
Noname manuscript No.
(will be inserted by the editor)

When Can Graph Hyperbolicity be Computed in Linear
Time?

Till Fluschnik · Christian Komusiewicz ·
George B. Mertzios · André Nichterlein ·
Rolf Niedermeier · Nimrod Talmon

Received: date / Accepted: date

Abstract Hyperbolicity is a distance-based measure of how close a given
graph is to being a tree. Due to its relevance in modeling real-world networks,
hyperbolicity has seen intensive research over the last years. Unfortunately, the
best known algorithms used in practice for computing the hyperbolicity num-
ber of an n-vertex graph have running time O(n4). Exploiting the framework
of parameterized complexity analysis, we explore possibilities for “linear-time
FPT” algorithms to compute hyperbolicity. For example, we show that hyper-
bolicity can be computed in 2O(k) + O(n + m) time (where m and k denote
the number of edges and the size of a vertex cover in the input graph, respec-
tively) while at the same time, unless the Strong Exponential Time Hypothesis
(SETH) fails, there is no 2o(k) · n2−ε-time algorithm for every ε > 0.

This work was initiated at the yearly research retreat of the Algorithmics and Computational
Complexity (AKT) group of TU Berlin, held in in Krölpa, Thuringia, Germany, from April
3rd till April 9th, 2016. An extended abstract appeared in the Proceedings of the 15th
International Symposium on Algorithms and Data Structures (WADS ’17), volume 10389,
pages 397–408. Springer, 2017. This version contains additional details and full proofs.

T. Fluschnik, A. Nichterlein, R. Niedermeier
Algorithmics and Computational Complexity, Fakultät IV, TU Berlin, Germany,
E-mail: {till.fluschnik, andre.nichterlein, rolf.niedermeier}@tu-berlin.de

C. Komusiewicz
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany,
E-mail: komusiewicz@informatik.uni-marburg.de

G. B. Mertzios
Department of Computer Science, Durham University, UK,
E-mail: george.mertzios@durham.ac.uk

N. Talmon
Ben-Gurion University, Be’er Sheva, Israel,
E-mail: nimrodtalmon77@gmail.com

2 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

1 Introduction

Gromov hyperbolicity [21] is a popular attempt to capture and measure how
metrically close a graph is to being a tree. The study of hyperbolicity is mo-
tivated by the fact that many real-world graphs are tree-like from a distance
metric point of view [2, 4]. This is due to the fact that many of these graphs
(including Internet application networks or social networks) possess certain
geometric and topological characteristics. Hence, for many applications (cf.,
e.g., Borassi et al. [4]), including the design of efficient algorithms, it is use-
ful to know the hyperbolicity of a graph. The hyperbolicity of a graph is a
nonnegative number δ; the smaller δ is, the more tree-like the graph is; in
particular, δ = 0 means that the graph metric indeed is a tree metric. Typi-
cal hyperbolicity values for real-world graphs are below five [2]. Notably, the
graph parameter treewidth—measuring tree-likeness in a non-metrical way—is
unrelated to the hyperbolicity of a graph.

Hyperbolicity can be defined via a four-point condition: Considering a size-
four subset {a, b, c, d} of the vertex set of a graph, one takes the (nonnegative)
difference between the two largest of the three sums ab+cd, ac+bd, and ad+bc,
where uv denotes the length of a shortest path between vertices u and v in
the given graph. The hyperbolicity is the maximum of these differences over
all size-four subsets of the vertex set of the graph. For an n-vertex graph,
this characterization of hyperbolicity directly implies a simple (brute-force)
O(n4)-time algorithm to compute its hyperbolicity. It has been observed that
this running time is too slow for computing the hyperbolicity of large graphs
as occurring in applications [2, 4, 5, 18]. On the theoretical side, it was shown
that relying on some (rather impractical) matrix multiplication results, one
can improve the upper bound to O(n3.69) [18]. Moreover, roughly quadratic
lower bounds are known [5, 18]. It is also known [12] that the problem of
deciding whether a graph is 1-hyperbolic and the problem of deciding whether
a graph contains a cycle of length four either both admit an O(n3−ε)-time
algorithm, for some ε > 0, or neither does. In practice, however, the best
known algorithm still has an O(n4)-time worst-case bound but uses several
clever tricks when compared to the straightforward brute-force algorithm [4].
Indeed, empirical studies suggest an O(mn) running time, where m is the
number of edges in the graph. Furthermore, there are heuristics for computing
the hyperbolicity of a given graph [8]. Cohen et al. [9] study computing the
hyperbolicity with a given clique-decomposition. In this context, they prove
that computing the hyperbolicity of the subgraphs induced by the parts of the
clique-decomposition yields a 1-additive approximation. Moreover, they prove
that the hyperbolicity of an outerplanar graph can be computed in linear time.

The guiding principle of this work is to explore the possibility of faster
algorithms for hyperbolicity in relevant special cases. More specifically, in-
troducing some graph parameters, we investigate whether one can compute
hyperbolicity in linear time when these parameters take small values. In other
words, we employ the framework of parameterized complexity analysis (so far
mainly used for studying NP-hard problems) applied to the polynomial-time

When Can Graph Hyperbolicity be Computed in Linear Time? 3

Table 1 Summary of our algorithmic results. Herein, k denotes the parameter and n and
m denote the number of vertices and edges, respectively. RR abbreviates “Reduction Rule”
used in the respective result. The symbol † stands for “together with Reduction Rule 1”.

Parameter Running time

covering path number O(k(n+m)) + k4(logn)O(1) [Thm. 1] [RR 2]†

feedback edge number O(k(n+m)) + k4(logn)O(1) [Thm. 2] [RR 2]†

number of ≥ 3-degree vertices O(k2(n+m)) + k8(logn)O(1) [Thm. 3] [RR 3]†

vertex cover number O(n+m) + 2O(k) [Thm. 4] [RR 4]†

distance to cographs O(44k · k7 · (n+m)) [Thm. 7]

solvable hyperbolicity problem. In this sense, we follow the recently proposed
framework of systematically studying “FPT in P” [20, 27]. Indeed, other than
for NP-hard problems (where parameterized complexity is typically applied),
for some parameters we achieve not only an exponential dependence on the
parameter but also polynomial ones. Note, however, that for the metric pa-
rameters diameter or hyperbolicity, such linear-time algorithms are unlikely
for any dependency on the parameter [5].

In this paper, we aim for developing linear-time parameterized algorithms
for computing the hyperbolicity of a graph, that is, algorithms with running
times of the form f(k) · |x|, where |x| denotes the input size, and f(k) is some
computable function only depending on the parameter k (referred to as L-FPT
running time). A linear-time parameterized algorithm is polynomial if f(k) is
some polynomial in k (referred to as PL-FPT running time).

Our contributions. Table 1 summarizes our main results. On the positive side,
for a number of natural graph parameters we can attain L-FPT running times.
Our “positive” graph parameters here are the following:

– the covering path number, that is, the minimum number of paths where
only the endpoints have degree greater than two and which cover all ver-
tices;

– the feedback edge number, that is, the minimum number of edges to delete
to obtain a forest;

– the number of graph vertices of degree at least three;
– the vertex cover number, that is, the minimum number of vertices needed

to cover all edges in the graph;
– the distance to cographs, that is, the minimum number of vertices to delete

to obtain a cograph.1

On the negative side, we prove for the parameter vertex cover number k
that we cannot hope for any 2o(k)n2−ε-time algorithm unless the Strong Ex-

1 Cographs are the graphs without induced P4s [10]. The parameter distance to cographs
is upper-bounded by the parameter distance to cluster graph [15] and thus also by the
parameter vertex cover number.

4 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

ponential Time Hypothesis2 (SETH) fails. We also obtain a “quadratic-time
FPT” lower bound with respect to the parameter maximum vertex degree,
again assuming SETH. We point out that our lower-bound result regarding
vertex cover implies lower bounds for many other well-known graph parame-
ters as feedback vertex set and pathwidth, which can be much smaller than the
vertex cover number. As one representative of this group of parameters—being
unrelated to the latter two mentioned parameters—we studied vertex-deletion
distance to cographs. Our remaining three parameters, namely covering path
number, number of ≥ 3-degree vertices, and feedback edge number, are unre-
lated to the vertex cover number and can be arbitrarily larger than the vertex
cover number (consider any biclique K2,n, any biclique K3,n, and any cycle Cn,
respectively).

Finally, we show that computing the hyperbolicity is at least as hard as
computing a size-four independent set in a graph. It is conjectured that com-
puting size-four independent sets needs Ω(n3) time [31].

2 Preliminaries and Basic Observations

We write [n] := {1, . . . , n} for every n ∈ N. For a function f : X → Y
and X ′ ⊆ X we set f(X ′) := {f(x) | x ∈ X ′}.

Parameterized Complexity. A parameterized problem is a set of in-
stances (x, k) ∈ Σ∗ × N, where Σ denotes a finite alphabet. A kernelization
is a polynomial-time algorithm that maps any instance (x, k) to an equivalent
instance (x′, k′) (the kernel) such that |x′| + k′ ≤ f(k) for some computable
function f .

Graph theory. All graphs within this work are undirected. Let G = (V,E) be
an undirected graph. We define |G| = |V | + |E|. For W ⊆ V , we denote
by G[W] the graph induced by W . We use G −W := G[V \W] to denote
the graph obtained from G by deleting the vertices of W ⊆ V . For F ⊆ E,
we denote by G− F the graph with vertex set V and edge set E \ F . A path
P = (v1, . . . , vk) in G is a tuple of distinct vertices in V such that {vi, vi+1} ∈
E for all i ∈ [k − 1]; we say that such a path P has endpoints v1 and vk,
we call the other vertices of P inner vertices, and we say that P is a v1-
vk path. We denote by ab the length of a shortest a-b path if such a path
exists; otherwise, that is, if a and b are in different connected components, we
define ab :=∞. Let P = (v1, . . . , vk) be a path and vi, vj two vertices on P . We
denote by vivj |P the distance of vi to vj on the path P , that is, vivj |P = |j−i|.
For two vertices a, b ∈ V , a vertex set S ⊆ V \ {a, b} is an a-b separator if
there is no a-b path in G− S.

For a graph G we denote by V ≥3G the set of vertices of G that have degree
at least three.

2 The Strong Exponential Time Hypothesis [23, 24] states that there is no O((2 − ε)n)-
time algorithm deciding k-SAT, where ε > 0 is independent of k and n denotes the number
of variables.

When Can Graph Hyperbolicity be Computed in Linear Time? 5

a b c d

D1 = ab+ cd

D2 = ac+ bd

D3 = ad+ bc

a

b

c

d

Fig. 1 Two illustrative examples for the four-point condition. Left : A path P16 with 16
vertices; Right : A cycle C16 with 16 vertices. Indeed, δ(P16) = 0, here indicated by the
equally largest two distance sums D2 (solid) and D3 (dashed). The situation changes in
the case of a C16 (that is, the P16 with one additional edge connecting the endpoints). We
have δ(C16) = 8, here indicated by the largest distance sum D2 (solid) and the two equally
smallest distance sums D1 (dotted) and D2 (dashed).

Hyperbolicity. Let G = (V,E) be graph and a, b, c, d ∈ V . We define D1 :=
ab + cd, D2 := ac + bd, and D3 := ad + bc (referred to as distance sums).
Moreover, we define δ(a, b, c, d) := |Di−Dj | if Dk ≤ min{Di, Dj}, for pairwise
distinct i, j, k ∈ {1, 2, 3}. If any two vertices of the quadruple {a, b, c, d} are not
connected by a path, then we set δ(a, b, c, d) := 0.3 The hyperbolicity of G =
(V,E) is defined as δ(G) := maxa,b,c,d∈V {δ(a, b, c, d)}. We refer to Figure 1 for
two illustrative examples. Note that by our definition, if G is not connected,
then δ(G) computes the maximal hyperbolicity over all connected components
ofG. We say that the graph is δ-hyperbolic for some δ ∈ N if it has hyperbolicity
at most δ. That is, a graph is δ-hyperbolic4 if for each 4-tuple a, b, c, d ∈ V we
have

ab+ cd ≤ max{ac+ bd, ad+ bc}+ δ.

Formally, the Hyperbolicity problem is defined as follows.

Hyperbolicity

Input: An undirected graph G = (V,E) and a positive integer δ.

Question: Is G δ-hyperbolic?

The following lemmas will be useful later. For any quadruple {a, b, c, d},
Lemma 1 upper-bounds δ(a, b, c, d) by twice the distance between any pair of
vertices of the quadruple. Lemma 2 considers graphs for which the hyperbol-
icity equals the diameter. Lemma 3 is used in the proof of Reduction Rule 1.

Lemma 1 ([8, Lemma 3.1]) δ(a, b, c, d) ≤ 2 ·minu6=v∈{a,b,c,d}{uv}

An implicit proof of the following lemma is given by Mitsche and
Pralat [28]. We provide a direct proof of our particular statement.

3 This case is often left undefined in the literature. Our definition, however, allows to
consider also disconnected graphs.

4 Note that there is also a slightly different definition where graphs that we call δ-
hyperbolic are called 2δ-hyperbolic [8, 28]; we follow the definition of Brinkmann et al. [7].

6 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

Lemma 2 Let G be a graph with diameter h and δ(G) = h. Then for each
quadruple a, b, c, d ∈ V (G) with δ(a, b, c, d) = h, it holds that exactly two dis-
joint pairs are at distance h and all the other pairs are at distance h/2.

Proof Let a, b, c, d ∈ V (G) be an arbitrary but fixed quadruple with
δ(a, b, c, d) = h. Without loss of generality, assume D1 = ab + cd and D1 ≥
max{D2, D3}. By Lemma 1 we have minu6=v∈{a,b,c,d}{uv} ≥ h/2, and hence
max{D2, D3} ≥ h/2+h/2 = h. It follows that h = D1−max{D2, D3} ≤ D1−h
and thus D1 ≥ 2h. Since G is of diameter h, we get ab = cd = h. More-
over, max{D2, D3} = h and together with minu6=v∈{a,b,c,d}{uv} ≥ h/2, we
obtain that each other distance equals h/2. ut

The following lemma immediately follows from a result due to Cohen
et al. [9, Theorem 5].

Lemma 3 Let G = (V,E) be a graph with |V | > 4 and with a vertex v ∈ V
such that the number of connected components in G−{v} is larger than in G.
Let A1, . . . , A` be the components in G − {v}. Then there is an i ∈ [`] such
that δ(G) = δ(G− V (Ai)). ut

Lemma 3 gives rise to the following degree-1 data reduction rule.

Reduction Rule 1 As long as there are more than four vertices, remove
vertices of degree at most one.

Lemma 4 Reduction Rule 1 is sound and can be exhaustively applied in linear
time.

Proof The soundness of Reduction Rule 1 follows immediately from Lemma 3.
To apply Reduction Rule 1 in linear time do the following. First, as long as
there are more than four vertices, delete degree-zero vertices. Second, collect
all vertices with degree at most one in linear time in a list L. Then, as long
as there are more than four vertices, iteratively delete degree-one vertices and
put their neighbor in L if it has degree at most one after the deletion. Each
iteration can be applied in constant time. Thus, Reduction Rule 1 can be
applied in linear time. ut

We call a graph reduced if Reduction Rule 1 is not applicable.

3 Polynomial Linear-Time Parameterized Algorithms

In this section, we provide polynomial linear-time parameterized algorithms
with respect to the parameters feedback edge number and number of vertices
with degree at least three.

To this end, we first introduce an auxiliary parameter, the minimum max-
imal path cover number (formally defined below), for which we also describe
a polynomial linear-time parameterized algorithm.

When Can Graph Hyperbolicity be Computed in Linear Time? 7

Building upon this result, for the parameter feedback edge number we then
show that, after applying Reduction Rule 1, the number of maximal paths can
be upper-bounded by a polynomial of the feedback edge number. This implies a
polynomial linear-time parameterized algorithm for the feedback edge number
as well. For the parameter number of vertices with degree at least three, we
introduce an additional data reduction rule to achieve that the number of
maximal paths is upper-bounded in a polynomial of this parameter. Again,
this implies an algorithm with PL-FPT running time.

Minimum maximal path cover number. We first give the definition of maximal
paths and then discuss graphs that can be covered by maximal paths.

Definition 1 (Maximal path) Let G be a graph and P be a path in G.
Then, P is a maximal path if the following hold: (1) P contains at least two
vertices; (2) all inner vertices of P have degree two in G; (3) both endpoints
of P have degree at least three in G.

We will be interested in the minimum number of maximal paths needed to
cover the vertices of a given graph; we call this number the minimum maximal
path cover number. A pending cycle in a graph is an induced cycle in G with at
most one vertex of degree larger than two. A pending cycle with no vertex of
degree larger than two is called isolated. While not all graphs can be covered by
maximal paths (e.g., edgeless graphs), graphs which have minimum degree two
and contain no pending cycles can be covered by maximal paths (this follows
by, e.g., a greedy algorithm which iteratively starts a path with an arbitrary
uncovered vertex and exhaustively extends it arbitrarily; since there are no
isolated cycles and the minimum degree is two, we are bound to eventually hit
at least one vertex of degree three).

Reduction Rule 2 Let I = (G, δ) be an instance of Hyperbolicity
with C ⊆ G being a pending cycle of G. If δ(C) > δ, then return that I is a no-
instance, and otherwise, delete from G all vertices v ∈ V (C) with deg(v) = 2
and their incident edges.

The correctness of Reduction Rule 2 follows immediately from Lemma 3.
We refer to a reduced graph G with no pending cycles as cycle-reduced. Based
on Reduction Rule 2, we have the following.

Lemma 5 There is a linear-time algorithm that given an instance I = (G, δ)
of Hyperbolicity, either decides I or computes an instance (G′, δ) equiva-
lent to I and a set P(G′) such that G′ ⊆ G is cycle-reduced and P(G′) ⊆ P(G)
is the set of all maximal paths in G′ of length at least three.

Proof First, we apply Reduction Rule 1 to have a graph with no vertices of
degree at most one. Next, we employ the linear-time algorithm by Bentert
et al. [3, Lemma 2] towards computing the set of all pending cycles and the
set of maximal paths. Herein, instead of storing the pending cycles, in each

8 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

iteration of the algorithm where a pending cycle C4p+q is found, we apply Re-
duction Rule 2. Note that for a cycle C4p+q with p ∈ N and q ∈ {0, 1, 2, 3} it
holds true that δ(C4p+q) = 2p if q ∈ {0, 2, 3}, and δ(C4p+q) = 2p−1 otherwise
(that is, if q = 1) [25]. If the deletion causes a vertex to have degree one, then,
starting at this vertex, we iteratively delete vertices of degree one along the
path (as long as there are more than four vertices). Then we continue. ut

Based on the linear-time approximation algorithm given in the next lemma,
we assume in the following that we are given a maximal path cover.

Lemma 6 There is a linear-time 2-approximation algorithm for the minimum
maximal path cover number for cycle-reduced graphs.

Proof The algorithm operates in two phases. In the first phase, we employ
Lemma 5 to obtain set of all maximal paths of length at least three.

The second phase begins when all vertices of degree two are already cov-
ered. In the second phase, ideally we would find a matching between those
uncovered vertices of degree at least three. To get a 2-approximation we arbi-
trarily select a vertex of degree at least three, view it as a path of length one,
and arbitrarily extend it until it is maximal. This finishes the description of
the linear-time algorithm.

For correctness of the first phase, the crucial observation is that each vertex
of degree two has two be covered by at least one path. For the second phase,
the factor 2 follows since each maximal path can cover at most two vertices of
degree at least three. ut

Now we are ready to present a polynomial linear-time parameterized algo-
rithm for Hyperbolicity with respect to the minimum maximal path cover
number.

Theorem 1 Let G = (V,E) be a cycle-reduced graph and k be its minimum
maximal path cover number. Then, Hyperbolicity can be solved in O(k(n+
m)) + k4(log n)O(1) time.

Proof We use Lemma 6 to get a set P of at most 2k maximal paths which
cover G. By initiating a breadth-first search from each of the endpoints of
those maximal paths, we can compute the pairwise distances between those
endpoints in O(k(n+m)) time. Thus, for the rest of the algorithm we assume
that we can access the distances between any two vertices which are endpoints
of those maximal paths in constant time.

Let (a, b, c, d) be a quadruple such that δ(a, b, c, d) = δ(G). Since the set P
covers all vertices ofG, each vertex of a, b, c, and d belongs to some path P ∈ P.
Since |P| ≤ 2k, there are O(k4) possibilities to assign the vertices a, b, c, and d
to paths in P. For each possibility we compute the maximum hyperbolicity
respecting the assignment, that is, we compute the positions of the vertices on
their respective paths that maximize δ(a, b, c, d). We achieve this by formulat-
ing an integer linear program (ILP) with a constant number of variables and
constraints whose coefficients have value at most n.

When Can Graph Hyperbolicity be Computed in Linear Time? 9

To this end, denote with Pa, Pb, Pc, Pd ∈ P the paths containing a, b, c, d,
respectively. We assume for now that these paths are different and discuss sub-
sequently the case that one path contains at least two vertices from a, b, c, d.
Let a1 and a2 (b1, b2, c1, c2, d1, d2) be the endpoints of Pa (Pb, Pc, Pd, respec-
tively). Furthermore, denote by mP the length of a path P ∈ P, that is, the
number of its edges. Without loss of generality assume that D1 ≥ D2 ≥ D3.
We now compute the positions of the vertices on their respective paths that
maximize D1 −D2 by solving an ILP. Recall that v1v|Pv denotes the distance
of v to v1 on Pv. Thus, v1v|Pv

+vv2|Pv
= mPv

, and v1v|Pv
≥ 0 and vv2|Pv

≥ 0.
The following is a compressed description of the ILP containing the minimum
function. We describe below how to remove it.

maximize: D1 −D2

subject to: D1 = ab+ cd

D2 = ac+ bd

D3 = ad+ bc

D1 ≥ D2 ≥ D3

∀x ∈ {a, b, c, d} : mPx = x1x|Px + xx2|Px (1)

∀x, y ∈ {a, b, c, d} : xy = min

x1x|Px

+ x1y1 + y1y|Py
,

x1x|Px + x1y2 + yy2|Py ,

xx2|Px
+ x2y1 + y1y|Py

,

xx2|Px
+ x2y2 + yy2|Py

 (2)

First, observe that the ILP obviously has a constant number of variables:
xy, for all x, y ∈ {a, b, c, d}, x 6= y, xxj |Px , for all x ∈ {a, b, c, d} and j ∈
{1, 2}, and Dj , j ∈ {1, 2, 3}. The only constant coefficients are xiyj for x, y ∈
{a, b, c, d} and i, j ∈ {1, 2} and obviously have value at most n− 1. To remove
the minimization function in Equation (2), we use another case distinction: We
simply try all possibilities of which value is the smallest one and adjust the
ILP accordingly. For example, for the case that for some x, y ∈ {a, b, c, d} the
minimum in Equation (2) is xx1|Px + x1y1 + y1y|Py , we replace this equation
by the following:

xy = x1x|Px + x1y1 + y1y|Py

xy ≤ x1x|Px + x1y2 + yy2|Py

xy ≤ xx2|Px + x2y1 + y1y|Py

xy ≤ xx2|Px + x2y2 + yy2|Py

There are four possibilities of which value is the smallest one, and we have to
consider each of them independently for each of the

(
4
2

)
= 6 pairs. Hence, for

each assignment of the vertices a, b, c, and d to paths in P, we need to solve 4 ·
6 = 24 different ILPs in order to remove the minimization function. Since each
ILP has a constant number of variables and constraints, this takes LO(1) time

10 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

where L = O(log n) is the total size of the ILP instance (for example by using
the algorithm of Lenstra [26]).

It remains to discuss the case that at least two vertices of a, b, c, and d
are assigned to the same path P ∈ P. As a deputy, we show the changes
for the case that a, b, and c are mapped to Pa ∈ P. The adjustments for
the other cases can be done in a similar fashion. We assume without loss of
generality that the vertices a1, a, b, c, a2 appear in this order in P (allowing
a = a1 and c = a2). The objective function as well as the first four lines of the
ILP remain unchanged. Equation (1) is replaced with the following:

mPa
= a1a|Pa

+ ab|Pa
+ bc|Pa

+ ca2|Pa

mPd
= d1d|Pd

+ dd2|Pa

To ensure that Equation (2) works as before, we add the following:

aa2|Pa
= ab|Pa

+ bc|Pa
+ ca2|Pa

b1b|Pb
= a1a|Pa + ab|Pa

bb2|Pb
= bc|Pa

+ ca2|Pa

c1c|Pc
= a1a|Pa

+ ab|Pa
+ bc|Pa

cc2|Pc
= ca2|Pa

ut

Feedback edge number. We next present a polynomial linear-time parameter-
ized algorithm with respect to the parameter feedback edge number k. The
idea is to show that a graph that is cycle-reduced contains O(k) maximal
paths.

Theorem 2 Hyperbolicity can be solved in O(k(n + m)) + k4(log n)O(1)

time, where k is the feedback edge number.

Proof The first step of the algorithm is to apply the algorithm of Lemma 5.
After this step, if the input instance is not yet decided, we can assume our
input graph to be cycle-reduced.

Denote by X ⊆ E a minimum feedback edge set for the cycle-reduced
graph G = (V,E) and observe that |X| = k. We will show that the minimum
maximal path cover number of G is O(k). More precisely, we show the slightly
stronger claim that the number of maximal paths in G is O(k).

Observe that all vertices in G have degree at least two since G is cycle-
reduced. Thus, every leaf of G−X is incident with at least one feedback edge
which implies that there are at most 2k leaves in G−X. Moreover, since G−X
is a forest, the number of vertices with degree at least three in G − X is at
most the number of leaves in G −X and thus at most 2k. This implies that
the number of maximal paths in G − X is at most 2k (each maximal path
corresponds to an edge in the forest obtained from G −X by contracting all
degree-two vertices).

When Can Graph Hyperbolicity be Computed in Linear Time? 11

We now show that number of maximal paths in G is linear in k by showing
that an insertion of an edge into any graph H increases the number of maximal
paths by at most three. First, note that each edge can be part of at most one
maximal path in any graph. If each endpoint of the edge to insert is of degree
two in H, then the number of maximal paths increases by three. This is indeed
the maximal case since in the case that at least one endpoint is of degree at
least three or at most one the insertion increases the number of maximal paths
by at most two. Thus G contains at most 5k maximal paths. The statement
of the theorem now follows from Theorem 1. ut

Number of vertices with degree at least three. We finally show a polynomial
linear-time parameterized algorithm with respect to the number k of vertices
with degree three or more. To this end, we use the following data reduction
rule additionally to the linear-time algorithm of Lemma 5 to upper-bound the
number of maximal paths in the graph by O(k2) (with the goal to make use
of Theorem 1).

Reduction Rule 3 Let G = (V,E) be a graph, u, v ∈ V ≥3G be two vertices
of degree at least three, and Puv be the set of maximal paths in G with
endpoints u and v. Let P9

uv ⊆ Puv be the set containing the shortest path, the
four longest even-length paths, and the four longest odd-length paths in Puv.
If Puv \ P9

uv 6= ∅, then delete in G all inner vertices of the paths in Puv \ P9
uv.

Lemma 7 Reduction Rule 3 is sound and can be exhaustively applied in linear
time.

Proof We first prove the running time. In linear time we compute the set V ≥3G

of all vertices with degree at least three. Then for each v ∈ V ≥3G we do the
following. Starting from v, we perform a modified breadth-first search that
stops at vertices in V ≥3G . Let R(V ≥3G , v) denote the visited vertices and edges.

Observe that R(V ≥3G , v) consists of v, some degree-two vertices, and all vertices

of V ≥3G that can be reached from v via maximal paths in G. Furthermore, with

the breadth-first search approach we can also compute for all u ∈ R(V ≥3G , v)∩
V ≥3G with u 6= v the number of maximal paths between u and v and their

respective lengths. Then, in time linear in |R(V ≥3G , v)|, we remove the paths

in Puv \P9
uv for all u ∈ R(V ≥3G , v)∩V ≥3G . Thus, we can apply Reduction Rule 3

for each v ∈ V ≥3G in O(|R(V ≥3G , v)|) time. Altogether, the running time is

O(
∑

v∈V ≥3
G

|R(V ≥3G , v)|) = O(n+m)

where the equality follows from the fact each edge and each maximal path
in G is visited twice by the modified breadth-first search.

We now prove the soundness of the data reduction rule. To this end, let G =
(V,E) be the input graph, let P ∈ Puv \ P9

uv be a maximal path from u to v
whose inner vertices are removed by the application of the data reduction rule,

12 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

? : (mP ′ −mP)/2

? : (mP ′′ −mP)/2
I)

P

P ′

u v
a

a′
?

ua

II-1)

P

P ′

u v
a b

a′
?

ua b′

?
bv

II-2)

P

P ′

P ′′

u v
a b

a′
?

ua

b′
?

bv

III-1)

P

P ′

u v
a b c

a′
?

ua
b′

? ?

c′

?
cv

III-2)

P

P ′

u v
a b c

a′ua
b′

? ?

c′
cv

Fig. 2 Illustrations to the cases I–III and the subcases therein in the proof of Lemma 7.

and let G′ = (V ′, E′) be the resulting graph. We show that δ(G) = δ(G′).
The soundness of Reduction Rule 3 follows then from iteratively applying
this argument. First, observe that since P9

uv contains the shortest maximal
path of Puv, it follows that u and v have the same distance in G and G′.
Furthermore, it is easy to see that each pair of vertices w,w′ ∈ V ′ has the
same distance in G and G′ (Reduction Rule 3 removes only paths and does
not introduce degree-one vertices). Hence, we have that δ(G) ≥ δ(G′) and it
remains to show that δ(G) ≤ δ(G′)

Towards showing that δ(G) ≤ δ(G′), let a, b, c, d ∈ V be the four vertices
defining the hyperbolicity of G, that is, δ(G) = δ(a, b, c, d). If P does not
contain any of these four vertices, then we are done. Thus, assume that P
contains at least one vertex from {a, b, c, d}. (For convenience, we say in this
proof that a path Q contains a vertex z if z is an inner vertex of Q.) We next do
a case distinction on the number of vertices of {a, b, c, d} that are contained
in P (we refer to Figure 2 for illustrations of the cases I–III and subcases
therein).

Case (I): P contains one vertex of {a, b, c, d}. Without loss of generality
assume that P contains a. We show that we can replace a by another vertex a′

in a path P ′ ∈ P9
uv such that δ(a, b, c, d) = δ(a′, b, c, d). Since P contains a, we

can choose P ′ as one of the four (odd/even)-length longest paths in P9
uv such

that

– mP ′ −mP is nonnegative and even (either both lengths are even or both
are odd) and

When Can Graph Hyperbolicity be Computed in Linear Time? 13

– P ′ contains no vertex of {b, c, d}.

Since P is removed by Reduction Rule 3, it follows that mP ≤ mP ′ . We
choose a′ on P ′ such that ua′|P ′ = ua|P + (mP ′ −mP)/2. Observe that this
implies that a′v|P ′ = av|P + (mP ′ −mP)/2 and thus

ua|P − av|P = ua′|P ′ − a′v|P ′ .

Recall that

D1 := ab+ cd, D2 := ac+ bd, and D3 := ad+ bc.

Denote with D′1, D′2, and D′3 the respective distance sums resulting from
replacing a with a′, for example D′1 = a′b + cd. Observe that by the choice
of a′ we increased all distance sums by the same amount, that is, for all i ∈
{1, 2, 3} we have D′i = Di + (mP ′ −mP)/2. Since δ(a, b, c, d) = Di − Dj for
some i, j ∈ {1, 2, 3}, we have that

δ(G′) = δ(a′, b, c, d) = D′i −D′j = δ(a, b, c, d) = δ(G).

Case (II): P contains two vertices of {a, b, c, d}. Without loss of generality,
assume that P contains a and b but not c and d, and a is closer to u on P
than b. We follow a similar pattern as in the previous case and again use the
same notation. Let P ′, P ′′ ∈ P9

uv be the two longest paths such that both P ′

and P ′′ do neither contain c nor d and both mP ′ −mP and mP ′′ −mP are
even. We distinguish two subcases:

Case (II-1): D1 is not the largest sum (D1 < D2 or D1 < D3). We replace a
and b with a′ and b′ on P ′ such that ua′|P ′ = ua|P+(mP ′−mP)/2 and ub′|P ′ =
ub|P + (mP ′ −mP)/2. Thus, D′1 = D1 since ab = a′b′. However, for i ∈ {2, 3}
we have D′i = Di + (mP ′ − mP)/2. Since either D2 or D3 was the largest
distance sum, we obtain

δ(G) = δ(a, b, c, d) = Di −Dj ≤ D′i −D′j′ = δ(a′, b′, c, d) = δ(G′)

for some i ∈ {2, 3}, j, j′ ∈ {1, 2, 3}, i 6= j, and i 6= j′.
Case (II-2): D1 is the largest sum (D1 ≥ D2 and D1 ≥ D3). We need

another replacement strategy since we did not increase D1 in case (II-1). In
fact, we replace a and b with two vertices on different paths P ′ and P ′′. We
replace a with a′ on P ′ and b with b′ on P ′′ such that ua′|P ′ = ua|P + (mP ′ −
mP)/2 and b′v|P ′′ = bv|P +(mP ′′−mP)/2. Observe that for i ∈ {2, 3} it holds
that

D′i = Di + (mP ′ −mP)/2 + (mP ′′ −mP)/2.

Moreover, since a′ and b′ are on different maximal paths, we also have

ab ≤ min
x∈{u,v}

{xa|P + xb|P }

= min
x∈{u,v}

{xa′|P ′ + xb′|P ′′} −
mP ′ −mP

2
− mP ′′ −mP

2

= a′b′,

14 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

where the last equality is due to the fact that {u, v} forms an a′-b′ separator
in G′. Thus D′1 ≥ D1 + (mP ′ −mP)/2 + (mP ′′ −mP)/2. It follows that

δ(G) = δ(a, b, c, d) = D1 −Dj ≤ D′1 −D′j = δ(a′, b′, c, d) = δ(G′)

for some j ∈ {2, 3}.
Case (III): P contains three vertices of {a, b, c, d}. Without loss of gen-

erality, assume that P contains a, b, and c but not d and that among a, b, c
vertex a is the closest vertex to u on P and c is the closest vertex to v on P
(that is, a, b, c appear in this order on P). We distinguish two subcases.

Case (III-1): ac|P = ac. We follow a similar pattern as in case (I) and use
the same notation. Again, there is a P ′ ∈ P9

uv such that mP ′ − mP is even
and nonnegative and P ′ does not contain d. We replace each vertex a, b, c as
in case (I), that is, for each x ∈ {a, b, c} we choose x′ on P ′ such that ux′|P ′ =
ux|P + (mP ′ − mP)/2. Observe that only the distances between d and the
other three vertices change. Thus, we have again for all i ∈ {1, 2, 3} that D′i =
Di + (mP ′ −mP)/2 and hence δ(G) = δ(G′).

Case (III-2): ac|P > ac. We use again a similar strategy as in case (I)
and use the same notation. Again, there is a P ′ ∈ P9

uv such that mP ′ −mP is
even and nonnegative and P ′ does not contain d. We replace the vertices a, b, c
with a′, b′, c′ on P ′ such that

– au = au|P = a′u|P ′ = a′u,
– cv = cv|P = c′v|P ′ = c′v,
– b′u|P ′ = bu|P + (mP ′ −mP)/2, and
– b′v|P ′ = bv|P + (mP ′ −mP)/2.

Note that since ac|P > ac, it follows that the distances not involving b (resp. b′)
remain unchanged, that is, ac = a′c′, ad = a′d, and cd = c′d. Furthermore, all
distances involving b (resp. b′) increase by (mP ′ −mP)/2, that is, bx = b′x−
(mP ′ −mP)/2 for each x ∈ {a, c, d}. Thus, we have again for all i ∈ {1, 2, 3}
that D′i = Di + (mP ′ −mP)/2 and hence δ(G) = δ(G′).

Case (IV): P contains all four vertices of {a, b, c, d}. We consider two
subcases.

Case (IV-1): the union of the shortest paths between these four vertices
induces a path. In this case, we have δ(G) = 0 and thus trivially δ(G) ≤ δ(G′).

Case (IV-2): the union of the shortest paths between these four vertices
induces a cycle C. As before, there is a path P ′ ∈ P9

uv such that mP ′ −mP is
nonnegative and even. Let Q denote the shortest path on C between u and v.
Observe that Q contains no vertex in {a, b, c, d} and is present in G′. Denote
by C ′ the cycle formed by Q and P ′. Note that |C ′| ≥ |C| since mP ′ ≥ mP .
Moreover, (|C ′| − |C|) mod 2 = 0 since (mP ′ −mP) mod 2 = 0, and hence the
case C = C4p and C ′ = C4p+1 for some p ∈ N is excluded. Thus, it holds true
that δ(C ′) ≥ δ(C). It follows that δ(G′) ≥ δ(C ′) ≥ δ(C) = δ(a, b, c, d) = δ(G).

ut

Observe that if the graph G is reduced with respect to Reduction Rule 3
after Lemma 5 was applied, then for each pair u, v ∈ V ≥3G there exist at most

When Can Graph Hyperbolicity be Computed in Linear Time? 15

nine maximal paths with endpoints u and v. Thus, G contains at most O(k2)
maximal paths and using Theorem 1 we arrive at the following.

Theorem 3 Hyperbolicity can be solved in O(k2(n + m)) + k8(log n)O(1)

time, where k is the number of vertices with degree at least three. ut

4 Exponential Linear-Time Parameterized Algorithms

In this section, we provide exponential linear-time parameterized algorithms
with respect to the parameters vertex cover number (Section 4.1) and vertex-
deletion distance to cographs (Section 4.2).

4.1 Parameter Vertex Cover Number

A vertex cover of a graph G = (V,E) is a subset W ⊆ V of vertices of G such
that each edge in G is incident to at least one vertex in W . Deciding whether
a graph G has a vertex cover of size at most k is NP-complete in general [19].
There is, however, a simple greedy linear-time factor-2 approximation (see,
e.g., [29]). In this section, we consider the size k of a vertex cover as the
parameter. We show that we can solve Hyperbolicity in time linear in |G|,
but exponential in k; further, we show that, unless SETH fails, we cannot do
asymptotically better.

A Linear-Time Algorithm Parameterized by the Vertex Cover Number. We
prove that Hyperbolicity can be solved in time linear in the size of the
graph and exponential in the size k of a vertex cover. This result is based on
a linear-time computable problem kernel consisting of O(2k) vertices that can
be obtained by exhaustively applying the following data reduction rule.

Reduction Rule 4 If there are at least five vertices v1, . . . , v` ∈ V , ` > 4,
with the same (open) neighborhood N(v1) = N(v2) = . . . = N(v`), then
delete v5, . . . , v`.

We next show that the above rule is correct, can be applied in linear time, and
leads to a problem kernel for the parameter vertex cover number.

Lemma 8 Reduction Rule 4 is correct and can be applied exhaustively in lin-
ear time. Furthermore, if Reduction Rule 4 is not applicable, then the graph
contains at most k + 4 · 2k vertices and O(k · 2k) edges, where k is the vertex
cover number.

Proof Let G = (V,E) be the input graph with a vertex cover W ⊆ V of size k
and let v1, . . . , v` ∈ V , ` > 4, be vertices with the same open neighborhood.

First, we show that Reduction Rule 4 is correct, that is, δ(G[V \
{v5, . . . , v`}]) = δ(G). To see this, consider two vertices vi, vj with the same
open neighborhood, and consider any other vertex u. The crucial observation

16 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

is that uvi = uvj . This means that the two vertices are interchangeable with
respect to the hyperbolicity. In particular, if vi, vj ∈ V have the same open
neighborhood, then δ(vi, x, y, z) = δ(vj , x, y, z) for every x, y, z ∈ V \ {vi, vj}.
As the hyperbolicity is obtained from a quadruple, it is sufficient to consider
at most four vertices with the same open neighborhood. We conclude that
δ(G[V \ {v5, . . . , v`}]) = δ(G).

Next we show how to exhaustively apply Reduction Rule 4 in linear time.
To this end, we apply in linear time a partition refinement [22] to compute a
partition of the vertices into twin classes. Then, for each twin class we remove
all but four (arbitrary) vertices. Overall, this can be done in linear time.

Since |W | ≤ k, it follows that there are at most 2k pairwise-different neigh-
borhoods (and thus twin classes) in V \W . Thus, if Reduction Rule 4 is not
applicable, then the graph consists of the vertex cover W of size k plus at
most 4 ·2k vertices in V \W . Furthermore, since W is a vertex cover, it follows
that the graph contains at most k2 + 4k · 2k edges. ut

With Reduction Rule 1 we can compute in linear time an equivalent in-
stance having a bounded number of vertices. Applying to this instance the
trivial O(n4)-time algorithm yields the following.

Theorem 4 Hyperbolicity can be computed in O(24k+n+m) time, where k
denotes the size of a vertex cover of the input graph. ut

SETH-based Lower Bounds. We show that, unless the SETH breaks,
the 2O(k) + O(n + m)-time algorithm of Theorem 4 cannot be improved to
an algorithm even with running time 2o(k) · n2−ε for any ε > 0. This also
implies that, assuming SETH, there is no problem kernel with 2o(k) vertices
computable in O(n2−ε) time, i. e., the kernel obtained by applying Reduction
Rule 4 cannot be improved significantly. The proof follows by a linear-time
many-one reduction from the following problem:

Orthogonal Vectors

Input: Two sets A and B each containing n binary vectors of length ` =
O(log n).

Question: Are there two vectors a ∈ A and b ∈ B such that a and b
are orthogonal, that is, such that there is no position i for
which a[i] = b[i] = 1?

Williams and Yu [30] proved that, if Orthogonal Vectors can be
solved in O(n2−ε) time, then SETH breaks. We provide a linear-time reduc-
tion from Orthogonal Vectors to Hyperbolicity where the graph G
constructed in the reduction contains O(n) vertices and admits a vertex cover
of size O(log n) (and thus contains O(n · log n) edges). The reduction then im-
plies that, unless SETH breaks, there is no algorithm solving Hyperbolicity
in time polynomial in the size of the vertex cover and linear in the size of the
graph. We mention that Borassi et al. [5] showed that, assuming the SETH,
Hyperbolicity cannot be solved in O(n2−ε) time. The instances constructed

When Can Graph Hyperbolicity be Computed in Linear Time? 17

...
...

C D
a1

...
ai

...
an

b1

...
bj

...

bn

A B

.

..
...

uA u uB

vA v vB

c1

...

c`

d1

...

d`

iff ai
[1] = 1

iff bj [2] = 1

Fig. 3 Sketch of the construction described in the proof of Theorem 5. Ellipses indicate
cliques, rectangles indicate independent sets. Multiple edges to an object indicate that the
corresponding vertex is incident to each vertex enclosed within that object.

in their reduction, however, have a minimum vertex cover of size Ω(n). Note
that our reduction is based on ideas from the reduction of Abboud et al. [1,
Theorem 1.7] for the Diameter problem.

Theorem 5 Assuming SETH, Hyperbolicity cannot be solved in 2o(k)·n2−ε
time, even on graphs with O(n log n) edges, diameter four, and domination
number three. Here, k denotes the vertex cover number of the input graph.

Proof We reduce any instance (A,B) of Orthogonal Vectors to an in-
stance (G, δ) of Hyperbolicity, where we construct the graph G as follows
(we refer to Figure 3 for a sketch of the construction).

Make each a ∈ A into a vertex a and each b ∈ B into a vertex b of G,
and denote these vertex sets by A and B, respectively. Add two vertices for
each of the ` dimensions, that is, add the vertex set C := {c1, . . . , c`} and
the vertex set D := {d1, . . . , d`} to G and make each of C and D a clique.
Next, connect each a ∈ A to the vertices of C in the natural way, that is,
add an edge between a and ci if and only if a[i] = 1. Similarly, add an edge
between b ∈ B and di ∈ D if and only if b[i] = 1. Moreover, add the edge
set {{ci, di} | i ∈ [`]}. This part will constitute the central gadget of our
construction.

Our aim is to ensure that the maximum hyperbolicity is reached for 4-
tuples (a, b, c, d) such that a ∈ A, b ∈ B, and a and b are orthogonal vec-
tors. The construction of G is completed by adding two paths (uA, u, uB)
and (vA, v, vB), and making uA and vA adjacent to all vertices in A ∪ C,
and uB and vB adjacent to all vertices in B ∪D.

18 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

Observe that G contains O(n) vertices, O(n · log n) edges, and that the
set V \ (A ∪B) forms a vertex cover in G of size O(log n). Moreover, observe
that G has diameter four. Note that each vertex in A ∪ B ∪ C ∪ D is at
distance two to each of u and v. Moreover, vA and vB are at distance three
to u. Analogously, uA, uB are at distance three to v. Furthermore u and v
are at distance four. Finally, observe that {uA, uB , v} forms a dominating set
in G, that is, every vertex of G is either contained in or adjacent to a vertex
in {uA, uB , v}.

We complete the proof by showing that (A,B) is a yes-instance of Or-
thogonal Vectors if and only if G has hyperbolicity at least δ = 4.

(⇒) Let (A,B) be a yes-instance, and let a ∈ A and b ∈ B be a pair
of orthogonal vectors. We claim that δ(a, b, u, v) = 4. Since a and b are or-
thogonal, there is no i ∈ [`] with a[i] = b[i] = 1 and, hence, there is no
path connecting a and b only containing two vertices in C ∪ D, and it holds
that ab = 4. Moreover, we know that uv = 4 and that au = bu = av = av = 2.
Thus, δ(a, b, u, v) = 8− 4 = 4, and G is 4-hyperbolic.

(⇐) Let S = {a, b, c, d} be a set of vertices such that δ(a, b, c, d) ≥ 4. By
Lemma 1, it follows that no two vertices of S are adjacent. Hence, we assume
without loss of generality that ab = cd = 4. Observe that all vertices of C
and D have distance at most three to all other vertices. Similarly, each vertex
of {uA, vA, uB , vB} has distance at most three to all other vertices. Consider
for example uA. By construction, uA is a neighbor of all vertices in A∪C∪{u}
and, hence, uA has distance at most two to vA and to all vertices in D. Thus,
uA has distance at most three to v, B, uB and vB and therefore to all vertices
of G. The arguments for vA, uB , and vB are symmetric.

It follows that S ⊆ A∪B ∪ {u, v}, and therefore at least two vertices in S
are from A ∪ B. Thus, assume without loss of generality that a is contained
in A. By the previous assumption, we have that ab = 4. This implies that b ∈ B
and a and b are orthogonal vectors, as every other vertex in V \B is at distance
three to a and each b′ ∈ B with b′ being non-orthogonal to a is at distance
three to a. Hence, (A,B) is a yes-instance. ut

We remark that, with the above reduction, the hardness also holds for
the variants in which we fix one vertex (u) or two vertices (u and v). The
reduction also shows that approximating the hyperbolicity of a graph within a
factor of 4/3− ε cannot be done in strongly subquadratic time or in PL-FPT
running time with respect to the vertex cover number.

Next, we adapt the above reduction to obtain the following hardness result
on graphs of bounded maximum degree.

Theorem 6 Assuming SETH, Hyperbolicity cannot be solved in f(∆) ·
n2−ε time, where ∆ denotes the maximum degree of the input graph.

Proof We reduce any instance (A,B) of Orthogonal Vectors to an in-
stance (G, δ) of Hyperbolicity as follows.

We use the following notation. For two sets of vertices X and Y with |X| =
|Y |, we say that we introduce matching paths if we connect the vertices in X

When Can Graph Hyperbolicity be Computed in Linear Time? 19

with the vertices in Y with paths with no inner vertices from X ∪Y such that
for each x ∈ X, x is connected to exactly one y ∈ Y via one path and for
each y ∈ Y , y is connected to exactly one x ∈ X via one path.

Let G′ be the graph obtained from the graph constructed in the proof
of Theorem 5 after deleting all edges. For each xA, x ∈ {u, v}, add two binary
trees, TAxA

with n leaves and height at most dlog ne, and TCxA
with ` leaves

and height at most dlog `e. Connect each tree root by an edge with xA. Next
introduce matching paths between A and the leaves of TAxA

such that each
shortest path connecting a vertex in A with xA is of length h := 2(dlog(n)e+
1) + 1. Similarly, introduce matching paths between C and the leaves of TCxA

such that each shortest path connecting a vertex in C with xA is of length h.
Apply the same construction for xB , x ∈ {u, v}, B, and D.

For x ∈ A ∪ B, we denote by |x|1 the number of 1’s in the corresponding
binary vector x. Moreover, for ci ∈ C, we denote by |ci| the number of vectors
in A with a 1 as its ith entry. For di ∈ D, we denote by |di| the number of
vectors in B with a 1 as their ith entry.

For each vertex a ∈ A, add a binary tree with |a|1 leaves and height at
most dlog |a|1e and connect its root by an edge with a. For each i ∈ [`], add a
binary tree with |ci| leaves and height at most dlog |ci|e and connect its root
by an edge with ci. Next, construct matching paths between the leaves of all
binary trees introduced for the vertices in A on the one hand, and the leaves
of all binary trees introduced for the vertices in C on the other hand, such
that the following holds: (i) for each a ∈ A and ci ∈ C, there is a path only
containing the vertices of the corresponding binary trees if and only if a[i] = 1,
and (ii) each of these paths is of length exactly h. Apply the same construction
for B and D.

Next, for each i ∈ [`], add a binary tree with ` − 1 leaves and height at
most dlog(`− 1)e and connect its root by an edge with ci. Finally, add paths
between the leaves of all binary trees introduced in this step such that (i) each
leaf is incident to exactly one path, (ii) for each i, j ∈ [`], i 6= j, there is a path
only containing the vertices of the corresponding binary trees, and (iii) each
of these paths is of length exactly h. Apply the same construction for D.

Finally, for each i ∈ [`], connect ci with di via a path of length h. Moreover,
for x ∈ {u, v}, connect xA with x and x with xB each via a path of length h.
This completes the construction of G. Observe that the number of vertices in G
is at most the number of vertices in the graph obtained from G′ by replacing
each edge with paths of length h. As G′ contains O(n log n) edges, the number
of vertices in G is in O(n log2 n). Finally, observe that the vertices in C ∪D
are the vertices of maximum degree which is five.

Next, we discuss the distances of several vertices in the constructed graph.
Observe that u and v are at distance 4h. For x ∈ {u, v}, the distance between x
and xA or xB is h, and the distance between xA and xB is 2h. The distance
from any c ∈ C to any d ∈ D is at least h and at most 2h. Moreover, the
distance between any a ∈ A and b ∈ B is at least 3h and at most 4h.

20 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

Claim 1 For any a ∈ A and b ∈ B, ab = 4h if and only if a and b are
orthogonal.

Proof (of Claim 1) (⇐) Let a and b be orthogonal. Suppose that there is
a shortest path P between a and b of length smaller than 4h. Observe that
any shortest path between a and b containing u or v is of length 4h. Hence,
P contains vertices in C ∪ D. As the shortest paths from a to C, C to D,
and D to b are each of length h, the only shortest path containing vertices in
C ∪D of length smaller than 4h is of the form (a, ci, di, b) for some ci ∈ C and
di ∈ D (recall that the shortest path between any two vertices in C or in D is
of length h). Hence, a and b have both a 1 as their ith entry, and thus are not
orthogonal. This contradicts the fact that a and b form a solution. It follows
that ab = 4h.

(⇒) Let a and b be not orthogonal. Then there is an i ∈ [`] such that a[i] =
b[i] = 1. Hence, there is a path (a, ci, di, b) of length 3h < 4h. �

Let M := A ∪ B ∪ C ∪D ∪ {x, xA, xB | x ∈ {u, v}}. So far, we know that
the only vertices that can be at distance 4h are those in A ∪B ∪ {u, v}.

Consider any vertex p ∈ V (G) \M . Then p is contained in a shortest path
between two vertices x and y in M at distance h. Moreover, max{px, py} =:
h′ < h. Let PYx denote the set of inner vertices of the shortest path connecting x
and xY , for x ∈ {u, v}, Y ∈ {A,B}. Moreover, let M∗ := {p ∈ PYx | x ∈
{u, v}, Y ∈ {A,B}}. We first discuss the case where p ∈ M∗. By symmetry,
let p ∈ PAu . Observe that for q ∈ PBv with vq = up holds pq = 4h.

Let p 6∈M ∪M∗. We claim that for all vertices q ∈ V (G) it holds that pq <
4h. Suppose not, so that there is some q ∈ V (G) with pq ≥ 4h. Observe
that q is not contained in a shortest path between x and y. It follows that
xq ≥ 4h − h′ > 3h or yq ≥ 4h − h′ > 3h. Let z ∈ {x, y} denote the vertex of
minimal distance among the two, and let z̄ denote the other one. Note that
since h is odd, the distances to z and z̄ are different.

Case 1 : q ∈M . Then z, q ∈ A ∪B, where z and q are not both contained
in A or B. Recall that p 6∈ M ∪M∗ and, hence, the case z, q ∈ {u, v} is not
possible. By symmetry, assume z ∈ A and q ∈ B. As zq > 3h, it follows that
z̄ = ci ∈ C for some i ∈ [`] with 1 = z[i] 6= q[i], or z̄ ∈ {uA, vA}. Hence, the
distance of z̄ to q is at most the distance of z to q, contradicting the choice
of z.

Case 2 : q 6∈ M . Then q is contained in a shortest path between two
vertices x′, y′ ∈ M of length h. Moreover, max{qx′, qy′} =: h′′ < h. Con-
sider a shortest path between p and q and notice that it must contain z and
z′ ∈ {x′, y′}. It holds that zz′ ≥ 4h−h′−h′′ > 2h. By symmetry, assume z ∈ A,
and z′ ∈ D ∪ {uB , vB} (recall that p 6∈ M ∪M∗). Then z̄ is in C ∪ {uA, vA},
and hence of shorter distance to q, contradicting the choice of z.

We proved that pq < 4h for all p ∈ V (G) \ (M ∪ M∗), q ∈ V (G). We
conclude that the vertex set A ∪ B ∪ {u, v} ∪M∗ is the only set containing
vertices at distance 4h. Moreover, G is of diameter 4h.

We claim that (A,B) is a yes-instance of Orthogonal Vectors if and
only if G has hyperbolicity at least δ = 4h.

When Can Graph Hyperbolicity be Computed in Linear Time? 21

(⇒) Let a ∈ A and b ∈ B be orthogonal. We claim that δ(a, b, u, v) = 4h.
Observe that uv = 4h, and that ab = 4h by Claim 1. The remaining distances
are 2h by construction, and hence δ(G) = δ(a, b, u, v) = 4h.

(⇐) Let δ(G) = 4h and let w, x, y, z be a quadruple with δ(w, x, y, z) = 4h.
By Lemma 2, we know that there are exactly two pairs of distance 4h and,
hence, {w, x, y, z} ⊆ A∪B ∪ {u, v} ∪M∗. We claim that |{w, x, y, z} ∩ (M∗ ∪
{u, v})| ≤ 2. By Lemma 2, we know that, out of w, x, y, z, there are exactly
two pairs at distance 4h and all other pairs have distance 2h. Assume that
|{w, x, y, z}∩M∗∪{u, v}| ≥ 3. Then, at least two vertices are in PAv ∪PBv ∪{v}
or in PAu ∪ PBu ∪ {u}. Observe that any two vertices in PAv ∪ PBv ∪ {v} or
in PAu ∪ PBu ∪ {u} are at distance smaller than 2h, but this contradicts the
choice of the quadruple. It follows that |{w, x, y, z} ∩M∗ ∪ {u, v}| ≤ 2. We
may thus assume without loss of generality that w, x ∈ A∪B. As each vertex
in A is at distance smaller than 3h to any vertex in A∪{u, v}∪M∗, it follows
that the other vertex is in B. Applying Claim 1, we have that w and x are at
distance 4h if and only if w and x are orthogonal; hence, the statement of the
theorem follows. ut

4.2 Parameter Distance to Cographs

In this section we describe a linear-time parameterized algorithm for Hyper-
bolicity parameterized by the vertex deletion distance k to cographs; that
is, we present an algorithm with linear dependence on the input size but arbi-
trary dependence on the parameter (to which we refer to as L-FPT). A graph
is a cograph if and only if it is P4-free. Given a graph G we can determine in
linear time whether it is a cograph and return an induced P4 if this is not the
case. This implies that in O(k · (m+n)) time we can compute a set X ⊆ V of
size at most 4k such that G−X is a cograph.

A further characterization is that a cograph can be obtained from graphs
consisting of one single vertex via unions and joins [6].
– A union of two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅

is the graph (V1 ∪ V2, E1 ∪ E2).
– A join of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph (V1 ∪
V2, E1 ∪ E2 ∪ {{v1, v2} | v1 ∈ V1, v2 ∈ V2}).

The union of t graphs and the join of t graphs are defined by taking succes-
sive unions or joins, respectively, of the t graphs in an arbitrary order. Each
cograph G can be associated with a rooted cotree TG. The leaves of TG are
the vertices of V . Each internal node of TG is labeled either as a union or join
node. For node v in TG, let L(v) denote the leaves of the subtree rooted at v.
For a union node v with children u1, . . . , ut, the graph G[L(v)] is the union of
the graphs G[L(ui)], 1 ≤ i ≤ t. For a join node v with children u1, . . . , ut, the
graph G[L(v)] is the join of the graphs G[L(ui)], 1 ≤ i ≤ t.

The cotree of a cograph can be computed in linear time [11]. In a subroutine
in our algorithm for Hyperbolicity we need to solve the following variant of
Subgraph Isomorphism.

22 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

Colored Induced Subgraph Isomorphism

Input: An undirected graph G = (V,E) with a vertex-coloring γ : V →
N and an undirected graph H = (W,F), where |W | = k, with a
vertex-coloring χ : W → N.

Question: Is there a vertex set S ⊆ V such that there is an isomorphism f
from G[S] to H such that γ(v) = χ(f(v)) for all v ∈ S?

Informally, the condition that γ(v) = χ(f(v)) means that every vertex is
mapped to a vertex of the same color. We say that such an isomorphism
respects the colorings. As shown by Damaschke [14], Induced Subgraph
Isomorphism on cographs is NP-complete. Since this is the special case of
Colored Induced Subgraph Isomorphism where all vertices in G and H
have the same color, Colored Induced Subgraph Isomorphism is also
NP-complete (containment in NP is obvious). In the following, we show that
on cographs Colored Induced Subgraph Isomorphism can be solved by
an L-FPT algorithm when the parameter k is the order of H.

Lemma 9 Colored Induced Subgraph Isomorphism can be solved
in O(3k(n+m)) time in cographs where k = |V (H)|.

Proof We use dynamic programming on the cotree TG =: T . Herein, we assume
that for each internal node v there is an arbitrary (but fixed) ordering of its
children; the ith child of v is denoted by ci(v) and the set of leaves in the
subtrees rooted at the first i children of v is denoted by Li(v). We fill a three-
dimensional table D with entries of the type D[v, i,X] where v is a node of
the cotree with at least i children and X ⊆W is a subset of the vertices of the
pattern H. The entry D[v, i,X] has value 1 if (G[Li(v)], γ|Li(v), H[X], χ|X) is a
yes-instance of Colored Induced Subgraph Isomorphism, that is, there
is a subgraph isomorphism from G[Li(v)] to H[X] that respects the coloring.
Otherwise, the entry has value 0. Thus, D[v,degT (v) − 1, X] has value 1 if
and only if there is an induced subgraph isomorphism from G[Li(v)] to H[X].
After the table is completely filled, the instance is a yes-instance if and only
if D[r, degT (r),W] has value 1 where r is the root of the cotree. We initialize
the table for leaf vertices v by setting

D[v, 0, X] =

{
1, if either X = ∅ or X = {u} with γ(v) = χ(u),

0, otherwise.

For each inner node v and i = 1, we have the following recurrence:

D[v, 1, X] =

{
1, if D[c1(v),deg(c1(v))− 1, X] = 1,

0, otherwise.

When Can Graph Hyperbolicity be Computed in Linear Time? 23

For i ≥ 2, the following recurrences hold for union and join nodes. For union
nodes, the table D is filled by the following recurrence:

D[v, i,X] =

1, ∃X ′ ⊆ X : D[v, i− 1, X ′] = 1

∧ D[ci(v),deg(ci(v))− 1, X \X ′] = 1

∧ there are no edges between X ′ and X \X ′ in H,

0, otherwise.

For join nodes, the table D is filled by the following recurrence:

D[v, i,X] =

1, ∃X ′ ⊆ X : D[v, i− 1, X ′] = 1

∧ D[ci(v),deg(ci(v))− 1, X \X ′] = 1

∧ every q ∈ X ′ is adjacent to every p ∈ X \X ′ in H,

0, otherwise.

The correctness of the recurrence can be seen as follows for the union
nodes. First assume that there is a color-respecting induced subgraph iso-
morphism from G[Li(v)] to H[X]. Then there is a set S ⊆ Li(v) such that
there is a color-respecting isomorphism f from G[S] to H[X]. If i = 1,
then D[c1(v),deg(c1(v))− 1, X] = 1, and hence, D[v, 1, X] evaluates correctly
to 1. Otherwise, if i ≥ 2, let S′ := S ∩ Li−1(v) be the set of vertices that are
from S and from Li−1(v) which implies that S \ S′ = S ∩ L(ci(v)). Since v is
a union node, there are no edges between S′ and S \ S′ in G. Let X ′ := f(S′)
and X \X ′ = f(S \S′) denote the image of S′ and S \S′, respectively. Since f
is an isomorphism there are no edges between X ′ and X \ X ′. Moreover,
since restricting a color-respecting isomorphism f : G[S] → H[X] to a sub-
set S′ gives a color-respecting isomorphism from f : G[S′]→ H[f(S′)] we have
that D[v, i − 1, X ′] and D[ci(v),deg(ci(v)) − 1, X \ X ′] have value 1. Hence,
there is a case such that the recurrence evaluates correctly to 1.

Conversely, if the recurrence evaluates to 1, then the conditions in the
recurrence (about the existence of X ′) imply a color-respecting induced sub-
graph isomorphism from G[Li(V)] to H[X]. Thus, the table is filled correctly
for union nodes. The correctness of the recurrence for join nodes follows by
symmetric arguments.

The running time is upper-bounded as follows. The cotree has size O(n+m)
and thus, there are O((n+m) ·2k) entries in the table. For each X ⊆W , filling
the entries of a particular table entry is done by considering all subsets of X,
thus the overall number of evaluations is O(3k · (n+m)). ut

We now turn to the algorithm for Hyperbolicity on graphs that can be
transformed into cographs by at most k vertex deletions. The final step of this
algorithm is to reduce Hyperbolicity to the following problem:

Distance-Constrained 4-Tuple

Input: An undirected graph G = (V,E) and six integers d{a,b}, d{a,c},
d{a,d}, d{b,c}, d{b,d}, and d{c,d},

Question: Is there a set S ⊆ V of four vertices and a bijection f : S →
{a, b, c, d} such that for each x, y ∈ S we have xy = d{f(x),f(y)}?

24 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

We prove that Distance-Constrained 4-Tuple is L-FPT when param-
eterized by the vertex deletion distance k to cographs.

Lemma 10 Distance-Constrained 4-Tuple can be solved in O(44k · k ·
(n+m)) time if G−X is a cograph for some X ⊆ V (G) with |X| ≤ k.

Proof Let G = (V,E) be the input graph and X ⊆ V , |X| ≤ k, such that G−X
is a cograph. Without loss of generality, let X = {x1, . . . , xk}.

In a preprocessing step, we classify the vertices of each connected compo-
nent in G[V \ X] according to the length of shortest paths to vertices in X
such that all internal vertices of the shortest path are in V \X.

More precisely, for a vertex v ∈ V \ X in a connected component Cv
of G−X, the type tv of v is a length-k vector containing the distance of v to
each vertex xi of X in G[Cv ∪ {xi}]. That is, tv[i] equals the distance from v
to xi ∈ X within the graph G[Cv∪{xi}]. Since the diameter of G[Cv] is at most
two, tv[i] ∈ {1, 2, 3,∞}. Thus, the number of distinct types in G is at most 4k.
For simplicity of notation, for every type t we denote by vt an arbitrary vertex
such that tv = t.

Observation 1 Let u and v be two vertices of the same type, that is, tu = tv.
Then for each vertex w in G− (Cu ∪ Cv), we have uw = vw.

Observation 2 Given two vertices u and v such that Cu 6= Cv, we can com-
pute uv in O(k) time when the distance between each u ∈ X and each v ∈ V \X
can be retrieved in O(1) time.

The dominating part of the running time of the preprocessing is the
computation of the vertex types which can be performed in O(k · (n + m))
time as follows. Create a length-k vector for each of the at most n vertices
of V \X and initially set all entries to ∞. Then compute for each xi ∈ X, the
graph G− (X \ {xi}) in O(n+m) time. In this graph perform a breadth-first
search from xi to compute the distances between xi and each vertex v ∈ V \X
that is in the same connected component as xi. This distance is exactly the
one in the graph G[Cv ∪ {xi}]. Thus, for all vertices that reach xi, the ith
entry in their type vector is updated. Afterwards, each vertex has the correct
type vector.

After this preprocessing, the algorithm proceeds as follows by restricting
the choice of vertices for the 4-tuple.

(1) First, branch into all O(k4) cases of taking a subset X ′ ⊆ X of size at
most four. (We will assume that X ′ = S ∩X.)

(2) For each such X ′ ⊆ X, branch into the different cases for the types of
vertices in S \ X ′. That is, consider all multisets MT of size |S \ X ′| =
4 − |X ′| over the universe of all types. (There are 4k types and thus at
most 44k cases for each X ′ ⊆ X.)

(3) For each such X ′ ⊆ X and multiset MT , branch into all cases of matching
the vertices in {a, b, c, d} to the vertices in X ′ and types in MT (branch
into all “bijections” f between X ′ ∪MT and {a, b, c, d}). (There are at
most 4! cases.)

When Can Graph Hyperbolicity be Computed in Linear Time? 25

(4) For each such branch, branch into the different possibilities to assign the
types in MT to connected components of G−X. That is, create one branch
for each partition of the multiset MT and assume in this branch that two
types are in the same connected component if and only if they are in
the same set of the partition of MT . The current partition is called the
component partition of the branch.

We now check whether there is a solution to the Distance-Constrained
4-Tuple instance that fulfills the additional assumptions made in the above
branches. To this end, for each pair of vertices x, y ∈ X ′, check whether xy =
d{f(x),f(y)}. Now, for each vertex x ∈ X ′ and each type t ∈MT , check whether
xvt = d{f(x),f(vt)}, where vt is an arbitrary vertex of type t. Observe that this
is possible since, by Observation 1 the distance between X and any vertex
of type t is the same in G. Next, for pair of types t, t′ ∈ MT such that the
branch assumes that t and t′ do not lie in the same connected component
of G − X, check whether vtvt′ = d{f(vt),f(vt′)}. Again, this is possible due
to Observation 1.

The remaining problem is thus to determine whether the types of MT can
be assigned to vertices in such a way that

– for each pair of types t, t′ ∈ MT the assigned vertices are in the same
connected component of G−X if and only if it is constrained to be in the
same type of connected component in the current branch, and

– for each pair of types t, t′ ∈MT such that their assigned vertices vt and vt′

are constrained to be in the same connected component, we need to ensure
that vtvt′ = d{f(vt),f(vt′)}.

We solve this problem by a reduction to Colored Induced Subgraph Iso-
morphism. Observe that, since G −X is a cograph, for each pair u and v of
vertices in the same connected component of G −X, the distance between u
and v is 2 if and only if they are not adjacent. With this observation, the
reduction works as follows. Let j ≤ 4 denote the number of distinct connected
components of G − X that shall contain at least one type of MT . Now, for
each connected component C of G − X add one further vertex vC , make vC
adjacent to all vertices of C and call the resulting graph G′. Now color the
vertices of G −X as follows. The additional vertices of each connected com-
ponent receive the color 0. Next, for each vertex type t in G − X introduce
one color and assign this color to each vertex of type t. Call the vertices
with color 0 the component-vertices and all other vertices the type-vertices.
To complete the construction of the input instance, we build H as follows.
Add j vertices of color 0. Then add a vertex for each type t of MT and color it
with the color corresponding to its type. As in G′, call the vertices with color 0
component-vertices and all other vertices type-vertices. Add edges between the
component-vertices and the type-vertices in such a way that every type-vertex
is adjacent to one vertex of color 0 and two type-vertices are adjacent to the
same color-0 vertex if and only if they are constrained to be in the same con-
nected component. Finally, if two type-vertices are constrained to be in the
same connected component and have distance 1 inG, then add an edge between

26 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

them, otherwise add no edge between them. This completes the construction
of H. The instance of Colored Induced Subgraph Isomorphism consists
of G′ and H and of the described coloring. We now claim that this instance is a
yes-instance if and only if there is a solution to the Distance-Constrained
4-Tuple instance that fulfills the constraints of the branch.

If the instance has a solution, then the subgraph isomorphism φ from G′[S]
to H corresponds to a selection of types from j connected components
since H contains neighbors of j component-vertices. Moreover, in H, and thus
in G′[S], every type-vertex is adjacent to exactly one component-vertex and
thus the component-vertices define a partition of the type-vertices of G′[S]
that is, due to the construction of H, exactly the component partition of MT .
Selecting the type-vertices of S and assigning them to {a, b, c, d} as specified
by f gives, together with the selected vertices of X, a special 4-tuple Q. Ob-
serve that Q fulfills all constraints of the branch except for the conditions on
the distances between the type-vertices of the same component. Now for two
vertices u and v of S in the same connected component of G−X, the distance
is 1 if they are adjacent and 2 otherwise. Due to the construction of H, and
the fact that φ is an isomorphism, the distance is thus 1 if d{f(u),f(v)} = 1 and
2 if d{f(u),f(v)} = 2. Thus, if the Colored Induced Subgraph Isomor-
phism instance is a yes-instance, so is the Distance-Constrained 4-Tuple
instance. The converse direction follows by the same arguments.

The running time can be seen as follows. The preprocessing can be per-
formed in O(k(n+m)) time, as described above. Then, the number of branches
is O(44k): the only time when the number of created branches is not con-
stant is when the types of the vertices in the 4-tuple are constrained or
when the 4-tuple vertices are fixed to belong to X. In the worst case, we
have X ′ = {a, b, c, d}∩X = ∅, that is, S ⊆ V \X and for all four vertices of S
one has to branch in total into 44k cases to fix the types. In each branch, the
algorithm first checks the conditions on all distances except for the distances
between vertices of the same parts of the component partition. This can be
done in O(k) time for each of these distance. Afterwards, the algorithm builds
and solves the Colored Induced Subgraph Isomorphism in O(n + m)
time. Altogether, this gives the claimed running time bound. ut

Lemma 10 at hand, we can solve Hyperbolicity as follows: For every
graph with vertex deletion distance k to cographs it holds true that the dis-
tance between every two vertices is upper-bounded by a linear function in k.
Hence, we can check all O(k6) possibilities for distances between two vertices
by solving the respective instances of Distance-Constrained 4-Tuple each
in L-FPT time. Altogether, we get the following.

Theorem 7 Hyperbolicity can be solved in O(44k ·k7 ·(n+m)) time, where
k is the vertex deletion distance of G to cographs.

Proof Let G = (V,E) be the input graph and X ⊆ V , |X| ≤ k, such that G−X
is a cograph and observe that X can be computed in O(4k · (n + m)) time.
Since every connected component of G − X has diameter at most two, the

When Can Graph Hyperbolicity be Computed in Linear Time? 27

maximum distance between any pair of vertices in the same component of G
is at most 4k + 2: any shortest path between two vertices u and v visits at
most k vertices in X, at most three vertices between every pair of vertices x
and x′ from X and at most three vertices before encountering the first vertex
of X and at most three vertices before encountering the last vertex of X.

Consequently, for the 4-tuple (a, b, c, d) that maximizes δ(a, b, c, d), there
are O(k6) possibilities for the pairwise distances between the four vertices.
Thus, we may compute whether there is a 4-tuple such that δ(a, b, c, d) = δ
by checking for each of the O(k6) many 6-tuples of possible pairwise distances
of four vertices in G whether there are four vertices in G with these six pair-
wise distances and whether this implies δ(a, b, c, d) ≥ δ. The latter check can
be performed in O(1) time, and the first is equivalent to solving Distance-
Constrained 4-Tuple which can be done in O(44k · k · (n + m)) time by
Lemma 10. The claimed overall running time follows. ut

5 Reduction from 4-Independent Set

In this section, we provide a further relative lower bound for Hyperbolic-
ity. Specifically, we prove that, if the running time is measured in terms of n,
then Hyperbolicity is at least as hard as 4-Independent Set, that is, the
problem of finding an independent set of size four in a graph. The currently
best running time for this problem is O(n3.257) [16, 31]. Hence, any improve-
ment on the running time of Hyperbolicity which breaks this bound (e.g.,
an algorithm running in o(n3) time), would also yield a substantial improve-
ment for the 4-Independent Set problem.

To this end, we reduce from a 4-partite (or 4-colored) variant of the Inde-
pendent Set problem. The standard reduction [17] from Independent Set
to Multicolored Independent Set shows that this 4-colored variant has
the same asymptotic running time lower bound as 4-Independent Set.

Theorem 8 Any algorithm solving Hyperbolicity in O(nc) time for some
constant c ≥ 2 yields an O(nc)-time algorithm solving 4-Independent Set.

Proof Let G = (V = V1] V2] V3] V4, E) be an instance of the 4-Colored-
Independent Set problem. Assume an arbitrary order on the vertices of Vi,
that is, Vi = {vi1, . . . , vini

}, where ni := |Vi|, for each 1 ≤ i ≤ 4. We construct
a graph G′, initially being the empty graph, as follows (we refer to Figure 4
for an illustration).
– Add the vertex sets X1, X2, X3, and X4, where Xi = {xi1, . . . , xini

}, 1 ≤ i ≤
4. We say that xij corresponds to the vertex vij ∈ Vi in V , for each 1 ≤ i ≤ 4,
1 ≤ j ≤ ni. Introduce a copy X ′i of each Xi and further copies Y1, Z1 of X1

and Y2, Z2 of X2. Make each Xi and each copy of each Xi a clique. We say
that the jth vertex of some copy of Xi corresponds to the jth vertex of Xi

and hence corresponds to the jth vertex in Vi.
– For each vertex in Xi introduce an edge to its corresponding vertex in X ′i.

28 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

X1 X2

X3X4

X′
1

X′
2

X′
3

X′
4

Y1

Z1

Y2

Z2

u1,2 u2,1

u2,3

u3,2

u3,4u4,3

u4,1

u1,4

6∈ E

6∈ E

6∈ E

6∈ E

∈ E ∈ E

X1 X2

X3X4

X′
1

X′
2

X′
3

X′
4

Y1

Z1

Y2

Z2

w

Fig. 4 An illustrative sketch of the graph constructed in the proof of Theorem 8. Encircled
vertices correspond to cliques. A thick edge represents a matching between copy-vertices.
An edge labeled “∈ E” (“ 6∈ E”) represent incidences corresponding to present (not present)
edges in the original graph. The vertex w is incident with all vertices except vertices con-
tained in Xi for all 1 ≤ i ≤ 4.

– For i ∈ {1, 2, 3}, introduce an edge between a vertex in X ′i and a vertex
in Xi+1 if their corresponding vertices in V are not adjacent in G. Introduce
edges between vertices in X ′4 and X1 analogously.

– For i ∈ {1, 2}, introduce edges for corresponding vertices between Xi

and Yi, and between Yi and Zi.
– For i ∈ {1, 2}, introduce an edge between a vertex in Zi and a vertex

in Xi+2 if their corresponding vertices in V are adjacent in G.
– Introduce a set U := {u1,2, u2,1, u2,3, u3,2, u3,4, u4,3, u1,4, u4,1} of eight fur-

ther vertices and call the vertices in U the connection vertices.
– Introduce the edges {ui,j , uj,i} for each ui,j , uj,i ∈ U and connect each

vertex in Xi with ui,j for all j such that ui,j ∈ U via an edge.
– Finally, add the vertex w and connect w via an edge with all vertices except

the vertices in Xi, 1 ≤ i ≤ 4.

This finishes the construction of G′ = (V ′, E′). Observe that |V (G′)| =
2 · |V (G)|+ 2 · (n1 +n2) + 9. Moreover, observe that the diameter of G′ is four.
To see this, observe that w has distance at most two to each vertex in G′.
Assuming that there exists at least one pair of vertices a ∈ V1 and c ∈ V3
such that {a, c} /∈ E (as otherwise G is a trivial no-instance), the distance

When Can Graph Hyperbolicity be Computed in Linear Time? 29

between a and c is exactly 4. We prove that δ(G′) = 4 if and only if G has an
independent set of size 4.

(⇐) Let {a, b, c, d} be a colored-independent set of size four in G, and let
without loss of generality a ∈ V1, b ∈ V2, c ∈ V3, and d ∈ V4. Let a′ ∈
X1, b′ ∈ X2, c′ ∈ X3, and d′ ∈ X4 be the corresponding vertices in G′. We
show that δ(a′, b′, c′, d′) = 4.

First, we show that a′b′ = 2. As no vertex in X1 is adjacent to any vertex
in X2, we have a′b′ ≥ 2. As a and b are not adjacent in G, they have a common
neighbor in X ′1 by construction of G′. It follows that a′b′ = 2. By a symmetric
argument, we conclude that b′c′ = c′d′ = d′a′ = 2.

Further, we show that a′c′ = 4. As each vertex in G′ is at distance two to
vertex w, it follows that a′c′ ≤ 4. Moreover, all the neighbors of a′ are in X ′1 ∪
Y1∪X ′4∪{u1,2, u1,4} and all the neighbors of c′ are in Z1∪X ′2∪X ′3∪{u3,2, u3,4}.
Thus, to have a distance of at most three, a neighbor of a′ must be adjacent to
a neighbor of c′. By construction, this is only possible if the unique neighbor a′Y
of a′ in Y1 is adjacent to a neighbor of c′ in Z1. The unique neighbor a′Z ∈ Z1

of a′Y ∈ Y1 is, however, not adjacent to c′ since a and c are not adjacent in G.
It follows that a′c′ = 4. By a symmetric argument, we conclude that b′d′ = 4.
Altogether this implies δ(a′, b′, c′, d′) = (4 + 4)− (2 + 2) = 4.

(⇒) Let S := {a′, b′, c′, d′} ⊆ V (G′) be a vertex set such that δ(a′, b′, c′, d′) =
4. We show that these vertices correspond to four vertices in G forming a
colored independent set in G.

First, by Lemma 1, we have 4 = δ(a′, b′, c′, d′) ≤ 2 · minu 6=v∈S{uv}, and
hence no two vertices in S are adjacent. Now, assume without loss of generality
that a′c′+b′d′ is the largest sum among the distances. Since the diameter of G′

is four, by Lemma 2 we have that a′c′ = b′d′ = 4 and a′b′ = b′c′ = c′d′ =
d′a′ = 2.

This already implies that w /∈ S as w has distance at most two to all other
vertices in G′. Moreover, let X := X1∪X2∪X3∪X4. Since all vertices in V ′\X
are adjacent to w, each of them is at distance at most three to all other vertices
in G′. Thus, S ⊆ X, but as S forms an independent set in G′, there are no
two vertices of Xi, 1 ≤ i ≤ 4, in S (recall that each Xi forms a clique in G′).
Assume without loss of generality that a′ ∈ X1, b′ ∈ X2, c′ ∈ X3, and d′ ∈ X4.
Let a ∈ V1, b ∈ V2, c ∈ V3, and d ∈ V4 be the vertices in G corresponding
to a′, b′, d′, and d′, respectively. Finally, by the construction of G′ together
with a′b′ = b′c′ = c′d′ = d′a′ = 2 and a′c′ = b′d′ = 4, it follows that {a, b, c, d}
forms a colored-independent set in G. ut

6 Conclusion

To efficiently compute the hyperbolicity number of a given graph, parame-
terization sometimes may help. In this respect, perhaps our practically most
promising results relate to the O(k(n+m)) + k4(log n)O(1) running times (for
the parameters covering path number and feedback edge number, see Table 1).

30 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

Note that they asymptotically improve on the standard algorithm with run-
ning time O(n4) when k ∈ O(n1−ε) for any ε > 0. Moreover, our linear-time
data reduction rules (Reduction Rules 1, 2, 3, and 4) may be of independent
practical interest. On the lower bound side, together with the work of Ab-
boud et al. [1] our SETH-based lower bound with respect to the parameter
vertex cover number is among few known “exponential lower bounds” for a
polynomial-time solvable problem.

Recently, Coudert et al. [13] proved polynomial linear-time parameterized
algorithms for computing the hyperbolicity number with respect to the param-
eters modular-width, split-width, neighborhood diversity, and P4-sparseness
(we omit the definitions of the parameters and refer to their paper). We re-
mark that, on the one hand, modular-width, split-width, and neighborhood
diversity can be exponentially large in the vertex cover number. On the other
hand, P4-sparseness is incomparable with the vertex cover number.

As to future work, we particularly point to the following open questions.
First, we left open whether there is an L-FPT algorithm exploiting the param-
eter feedback vertex number for computing the hyperbolicity number. Second,
for the parameter vertex cover number we have an SETH-based exponential
lower bound for the parameter function in any L-FPT algorithm. This does
not, however, imply that it is impossible to achieve a polynomial parameter de-
pendence when asking for algorithms with running time factors such as O(n2)
or O(n3).

Acknowledgements We are grateful to the anonymous reviewers of WADS’17 and Al-
gorithmica for their comments. TF acknowledges support by the DFG, projects DAMM
(NI 369/13-2) and TORE (NI 369/18). CK acknowledges support by the DFG, project
MAGZ (KO 3669/4-1). GM acknowledges support by the EPSRC grant EP/P020372/1.
AN acknowledges support by a postdoctoral fellowship of the DAAD while at Durham Uni-
versity. NT acknowledges support by a postdoctoral fellowship from I-CORE ALGO.

References

1. A. Abboud, V. Vassilevska Williams, and J. R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse
graphs. In Proc. 27th SODA, pages 377–391. SIAM, 2016. 17, 30

2. M. Abu-Ata and F. F. Dragan. Metric tree-like structures in real-world
networks: an empirical study. Networks, 67(1):49–68, 2016. 2

3. M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Nieder-
meier. Towards improving Brandes’ algorithm for betweenness centrality.
CoRR, abs/1802.06701, 2018. URL http://arxiv.org/abs/1802.06701.
Extended abstract to appear in Proc. of 29th ISAAC. 7

4. M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing the
hyperbolicity of real-world graphs. In Proc. 23rd ESA, volume 9294 of
LNCS, pages 215–226. Springer, 2015. 2

http://arxiv.org/abs/1802.06701

When Can Graph Hyperbolicity be Computed in Linear Time? 31

5. M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the com-
plexity of some quadratic-time solvable problems. Electronic Notes in
Theoretical Computer Science, 322:51–67, 2016. 2, 3, 16

6. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey,
volume 3 of SIAM Monographs on Discrete Mathematics and Applications.
SIAM, 1999. 21

7. G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity of
chordal graphs. Annals of Combinatorics, 5(1):61–69, 2001. 5

8. N. Cohen, D. Coudert, and A. Lancin. On computing the Gromov hy-
perbolicity. ACM Journal of Experimental Algorithmics, 20:1.6:1–1.6:18,
2015. 2, 5

9. N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-
decomposition for computing Gromov hyperbolicity. Theoretical Computer
Science, 690:114–139, 2017. 2, 6

10. D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible
graphs. Discrete Applied Mathematics, 3(3):163–174, 1981. 3

11. D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm
for cographs. SIAM Journal on Computing, 14(4):926–934, 1985. 21

12. D. Coudert and G. Ducoffe. Recognition of C4-free and 1/2-hyperbolic
graphs. SIAM Journal on Discrete Mathematics, 28(3):1601–1617, 2014.
2

13. D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms
for some classes of bounded clique-width graphs. In Proc. of 29th SODA,
pages 2765–2784. SIAM, 2018. 30

14. P. Damaschke. Induced subgraph isomorphism for cographs is NP-
complete. In Proc. 16th WG, volume 484 of LNCS, pages 72–78. Springer,
1991. 22

15. M. Doucha and J. Kratochv́ıl. Cluster vertex deletion: A parameterization
between vertex cover and clique-width. In Proc. 37th MFCS, volume 7464
of LNCS, pages 348–359. Springer, 2012. 3

16. F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter
clique and dominating set. Theoretical Computer Science, 326(1-3):57–67,
2004. 27

17. M. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameter-
ized complexity of multiple-interval graph problems. Theoretical Computer
Science, 410(1):53–61, 2009. 27

18. H. Fournier, A. Ismail, and A. Vigneron. Computing the Gromov hyper-
bolicity of a discrete metric space. Information Processing Letters, 115
(6-8):576–579, 2015. 2

19. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979. 15

20. A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polynomial
fixed-parameter algorithms: A case study for longest path on interval
graphs. Theoretical Computer Science, 689:67–95, 2017. 3

21. M. Gromov. Hyperbolic groups. In Essays in Group Theory, MSRI Publ.,
vol. 8, pages 75–263. Springer New York, 1987. 2

32 Fluschnik, Komusiewicz, Mertzios, Nichterlein, Niedermeier, Talmon

22. M. Habib and C. Paul. A survey of the algorithmic aspects of modular
decomposition. Computer Science Review, 4(1):41–59, 2010. 16

23. R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001. 4

24. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63
(4):512–530, 2001. 4

25. J. H. Koolen and V. Moulton. Hyperbolic bridged graphs. European
Journal of Combinatorics, 23(6):683–699, 2002. 8

26. H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983. 10

27. G. B. Mertzios, A. Nichterlein, and R. Niedermeier. The power of linear-
time data reduction for maximum matching. In Proc. 42nd MFCS, vol-
ume 83 of LIPIcs, pages 46:1–46:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. 3

28. D. Mitsche and P. Pralat. On the hyperbolicity of random graphs. The
Electronic Journal of Combinatorics, 21(2):P2.39, 2014. 5

29. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982. 15

30. R. Williams and H. Yu. Finding orthogonal vectors in discrete structures.
In Proc. 25th SODA, pages 1867–1877. SIAM, 2014. 16

31. V. V. Williams, J. R. Wang, R. Williams, and H. Yu. Finding four-node
subgraphs in triangle time. In Proc. 26th SODA, pages 1671–1680. SIAM,
2015. 4, 27

	Introduction
	Preliminaries and Basic Observations
	Polynomial Linear-Time Parameterized Algorithms
	Exponential Linear-Time Parameterized Algorithms
	Reduction from 4-Independent Set
	Conclusion

