1 ∈ R, so that:

a1 (t)x1 ≥ b (t) , ∀t ∈ T (1)

if and only if exists x1 ∈ R, such that the following inequalities hold:

0 ≥ b (t) , ∀t ∈ S1
1 , (2)

b (t)
a1 (t)

≤ x1, ∀t ∈ S2
1 , (3)

x1 ≤ b (t)
a1 (t)

, ∀t ∈ S3
1 , (4)

The above three inequalities (2), (3) and (4) constitute the Decomposition of (1).

Proof. (a). Necessary condition. Suppose that exists x1 ∈ R, so that (1) holds. Then (2) holds since

a1 (t) = 0, ∀t ∈ S1
1 . Also for t ∈ S2

1 and t ∈ S3
1 , the relations (3) and (4) hold respectively. Therefore x1

satisfies (2)-(4) depending on the range of t in the sets S1
1 , S2

1 , S3
1 and the necessity part has been proved.

(b). Sufficient condition. Conversely, suppose that ∃x1 ∈ R, so that (2)-(4) hold. Then

• for a1 (t) = 0, ∀t ∈ S1
1and from (2) it results that a1 (t)x1 = 0 ≥ b (t) , ∀t ∈ S1

1

• for a1 (t) > 0, ∀t ∈ S2
1and from (3) it results that a1 (t)x1 ≥ b (t) , ∀t ∈ S2

1

• for a1 (t) < 0, ∀t ∈ S3
1and multiplying (4) with the negative quantity a1 (t) = − |a1 (t)|, it results

that a1 (t)x1 ≥ b (t) , ∀t ∈ S3
1 .

Thus, it holds a1 (t)x1 ≥ b (t) , ∀t ∈ T = S1
1 ∪ S2

1 ∪ S3
1 , from which the sufficient part of Lemma 1 is

concluded.

Theorem 1. Suppose we have the inequality:

k∑
i=1

ak−i+1 (t)xi ≥ b (t) , ∀t ∈ T, k ≥ 2 (5)

where ai (t) , i ∈ {1, 2, ..., k} and b (t)are varying coefficients dependent on t and xi, i ∈ {1, 2, ..., k} are

unknown real variables independent of t. There exists a vector x = [x1, x2, ..., xk]T ∈ Rk satisfying (5), if



and only if there exists a vector x′ = [x′
1, x

′
2, ..., x

′
k]T ∈ Rk satisfying the conditions:

k−1∑
i=1

ak−i+1 (t)x′
i ≥ b (t) , ∀t ∈ S1

1 , (6)

k−1∑
i=1

[
ak−i+1 (t2)
|a1 (t2)| +

ak−i+1 (t3)
|a1 (t3)|

]
x′

i ≥
[

b (t2)
|a1 (t2)| +

b (t3)
|a1 (t3)|

]
, ∀ (t2, t3) ∈ S2

1 × S3
1 . (7)

Proof. (a). Necessary condition. Suppose that there exist some x = [x1, x2, ..., xk]T ∈ Rk, such that

(5) holds. For a1 (t) = 0, ∀t ∈ S1
1 it is seen from (5) that (6) holds, while for a1 (t) > 0, ∀t ∈ S2

1 and

a1 (t) < 0, ∀t ∈ S3
1 , we have respectively:

xk ≥ [b − akx1 − ... − a2xk−1] (t)
a1 (t)

, ∀t ∈ S2
1

and

xk ≤ [b − akx1 − ... − a2xk−1] (t)
a1 (t)

, ∀t ∈ S3
1 ,

which are satisfied only when:

[b − akx1 − ... − a2xk−1] (t2)
a1 (t2)

≤ [b − akx1 − ... − a2xk−1] (t3)
a1 (t3)

, ∀ (t2, t3) ∈ S2
1 × S3

1 . (8)

The use of the Cartesian product in (8) dictates the use of the auxiliary independent variables t2 ∈ S2
1 ,

t3 ∈ S3
1 . Inequality (8) is equivalent to (7) for x′ = x, since a1 (t2) = |a1 (t2)| , ∀t2 ∈ S2

1 and a1 (t3) =

− |a1 (t3)| , ∀t3 ∈ S3
1 . Therefore both conditions (6) and (7) are satisfied for x′ = x and the necessity

part has been proved.

(b). Sufficient condition. Conversely, suppose that there exists some x = [x1, x2, ..., xk]T ∈ Rk, so

that (6) and (7) hold. It will be shown that exists a vector x′ = [x′
1, x

′
2, ..., x

′
k]T ∈ Rk, in general different

from x, for which (5) also holds.

Inequality (7) is equivalent to (8) (when substituting x′ by x), which may be written as:

∃c ∈ R :
[b − akx1 − ... − a2xk−1] (t2)

a1 (t2)
≤ c ≤ [b − akx1 − ... − a2xk−1] (t3)

a1 (t3)
, ∀ (t2, t3) ∈ S2

1 × S3
1 . (9)

Multiplying the left and right part of the inequalities in (9) with a1 (t2) > 0 and a1 (t3) < 0 respectively

and summarizing the results, it results that (9) is equivalent to the inequality

ak (t)x1 + ... + a2 (t)xk−1 + a1 (t) c ≥ b (t) , ∀t ∈ S2
1 ∪ S3

1 . (10)

Since a1 (t) = 0, ∀t ∈ S1
1 , we obtain from (6) (substituting also x′ by x):

k−1∑
i=1

ak−i+1 (t)xi = ak (t)x1 + ak−1 (t) x2 + ... + a2 (t)xk−1 + a1 (t) c ≥ b (t) , ∀t ∈ S1
1 . (11)



Now, from (10) and (11) it follows that:

ak (t)x1 + ... + a2 (t)xk−1 + a1 (t) c ≥ b (t) , ∀t ∈ T = S1
1 ∪ S2

1 ∪ S3
1 , (12)

from which we can see that there exists a solution x′ = [x1, x2, ..., xk−1, c]
T ∈ Rk for (5). This proves the

sufficient part of Theorem 1.

Theorem 1 gives the necessary and sufficient conditions (6) and (7) for the existence of solutions

of (5). Using this equivalence, where only one variable is eliminated, we loose information about the

conditions that this variable should satisfy. Indeed, in (6) and (7) the variable xk has been removed and

the information about the range of the values that xk may take in an eventual solution of (5) is lost.

The idea which is used in order to recover the information about xk is the additional elimination of

another variable, say of xk−1, so that a second pair of inequalities similar to (6) and (7) are derived,

which have a solution if and only if (5) has a solution. Thus, by the elimination of two variables xk and

xk−1, we arrive at the following Theorem 2, which describes the General Modular (GM) Decomposition

of the initial inequality (5) into a set of four equivalent inequalities, each one of them including k − 1

variables, without losing information about the range of the variables in the solution.

Theorem 2 (General Modular (GM) Decomposition of (5)). The inequality (5) can be decomposed

equivalently into the following four inequalities:

k−1∑
i=1

ak−i+1 (t)xi ≥ b (t) , ∀ t ∈ S1
1 , (13)

k−1∑
i=1

ak−i+1,1

(
t
)
xi ≥ b1

(
t
)
, ∀ t = (t2, t3) ∈ S2

1 × S3
1 (14)

k∑
i = 1

i �= k − 1

ak−i+1 (t)xi ≥ b (t) , ∀ t ∈ S1
2 , (15)

k∑
i = 1

i �= k − 1

ak−i+1,2

(
t
)
xi ≥ b2

(
t
)
, ∀ t = (t2, t3) ∈ S2

2 × S3
2 , (16)

where:

ak−i+1,1

(
t
)

=
ak−i+1 (t2)
|a1 (t2)| +

ak−i+1 (t3)
|a1 (t3)| , b1

(
t
)

=
b (t2)

|a1 (t2)| +
b (t3)

|a1 (t3)| , ∀ t = (t2, t3) ∈ S2
1 × S3

1 , (17)

ak−i+1,2

(
t
)

=
ak−i+1 (t2)
|a2 (t2)| +

ak−i+1 (t3)
|a2 (t3)| , b2

(
t
)

=
b (t2)

|a2 (t2)| +
b (t3)

|a2 (t3)| , ∀ t = (t2, t3) ∈ S2
2 × S3

2 . (18)

This set of inequalities (13)-(16) has a solution if and only if the inequality (5) has a solution.



Proof. It follows directly from Theorem 1 that each set of inequalities (13), (14) and (15), (16) constitute

a set of equivalent conditions for the solution of (5). Moreover, the use of both pairs of inequalities

guarantees that no information about the range of the variables is lost.

In order to simplify the solution of the problem, we further decompose iteratively the initial inequality

(5) into inequalities that contain a smaller number of variables, according to the GM decomposition. The

technical advantage of the GM decomposition is, that only the sets S1
1 , S2

1 , S3
1 and S1

2 , S2
2 , S3

2 , in which the

coefficients of the two last variables xk−1 and xk are respectively null, positive or negative, are used. This

decomposition constitutes the substructure for the determination of the complete set of the conditions

that the solutions of (5) should satisfy. These conditions determine the hypercube, where the solutions

lie.

3 Reduction of an arbitrary inequality

In this section the initial inequality of the form (5) is reduced to a number of equivalent simpler inequalities

that will be called “implicit” inequalities. This reduction is presented in Theorem 3 and is achieved in

two steps:

• Step 1. Application of the GM decomposition successively (k − 1) times to an arbitrary inequality

on k ≥ 2 variables, leading at the end to a set of inequalities, each one of them containing implicitly

one variable.

• Step 2. Application of the Special Decomposition described in Lemma 1 to each one of the in-

equalities resulted from Step 2, leading to a set of inequalities equivalent to the initial inequality,

each one of them containing either only known quantities with no variables or explicitly only one

variable.

At the 0th decomposition-level consider that there is the inequality (5), while at the 1st decomposition-

level the inequalities (13)-(16) appear. Continuing in this way and applying iteratively the GM decom-

position, we arrive at the jth, j ∈ {1, 2, ..., k − 1} decomposition-level.

It is seen from (14) and (16) that the coefficients of the variables after the application of the GM

decomposition are functions of the coefficients ai (t) , i ∈ {1, 2, ..., k} of the given inequality (5), while

in (13) and (15) the coefficients remain the same. It results from this fact that one can define in a

general form the dependence of the coefficients appearing after the application of the GM decomposition

at any arbitrary decomposition-level on some coefficients appearing in (5). Specifically, any arbitrary

coefficient appearing in a decomposition-level may be defined as a function, having as index a sequence of

natural numbers that correspond to the specific coefficients in (5), on which this coefficient depends. It

follows from the structure of the Theorem 2 that the indices of all coefficients that appear at a particular

inequality have the same length.



The index of every coefficient that appears at any decomposition-level has at least length 1, so it may

be written as ml, where m ∈ N and l is a sequence of length at least zero. Whenever this index has

length at least two, it may be written as mln, where m, n ∈ N. At any arbitrary decomposition-level,

a coefficient, which has as index a sequence of j ≥ 2 natural numbers, is denoted as a
m

−
l n

(t), where

m, n ∈ N and l is a sequence of j − 2 natural numbers. Similarly, b−
l n

(t) denotes the corresponding

constant term in the same inequality, where a coefficient a
m

−
l n

(t) appears.

Below, in Definition 2, the coefficients a
m

−
l n

(t) and b−
l n

(t) are expressed recursively having as initial

conditions ai (t) and b (t). In Definition 2 the general case is presented, where the indices of the coefficients

have at least length 2 and the index of the corresponding constant term has at least length 1, since the

trivial case has already been presented in (5).

According to the GM decomposition, the sets P
m

−
l n

on which the corresponding inequality is defined,

may be calculated recursively. Moreover, R1

m
−
l n

, R2

m
−
l n

, R3

m
−
l n

denote the sets, on which a specific

coefficient in the corresponding inequality is zero-, positive- or negative-valued. Finally, the auxiliary

sets S1

m
−
l n

, S2

m
−
l n

, S3

m
−
l n

may be defined as a generalization of S1
i , S2

i , S3
i , denoting the sets, on which

the corresponding coefficient a
m

−
l n

(t) is zero-, positive- and negative-valued. All these definitions are

represented in the following Definition 2 and are of critical importance for the analysis concerning the

reduction of a given arbitrary inequality of the form (5) to the implicit inequalities.

Definition 2. The sets Si

m
−
l n

, i = 1, 2, 3 are stepwise defined in terms of a
m

−
l n

(t) and Si

n
−
l

, i = 2, 3.

Also, the coefficients a
m

−
l n

(t) and b−
l n

(t) are recursively defined in terms of a
m

−
l
(t), a

n
−
l
(t), b−

l
(t) and

Si

n
−
l

, i = 2, 3, as follows:

Initial Conditions

Si
j , i = 1, 2, 3, aj (t) , b (t) , j = 1, 2, ..., k.

Recursions

a
m

−
l n

(
t
)

:=
a

m
−
l
(t2)∣∣∣a

n
−
l
(t2)

∣∣∣ +
a

m
−
l
(t3)∣∣∣a

n
−
l
(t3)

∣∣∣ , b−
l n

(
t
)

:=
b−

l
(t2)∣∣∣a

n
−
l
(t2)

∣∣∣ +
b−

l
(t3)∣∣∣a

n
−
l
(t3)

∣∣∣ , ∀ t = (t2, t3) ∈ S2

n
−
l
×S3

n
−
l
,

S1

m
−
l n

:=
{

t ∈ S2

n
−
l
× S3

n
−
l

: a
m

−
l n

(t) = 0
}

, S2

m
−
l n

:=
{

t ∈ S2

n
−
l
× S3

n
−
l

: a
m

−
l n

(t) > 0
}

,

S3

m
−
l n

:=
{

t ∈ S2

n
−
l
× S3

n
−
l

: a
m

−
l n

(t) < 0
}

,

where m, n ∈ N,
−
l = l1l2...lj ∈ Nj for every j ∈ N0 = N∪{0}, with l1, l2, ..., lj ∈ N pair wise distinct and

l = ∅ for j = 0.

Definition 3. The sets P
m

−
l n

and R1

m
−
l n

, R2

m
−
l n

, R3

m
−
l n

are recursively defined as follows:

Initial Conditions



P1,2 = T , for m = 1, n = m + 1 = 2 and l = ∅,

Ri
1,2 = Si

1, i = 1, 2, 3.

Recursions

P
m

−
l n

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R2

(m−i)

�−
l \(m−i)

�
m
× R3

(m−i)

�−
l \(m−i)

�
m

, if l = l′ (m − i)

m−1⋃
i=1

R1

(m−i)
−
l m

, if (m − i) /∈ l

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, if n = m+1, with m > 1,

P
m

−
l n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣P

m

�−
l \(n−1)

�
(n−1)

∩ S2

(n−1)

�−
l \(n−1)

�
⎤
⎦×

×
⎡
⎣P

m

�−
l \(n−1)

�
(n−1)

∩ S3

(n−1)

�−
l \(n−1)

�
⎤
⎦

, if l = l′ (n − 1)

P
m

−
l (n−1)

∩ S1

(n−1)
−
l

, if (n − 1) /∈ l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, if n > m + 1,

R1

m
−
l n

=
{
t ∈ P

m
−
l n

: a
m

−
l
(t) = 0

}
, R2

m
−
l n

=
{

t ∈ P
m

−
l n

: a
m

−
l
(t) > 0

}
,

R3

m
−
l n

=
{
t ∈ P

m
−
l n

: a
m

−
l
(t) < 0

}
.

In the sequel, we denote as “first index part” of a function the first integer that appears in its index,

which is a sequence of natural numbers and as “second index part” the rest sequence of the index. Thus,

the first index part of a
m

−
l
(t) is the integer m and the second index part is l.

Lemma 2. 1. the coefficients and the corresponding constant terms have the form of a
m

−
l
(t) and

b−
l
(t) respectively, as defined in Definition 2,

2. the indices of all coefficients coincide, except for their first part,

3. the indices of all coefficients have the same length,

4. the common second index part of them is exactly the index of the corresponding constant term,

5. whenever the variable xr , r ∈ {1, 2, ..., k} appears, the first index part m of the coefficient of xr,

remains constant and equal to k +1− r, i.e. in the inequality appears the product a
(k+1−r)

−
l n

(t)xr

and

6. all indices r of xr, r ∈ {1, 2, ..., k} that appear are either:

• successive natural numbers, or

• successive natural numbers except for the most right one, which can be arbitrary bigger than

the others.

Proof. The proof is presented in Appendix 1.



Corollary 1. An inequality at an arbitrary decomposition-level may be uniquely specified only in terms

of the indices of the two most right coefficients that appear in the particular inequality.

Proof. Suppose that the indices of the two most right coefficients that appear in a particular inequality

are known, i.e. a
n

−
l
(t) and a

m
−
l
(t), with n ≥ m + 1. Then, due to Lemma 2, the index of the constant

term and the second index part of all the coefficients is equal to l. The first index part of every of the

rest coefficients, i.e. the coefficient of xr, is equal to k + 1 − r. Also, due to Lemma 2, all indices r

of xr, r ∈ {1, 2, ..., k} that appear at the left of the first two known coefficients are successive natural

numbers. Thus, the only inequality, that has a
n

−
l
(t) and a

m
−
l
(t) as the two most right coefficients is:

a
k

−
l
(t)x1 + a

k−1,
−
l
(t) x2 + · · · + a

n+1,
−
l
(t)xk−n + a

n
−
l
(t)xk+1−n + a

m
−
l
(t) xk+1−m ≥ b−

l
(t) . (19)

Lemma 3. The set P
m

−
l n

is the set on which inequality (19) is defined.

Proof. The proof is presented in Appendix 2.

In the sequel, Theorem 3 is presented. The implicit inequalities in Theorem 3 provide analytically

the ranges, where the variables xr, r = 1, 2, ..., k lie, provided that the initial inequality (5) has at least

one solution.

Theorem 3. Applying successively (k − 1) times the GM decomposition and then one time the decom-

position of Lemma 1 to the given inequality (5), we obtain the following set of inequalities, for every

r ∈ {1, 2, ..., k}:

max
−
l

⎧⎪⎨
⎪⎩ sup

t∈R1

(k−r+1)
−
l (k+1)

{
b−

l
(t)

}⎫⎪⎬
⎪⎭ ≤ 0, (20)

max
−
l

⎧⎪⎨
⎪⎩ sup

t∈R2

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b−
l
(t)

a
(k−r+1)

−
l
(t)

⎫⎬
⎭

⎫⎪⎬
⎪⎭ ≤ xr ≤ min

−
l

⎧⎨
⎩ inf

t∈R3

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b−
l
(t)

a
(k−r+1)

−
l
(t)

⎫⎬
⎭

⎫⎬
⎭ , (21)

where maxima and minima are taken over every possible l = lalb ∈ Nj1+j2 , with la = la1 la2 ...laj1 ∈ Nj1 ,

lb = lb1l
b
2...l

b
j2 ∈ Nj2 , j1 ∈ {0, 1, ..., k − r}, j2 ∈ {0, 1, ..., r − 1}, such that:

la1 ∈ {1, ..., k − r} , lb1 ∈ {k − r + 2, ..., k} ,

laj ∈
(

j−1⋂
i=1

{lai − 1, ..., k − r}
)
\{

la1 , ..., laj−1

}
, for 2 ≤ j ≤ j1,

lbj ∈ {
lbj−1 + 1, ..., k

}
, for 2 ≤ j ≤ j2.

Proof. The given inequality (5) is decomposed initially into the four inequalities (13)-(16). Then the

application of the GM decomposition to (13)-(16), produces a quadruplet of equivalent inequalities for

each one of them and in total 42 inequalities. Proceeding in the same way and decomposing the 42



inequalities, we arrive at 43 inequalities and so on. In general, at the jth decomposition-level 4j inequalities

are produced.

After (k − 1) successively applications of the GM decomposition to the initial inequality (5), as de-

scribed above, we obtain an inequality with only one variable xr ; r ∈ {1, 2, ..., k} and corresponding

coefficient a
(k−r+1)

−
l
(t), for some appropriate l, while a second one does not exist at all, since all the

others have been eliminated during the successive applications of the GM decomposition. Considering

in this inequality a zero-valued coefficient of an imaginary variable x0 as the second one from the right,

having (k + 1) as first index part, it is seen that the definition domain of this inequality is P
(k−r+1)

−
l (k+1)

,

for some appropriate l. Indeed, P
m

−
l n

depends only on the coefficients having i ∈ {1, 2, · · · , n − 1} and

not n as first index part, as can be seen in Definition 3. Thus, after (k − 1) successively applications of

the GM decomposition to the initial inequality (5) the following inequalities may be obtained:

a
(k−r+1)

−
l
(t)xr ≥ b−

l
(t) , ∀t ∈ P

(k−r+1)
−
l (k+1)

, (22)

for every appropriate l = l1l2...lj ∈ Nj , j ≥ 0.

In Appendix 3 it is proved that the possible integer-sequences l that may appear in P
(k−r+1)

−
l (k+1)

are exactly those of the form l = lalb ∈ Nj1+j2 , with la and lb as given in the statement of Theorem 3.

Now, applying the special decomposition of Lemma 1 to (22), it results:

0 ≥ b−
l
(t) , ∀t ∈ R1

(k−r+1)
−
l (k+1)

b−
l
(t2)

a
(k−r+1)

−
l
(t2)

≤ xr ≤
b−

l
(t3)

a
(k−r+1)

−
l
(t3)

, ∀ (t2, t3) ∈ R2

(k−r+1)
−
l (k+1)

× R3

(k−r+1)
−
l (k+1)

or equivalently:

sup
t∈R1

(k−r+1)
−
l (k+1)

{
b−

l
(t)

}
≤ 0

sup
t∈R2

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b−
l
(t)

a
(k−r+1)

−
l
(t)

⎫⎬
⎭ ≤ xr ≤ inf

t∈R3

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b−
l
(t)

a
(k−r+1)

−
l
(t)

⎫⎬
⎭

for every appropriate l, as described above, or equivalently we obtain (20) and (21). Thus, Theorem 3 is

proved.

4 Main Results

In the following, in Theorem 4, the results obtained in Theorem 3 are used for deriving the necessary

and sufficient conditions for the existence of a solution of a system of LMIs in Toeplitz form, along with

some bounds of the solution, if such exists.



Theorem 4. The necessary and sufficient conditions for the existence of a solution x = [x1, x2, ..., xN ]T ∈
RN , satisfying the inequality:

A (t)x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 (t) 0 · · · 0

a2 (t) a1 (t) · · · 0
...

...
. . .

...

aN (t) aN−1 (t) · · · a1 (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 (t)

b2 (t)
...

bN (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= b (t) , ∀t ∈ T, (23)

are the following:

max
k∈{r,r+1,...,N}

−
l

⎧⎪⎪⎨
⎪⎪⎩ sup

−
t∈R1

(k−r+1)
−
l (k+1)

{
b
k

−
l

(
t
)}

⎫⎪⎪⎬
⎪⎪⎭ ≤ 0, ∀r ∈ {1, 2, ..., N} , (24)

max
k∈{r,r+1,...,N}

−
l

⎧⎪⎪⎨
⎪⎪⎩ sup

−
t∈R2

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l

(
t
)

a
(k−r+1)

−
l

(
t
)
⎫⎬
⎭

⎫⎪⎪⎬
⎪⎪⎭ ≤

≤ min
k∈{r,r+1,...,N}

−
l

⎧⎪⎪⎨
⎪⎪⎩ inf

−
t∈R3

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l

(
t
)

a
(k−r+1)

−
l

(
t
)
⎫⎬
⎭

⎫⎪⎪⎬
⎪⎪⎭ , ∀r ∈ {1, 2, ..., N} (25)

and the solution x = [x1, x2, ..., xr, ..., xN ]T ∈ RN is bounded by:

xr ∈

⎡
⎢⎢⎣ max

k∈{r,r+1,...,N}
−
l

⎧⎪⎪⎨
⎪⎪⎩ sup

−
t∈R2

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l

(
t
)

a
(k−r+1)

−
l

(
t
)
⎫⎬
⎭

⎫⎪⎪⎬
⎪⎪⎭ ,

min
k∈{r,r+1,...,N}

−
l

⎧⎪⎪⎨
⎪⎪⎩ inf

−
t∈R3

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l

(
t
)

a
(k−r+1)

−
l

(
t
)
⎫⎬
⎭

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ (26)

where maxima and minima are taken over k and over every possible l = lalb ∈ Nj1+j2 , with la = la1 la2 ...laj1 ∈
Nj1 , lb = lb1l

b
2...l

b
j2

∈ Nj2 , j1 ∈ {0, 1, ..., k − r}, j2 ∈ {0, 1, ..., r − 1}, such that:

la1 ∈ {1, ..., k − r} , lb1 ∈ {k − r + 2, ..., k} ,

laj ∈
(

j−1⋂
i=1

{lai − 1, ..., k − r}
)
\{

la1 , ..., laj−1

}
, for 2 ≤ j ≤ j1,

lbj ∈ {
lbj−1 + 1, ..., k

}
, for 2 ≤ j ≤ j2.

Proof. The LMIs in (23) are written for k = 1, 2, ..., N and ∀t ∈ T in the form:

k∑
i=1

ak−i+1 (t)xi ≥ bk (t) ; k = 1, 2, ..., N (27)



It is seen from (27), that for any r ∈ {1, 2, ..., N}, the restrictions on xr are imposed only from the

inequalities of the rows r, r + 1, ..., N . For the kth, k = r, r + 1, ..., N inequality, the restrictions on xr

are described in (20) and (21). Summarizing the restrictions on xr from the inequalities of the rows

r, r + 1, ..., N of (27) and considering all r ∈ {1, 2, ..., N}, it results that the necessary and sufficient

conditions, such that a solution x = [x1, x2, ..., xr, ..., xN ]T ∈ RN exists, satisfying (27) are the following:

max
k∈{r,r+1,...,N}

−
l

⎧⎪⎪⎨
⎪⎪⎩ sup

−
t∈R1

(k−r+1)
−
l (k+1)

{
b
k

−
l

(
t
)}

⎫⎪⎪⎬
⎪⎪⎭ ≤ 0, ∀r ∈ {1, 2, ..., N} , (28)

max
k∈{r,r+1,...,N}

−
l

⎧⎪⎨
⎪⎩ sup

t2∈R2

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l
(t2)

a
(k−r+1)

−
l
(t2)

⎫⎬
⎭

⎫⎪⎬
⎪⎭ ≤ xr ≤

≤ min
k∈{r,r+1,...,N}

−
l

⎧⎨
⎩ inf

t3∈R3

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l
(t3)

a
(k−r+1)

−
l
(t3)

⎫⎬
⎭

⎫⎬
⎭ , ∀r ∈ {1, 2, ..., N} , (29)

where maxima and minima are taken over k and over every appropriate l, as described above. In (29) a

xr ∈ R exists if and only if the upper bound of xr is greater than or equal to the corresponding lower

bound. Therefore, the necessary and sufficient conditions, such that some x ∈ RN exists, satisfying (27),

are the inequalities (24) and (25).

Now, suppose that conditions (24) and (25) are satisfied, so that a solution x =

[x1, x2, ..., xr , ..., xN ]T ∈ RN of the system in (27) exists. We will find out where all these solutions

lie. The conditions (28) and (29) have been derived by using only the decompositions of Theorem 2 and

Lemma 1. In Theorem 2 (Lemma 1) it is proved that the solution of an inequality is also a solution of

the four (two) produced inequalities. Continuing in this way, it results that x ∈ RN satisfies also the

produced set of inequalities in (29). Therefore, it results from (29) that the arbitrary component xr of

the solution x ∈ RN , if such exists, lies in the following set:

xr ∈

⎡
⎢⎢⎣ max

k∈{r,r+1,...,N}
−
l

⎧⎪⎨
⎪⎩ sup

t2∈R2

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l
(t2)

a
(k−r+1)

−
l
(t2)

⎫⎬
⎭

⎫⎪⎬
⎪⎭ ,

min
k∈{r,r+1,...,N}

−
l

⎧⎨
⎩ inf

t3∈R3

(k−r+1)
−
l (k+1)

⎧⎨
⎩

b
k

−
l
(t3)

a
(k−r+1)

−
l
(t3)

⎫⎬
⎭

⎫⎬
⎭

⎤
⎥⎥⎦

where maxima and minima are taken over k and over every possible l = lalb ∈ Nj1+j2 , with la and lb as

given in the statement of Theorem 4. Thus Theorem 4 is proved.

Throughout the paper the general case has been considered, where all the sets S1

m
−
l n

, S2

m
−
l n

, S3

m
−
l n

,

R1

m
−
l n

, R2

m
−
l n

, R3

m
−
l n

(and thus also P
m

−
l n

) that occur are not empty. If some of these are empty,

then (24) and (25) degenerate, thus reducing the restrictions of the desired solutions. If one side of (25)



Figure 1: The functions a1 (t) and a2 (t).

vanishes for some r ∈ {1, 2, ..., N}, then it should be required that the other side is finite, since in the

opposite case no finite real value for xr exists. Assuming that all elements of A and b are bounded

in T , then both sides in (25) are finite for every r ∈ {1, 2, ..., N}; thus an inequality can be ignored,

whenever one side of it vanishes. In this case the necessary and sufficient conditions for the existence of

the solution of the system, as well as the restrictions of the final solution, are also derived without any

other modification.

Example

Consider the linear system for N = 2:

⎡
⎢⎣ a1 (t) 0

a2 (t) a1 (t)

⎤
⎥⎦

⎡
⎢⎣ x1

x2

⎤
⎥⎦ =

⎡
⎢⎣ a1 (t)x1

a2 (t)x1 + a1 (t)x2

⎤
⎥⎦ ≥

⎡
⎢⎣ b1 (t)

b2 (t)

⎤
⎥⎦ , ∀t ∈ T = [0, 9) ,

where:

a1 (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, t ∈ [0, 3)

0, t ∈ [3, 6)

−1, t ∈ [6, 9)

, a2 (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, t ∈ [0, 1) ∪ [3, 4) ∪ [6, 7)

0, t ∈ [1, 2) ∪ [4, 5) ∪ [7, 8)

−1, t ∈ [2, 3) ∪ [5, 6) ∪ [8, 9)

, b1 (t) = t2 − 82, b2 (t) = t − 10.

The functions a1 (t) and a2 (t), for all t ∈ T , are graphically shown in Figure 1. Thus, according to

Definition 1, it holds:

S1
1 = [3, 6) , S2

1 = [0, 3) , S3
1 = [6, 9) ,

S1
2 = [1, 2) ∪ [4, 5) ∪ [7, 8) , S2

2 = [0, 1) ∪ [3, 4) ∪ [6, 7) , S3
2 = [2, 3) ∪ [5, 6) ∪ [8, 9) .



It is seen from (24) and (25) that for every r ∈ {1, 2} only k ∈ {r, r + 1, · · · , N} is considered. For r = 1

we obtain k ∈ {1, 2}. For k = 1 the only possible l is ∅. For k = 2 the possible l’s are ∅ and 1 (as described

in Theorem 4). For r = 2 we obtain only k = 2. Now, the possible l’s are ∅ and 2. The conditions (24)

and (25) for r = 1 and r = 2 take the form of (30),(31) and (32),(33) respectively, as follows:

max

⎧⎪⎨
⎪⎩ sup

−
t∈R1

1,2

{
b1

(
t
)}

, sup
−
t∈R1

2,3

{
b2

(
t
)}

, sup
−
t∈R1

2,1,3

{
b2,1

(
t
)}

⎫⎪⎬
⎪⎭ ≤ 0, (30)

max

⎧⎪⎨
⎪⎩ sup

−
t∈R1

1,3

{
b2

(
t
)}

, sup
−
t∈R1

1,2,3

{
b2,2

(
t
)}

⎫⎪⎬
⎪⎭ ≤ 0, (31)

max

⎧⎪⎨
⎪⎩ sup

−
t∈R2

1,2

{
b1

(
t
)

a1

(
t
)
}

, sup
−
t∈R2

2,3

{
b2

(
t
)

a2

(
t
)
}

, sup
−
t∈R2

2,1,3

{
b2,1

(
t
)

a2,1

(
t
)
}⎫⎪⎬
⎪⎭ ≤

≤ min

⎧⎨
⎩ inf

−
t∈R3

1,2

{
b1

(
t
)

a1

(
t
)
}

, inf
−
t∈R3

2,3

{
b2

(
t
)

a2

(
t
)
}

, inf
−
t∈R3

2,1,3

{
b2,1

(
t
)

a2,1

(
t
)
}⎫⎬
⎭ , (32)

max

⎧⎪⎨
⎪⎩ sup

−
t∈R2

1,3

{
b2

(
t
)

a1

(
t
)
}

, sup
−
t∈R2

1,2,3

{
b2,2

(
t
)

a1,2

(
t
)
}⎫⎪⎬
⎪⎭ ≤ min

⎧⎨
⎩ inf

−
t∈R3

1,3

{
b2

(
t
)

a1

(
t
)
}

, inf
−
t∈R3

1,2,3

{
b2,2

(
t
)

a1,2

(
t
)
}⎫⎬
⎭ . (33)

In order to compute (30)-(33), it is required to compute first the following sets and functions:

P1,2 = T = [0, 9) , P2,3 = R1
1,2 = S1

1 = [3, 6) , P2,1,3 = R2
1,2 × R3

1,2 = S2
1 × S3

1 = [0, 3) × [6, 9) ,

P1,3 = P1,2 ∩ S1
2 = S1

2 = [1, 2) × [4, 5) × [7, 8) ,

P1,2,3 =
[
P1,2 ∩ S2

2

]× [
P1,2 ∩ S3

2

]
= S2

2 × S3
2 = ([0, 1) ∪ [3, 4) ∪ [6, 7)) × ([2, 3) ∪ [5, 6) ∪ [8, 9)) ,

b2,1 (t2, t3) =
b2 (t2)
|a1 (t2)| +

b2 (t3)
|a1 (t3)| =

t2 − 10
|1| +

t3 − 10
|−1| = t2 + t3 − 20, ∀ (t2, t3) ∈ S2

1 × S3
1 ,

b2,2 (t2, t3) =
b2 (t2)
|a2 (t2)| +

b2 (t3)
|a2 (t3)| =

t2 − 10
|1| +

t3 − 10
|−1| = t2 + t3 − 20, ∀ (t2, t3) ∈ S2

2 × S3
2 ,

a2,1 (t2, t3) =
a2 (t2)
|a1 (t2)| +

a2 (t3)
|a1 (t3)| =

a2 (t2)
|1| +

a2 (t3)
|−1| = a2 (t2) + a2 (t3) , ∀ (t2, t3) ∈ S2

1 × S3
1 ,

a1,2 (t2, t3) =
a1 (t2)
|a2 (t2)| +

a1 (t3)
|a2 (t3)| =

a1 (t2)
|1| +

a1 (t3)
|−1| = a1 (t2) + a1 (t3) , ∀ (t2, t3) ∈ S2

2 × S3
2 ,

R1
1,2 = {t ∈ P1,2 : a1 (t) = 0} = {t ∈ T : a1 (t) = 0} = S1

1 = [3, 6) , R2
1,2 = S2

1 = [0, 3) ,

R3
1,2 = S3

1 = [6, 9) ,



R1
2,3 = {t ∈ P2,3 : a2 (t) = 0} = {t ∈ [3, 6) : a2 (t) = 0} = [4, 5) , R2

2,3 = [3, 4) , R3
2,3 = [5, 6) ,

R1
2,1,3 = {t ∈ P2,1,3 : a2,1 (t) = 0} = {(t2, t3) ∈ [0, 3) × [6, 9) : a2 (t2) + a2 (t3) = 0}

= ([0, 1) × [8, 9)) ∪ ([1, 2) × [7, 8)) ∪ ([2, 3) × [6, 7)) ,

R2
2,1,3 = ([0, 1) × [6, 7)) ∪ ([0, 1) × [7, 8)) ∪ ([1, 2) × [6, 7)) ,

R3
2,1,3 = ([1, 2) × [8, 9)) ∪ ([2, 3) × [7, 8)) ∪ ([2, 3) × [8, 9)) ,

R1
1,3 = {t ∈ P1,3 : a1 (t) = 0} =

{
t ∈ S1

2 : a1 (t) = 0
}

= [4, 5) ,

R2
1,3 = [1, 2) , R3

1,3 = [7, 8) ,

R1
1,2,3 = {t ∈ P1,2,3 : a1,2 (t) = 0} =

= {(t2, t3) ∈ ([0, 1) ∪ [3, 4) ∪ [6, 7)) × ([2, 3) ∪ [5, 6) ∪ [8, 9)) : a1 (t2) + a1 (t3) = 0} =

= ([0, 1) × [8, 9)) ∪ ([3, 4) × [5, 6)) ∪ ([6, 7) × [2, 3)) ,

R2
1,2,3 = ([0, 1) × [2, 3)) ∪ ([0, 1) × [5, 6)) ∪ ([3, 4) × [2, 3)) ,

R3
1,2,3 = ([3, 4) × [8, 9)) ∪ ([6, 7) × [5, 6)) ∪ ([6, 7) × [8, 9)) .

In the sequel, using the above quantities, we check whether inequalities (30)-(33) are satisfied. Indeed,

(30)-(33) hold, since max {−46,−5,−10} = −5 ≤ 0, max {−5,−10} = −5 ≤ 0, max {−73,−6,−11} =

−6 ≤ min {1, 4, 4} = 1 and max {−8,−8} = −8 ≤ min {2, 2} = 2. Therefore a solution x =[
x1 x2

]T

∈ R2 exists, which is bounded by x1 ∈ [−6, 1], x2 ∈ [−8, 2], as it follows from (26).

The exact set of solutions of the system and the bounds of these solutions, as given above, are

graphically shown in Figure 2. The rectangle produced from these bounds is the smallest possible, since

its erosion leads to loss of solutions.

Appendix 1: Proof of Lemma 2

The proof is done by induction. In (5) all coefficients are of the form ai (t) , i ∈ {1, 2, ..., k} and the

constant term is b (t). Here
−
l = ∅ is the index of the constant term and also the second index part of

every coefficient. All the indices of the coefficients coincide, except of their first index part i of them and

thus they have all the same length. Also, the index of the coefficient of the variable xr, r ∈ {1, 2, ..., k}
is equal to k + 1− r and the indices r of xr, r ∈ {1, 2, ..., k} are successive natural numbers. This shows

the initialization of the induction procedure.

Suppose now that Lemma 2 holds until an arbitrary decomposition-level. Let we have at that level



Figure 2: The set of the solutions of the system and their bounds.

the inequality:

a
k

−
l
(t)x1 + a

k−1,
−
l
(t)x2 + · · · + a

n+1,
−
l
(t)xk−n + a

n
−
l
(t)xk+1−n + a

m
−
l
(t)xk+1−m ≥ b−

l
(t) , ∀t ∈ Π,

(A1.1)

for some set Π, where n ≥ m + 1. We apply now to (A1.1) the GM decomposition and we obtain from

(13)-(16) respectively:

a
k

−
l
(t) x1 + · · · + a

n+1,
−
l
(t)xk−n + a

n
−
l
(t)xk+1−n ≥ b−

l
(t) , ∀t ∈ Π1

m (A1.2)

⎡
⎢⎣ a

k
−
l
(t2)∣∣∣a

m
−
l
(t2)

∣∣∣ +
a

k
−
l
(t3)∣∣∣a

m
−
l
(t3)

∣∣∣
⎤
⎥⎦x1 + · · · +

⎡
⎢⎣a

n+1,
−
l
(t2)∣∣∣a

m
−
l
(t2)

∣∣∣ +
a

n+1,
−
l
(t3)∣∣∣a

m
−
l
(t3)

∣∣∣
⎤
⎥⎦ xk−n +

+

⎡
⎢⎣ a

n
−
l
(t2)∣∣∣a

m
−
l
(t2)

∣∣∣ +
a

n
−
l
(t3)∣∣∣a

m
−
l
(t3)

∣∣∣
⎤
⎥⎦xk+1−n ≥

⎡
⎢⎣ b−

l
(t2)∣∣∣a

m
−
l
(t2)

∣∣∣ +
b−

l
(t3)∣∣∣a

m
−
l
(t3)

∣∣∣
⎤
⎥⎦ , ∀ (t2, t3) ∈ Π2

m × Π3
m (A1.3)

a
k

−
l
(t)x1 + · · · + a

n+1,
−
l
(t)xk−n + a

m
−
l
(t)xk+1−m ≥ b−

l
(t) , ∀t ∈ Π1

n (A1.4)



⎡
⎢⎣ a

k
−
l
(t2)∣∣∣a

n
−
l
(t2)

∣∣∣ +
a

k
−
l
(t3)∣∣∣a

n
−
l
(t3)

∣∣∣
⎤
⎥⎦x1 + · · · +

⎡
⎢⎣a

n+1,
−
l
(t2)∣∣∣a

n
−
l
(t2)

∣∣∣ +
a

n+1,
−
l
(t3)∣∣∣a

n
−
l
(t3)

∣∣∣
⎤
⎥⎦xk−n

+

⎡
⎢⎣ a

m
−
l
(t2)∣∣∣a

n
−
l
(t2)

∣∣∣ +
a

m
−
l
(t3)∣∣∣a

n
−
l
(t3)

∣∣∣
⎤
⎥⎦xk+1−m ≥

⎡
⎢⎣ b−

l
(t2)∣∣∣a

n
−
l
(t2)

∣∣∣ +
b−

l
(t3)∣∣∣a

n
−
l
(t3)

∣∣∣
⎤
⎥⎦ , ∀ (t2, t3) ∈ Π2

n × Π3
n (A1.5)

where Π1
r =

{
t ∈ Π : a

r
−
l
(t) = 0

}
, Π2

r =
{

t ∈ Π : a
r

−
l
(t) > 0

}
, Π3

r =
{

t ∈ Π : a
r

−
l
(t) < 0

}
and r ∈

{m, n}.
The coefficients and the constant terms of the inequalities (A1.2)-(A1.5) coincide with the correspond-

ing coefficients, as defined in of Definition 2. For example, in the second inequality above we have:

a
k

−
l n

(
t
)

=
a

k
−
l

(t2)����a
n

−
l

(t2)

����
+

a
k

−
l

(t3)����a
n

−
l

(t3)

����
and b−

l n

(
t
)

=
b−

l

(t2)����a
n

−
l

(t2)

����
+

b−
l

(t3)����a
n

−
l

(t3)

����
, where t = (t2, t3).

It is also clear that the indices of all the coefficients in a particular inequality of (A1.2)-(A1.5) coincide

except for their first index part, they all have the same length and their common second part is exactly

the index of the corresponding constant term. Also the first index part of the coefficient of the variable xr

in each one of the above four inequalities is equal to the first index part of the corresponding coefficient

in (A1.1) and thus equal to the corresponding coefficient in (5).

Also, it is easily seen in Definition 2 that the sets S1

m
−
l

, S2

m
−
l

, S3

m
−
l

are defined recursively and constitute

a natural generalization of S1
i , S2

i , S3
i . Thus, in the above inequalities it holds: Π1

m ⊆ S1

m
−
l

, Π2
m ⊆ S2

m
−
l

,

Π3
m ⊆ S3

m
−
l

, Π1
n ⊆ S1

n
−
l

, Π2
n ⊆ S2

n
−
l

and Π3
n ⊆ S3

n
−
l

, which means that the corresponding functions are

properly defined.

It results from the above procedure that the length of the index of a coefficient increases if and only

if one of the inequalities (A1.3) or (A1.5) appear; otherwise it remains constant. In addition, each time

that some index increases, the increment equals the first index part of the coefficient of the variable,

which vanishes in the inequality that appears.

In the whole procedure above, either the first most right coefficient, or the second one from the right,

disappears, due to the inequalities (A1.2)-(A1.5). Continuing in this way, it results that all the indices r

of xr, r ∈ {1, 2, ..., k} that appear in a particular iteration are either:

1. successive natural numbers, or

2. successive natural numbers except of the most right one, which can is arbitrary bigger than the

others.

Appendix 2: Proof of Lemma 3

In the sequel, we call “parent” the inequality, from which the “present” inequality (19) is derived, after

one application of the GM decomposition.



Initial Condition. In the given initial inequality (5), the two most right coefficients are a2 (t) and

a1 (t). Thus this inequality is defined on the set P1,2. The definition domain for this inequality is the

whole T and thus the initial condition is P1,2 = T . Here m = 1, l = ∅, n = m + 1 = 2.

Case 1: n = m + 1. The case, where m = 1 is the initial condition. Suppose now that m > 1. This

means that the two most right coefficients are a
(m+1)

−
l

and a
m

−
l
. The present inequality (19) is defined

on the set P
m

−
l (m+1)

. The fact that the two most right coefficients have consecutive m, n = m + 1 first

index parts, dictates that this inequality can be produced only by (13) or (14).

In the parent inequality, the first index part of the most right coefficient may take the values in

{1, 2, ..., m− 1}, while the first index part of the second coefficient is m. Let (m − i) be the first index

part of the first coefficient in the parent inequality, for some i ∈ {1, 2, ..., m− 1}.
Now the following cases are discriminated:

1. Let (m − i) ∈ l. The present inequality is produced from (14) and (m − i) is the last integer that

occurs in the sequence l, i.e. l = l′ (m − i) for another sequence l′. So, in the parent inequality, the

common index part is l\ (m − i), which means that the two most right coefficients are a
m

�−
l \(m−i)

�

and a
(m−i)

�−
l \(m−i)

�. Thus, the parent inequality is defined on the set P
(m−i)

�−
l \(m−i)

�
m

and it

holds:

P
m

−
l n

= R2

(m−i)

�−
l \(m−i)

�
m
× R3

(m−i)

�−
l \(m−i)

�
m

.

2. Let (m − i) /∈ l. The present inequality is produced from (13), which means that in the parent

inequality the two most right coefficients are a
m

−
l

and a
(m−i)

−
l
. Thus, the parent inequality is

defined on the set P
(m−i)

−
l m

, which is possible for every i ∈ {1, 2, ..., m− 1} and it holds:

P
m

−
l n

=
m−1⋃
i=1

R1

(m−i)
−
l m

.

Case 2: n > m + 1 In this case the two most right coefficients are a
n

−
l

and a
m

−
l
, with n > m + 1. The

fact that n > m+1 dictates that this inequality can be produced from the parent inequality only by (15)

or (16).

Now the following cases are discriminated:

1. Let (n − 1) ∈ l. The present inequality is produced from (16) and (n − 1) is the last integer that oc-

curs in the sequence l, i.e. l = l′ (n − 1) for another sequence l′. So, in the parent inequality, the com-

mon index part is l\ (n − 1), which means that the two most right coefficients are a
(n−1)

�−
l \(n−1)

�

and a
m

�−
l \(n−1)

�. Thus, the parent inequality is defined on the set P
m

�−
l \(n−1)

�
(n−1)

and it holds:

P
m

−
l n

=

⎡
⎣P

m

�−
l \(n−1)

�
(n−1)

∩ S2

(n−1)

�−
l \(n−1)

�
⎤
⎦×

⎡
⎣P

m

�−
l \(n−1)

�
(n−1)

∩ S3

(n−1)

�−
l \(n−1)

�
⎤
⎦ .



2. Let (n − 1) /∈ −
l . The present inequality is produced from (15), which means that in the parent

inequality the two most right coefficients are a
(n−1)

−
l

and a
m

−
l
. Thus, the parent inequality is

defined on the set P
m

−
l (n−1)

and it holds:

P
m

−
l n

= P
m

−
l (n−1)

∩ S1

(n−1)
−
l
.

Appendix 3: Computation of all possible integer-sequences l.

At first note that a value li in l denotes that somewhere during the iterations of the GM decomposition

the coefficient with li as first index part i.e. the coefficient of xk−li+1, has been eliminated from some of

the inequalities (A1.3) or (A1.5).

There are two “blocks” of li in l; those, which are smaller than k − r + 1 and those, which are greater

than k − r + 1, since the value li = k − r + 1 corresponds to an elimination of the coefficient of xr that

did not happen. The block with those li’s that are smaller than k− r + 1 appears first in l and the other

block appears afterwards. Indeed, suppose there are some lj > k − r + 1 > li for some j < i. This means

that the coefficient of xk−lj+1, with lj as first index part, has been eliminated in an inequality of the

form (A1.3) or (A1.5), while the coefficient with li as first index part has not been eliminated yet (since

i > j). Moreover, when the coefficient having lj > k− r+1 as first index part is eliminated, then at least

two coefficients on its right side appeared, each one having smaller first index part (that with li and that

with k − r + 1 as first index part respectively). However, this can never happen, due to the structure of

the GM decomposition (always either the most right coefficient, or the second one is eliminated). Thus,

the first “block” of li’s comes first in the representation of l.

Also, obviously, li �= lj for li and lj in l. Thus, the length of the first and the second “blocks” of l are

maximal k − r and r − 1 respectively and we may write l = lalb, where:

• la = la1 la2 ...laj1 , with: la1 , la2 , ..., laj1 ∈ {1, 2, ..., k − r}, j1 ∈ {0, 1, ..., k − r},

• lb = lb1l
b
2...l

b
j2

, with: lb1, l
b
2, ..., l

b
j1

∈ {k − r + 2, ..., k}, j2 ∈ {0, 1, ..., r − 1}.

In the sequel the possible values of lai , 1 ≤ i ≤ j1 and lbi , 1 ≤ i ≤ j2 will be determined.

At first, consider la = la1 la2 ...laj1 . As the GM decomposition evolves, the inequalities (A1.2) or (A1.4)

can appear many times, until either (A1.3) or (A1.5) occur. When one of the inequalities (A1.3) or (A1.5)

occurs for first time, the coefficient having la1 as first index part is eliminated. Then, the next time that

one of the inequalities (A1.3) or (A1.5) occurs, the coefficient having la2 as first index part is eliminated.

There are two possibilities for la1 ; the coefficient with la1 as first index part is either the first, or the second

one from the right in the inequality, at which one of the inequalities (A1.3) or (A1.5) occurs for first time.

If it is the first one (so there are no other coefficients at its right side), then la2 can be at least equal to

la1 + 1. If it is the second one (so there is exactly one other coefficient at its right side), then la2 can be



at least la1 − 1 (i.e. la1 has been produced from the inequality (A1.5) and la2 from the inequality (A1.3)).

Summarizing, la2 can take any value of the set {la1 − 1, ..., k − r} \ {0, la1}, since la1 and la2 are distinct and

different from zero. Continuing in a similar way, it results:

laj ∈ ({
laj−1 − 1, ..., k − r

} ∩ {
laj−2 − 1, ..., k − r

} ∩ ... ∩ {la1 − 1, ..., k − r}) \{
0, la1 , ..., laj−1

}
,

or equivalently:

la1 ∈ {1, ..., k − r} and laj ∈
(

j−1⋂
i=1

{lai − 1, ..., k − r}
)
\{

0, la1 , ..., laj−1

}
, 2 ≤ j ≤ j1.

Now, consider lb = lb1l
b
2...l

b
j2

. After eliminating all coefficients at the right side of the coefficient of xr,

no elimination from (A1.2) or (A1.3) is possible, since the most right coefficient is the coefficient having

k − r + 1 as first index part and can not be eliminated. Therefore, only an elimination from (A1.4) or

(A1.5) is possible each time. Specifically, lb1 can be produced only from the inequality (A1.5), while any

number of eliminations from (A1.4) can be applied, until (A1.5) occurs. Thus, lb1 can be any number

greater than k − r + 1. Now, with the same argumentation as before, we conclude that lb2 can be only

greater than lb1. Continuing in a similar way, it results:

lb1 ∈ {k − r + 2, ..., k} and lbj ∈ {
lbj−1 + 1, ..., k

}
, 2 ≤ j ≤ j2.

Summarizing, all possible integer-sequences l that may appear in P
(k−r+1)

−
l (k+1)

are exactly those of

the form l = lalb ∈ Nj1+j2 , with la = la1 la2 ...laj1 ∈ Nj1 , lb = lb1l
b
2...l

b
j2

∈ Nj2 , j1 ∈ {0, 1, ..., k − r},
j2 ∈ {0, 1, ..., r − 1}, such that:

la1 ∈ {1, ..., k − r} , lb1 ∈ {k − r + 2, ..., k} ,

laj ∈
(

j−1⋂
i=1

{lai − 1, ..., k − r}
)
\{

la1 , ..., laj−1

}
, for 2 ≤ j ≤ j1,

lbj ∈ {
lbj−1 + 1, ..., k

}
, for 2 ≤ j ≤ j2.

5 Conclusions

The necessary and sufficient conditions for the existence of the solution of LMIs A (t)x ≥ b (t) , ∀t ∈ T ,

where T is a finite, infinite, or even super countable set and A (t) ∈ RN×N is a given triangular Toeplitz

Matrix, have been presented. Also the restrictions of this solution, if such exists, have been derived using

appropriate successive decompositions of the given inequalities into simpler ones. The above results may

be extended in the more general case, where A (t) ∈ RN×N is an arbitrary square matrix.
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