The Friendship Problem on Graphs*

George B. Mertzios ${ }^{1, \dagger}$ and Walter Unger ${ }^{2}$
${ }^{1}$ School of Engineering and Computing Sciences, Durham University, UK.
${ }^{2}$ Department of Computer Science, RWTH Aachen University, Germany.
E-mail: quax@cs.rwth-aachen.de

Received: October 10, 2009. Accepted: September 9, 2013.
In this paper we provide a purely combinatorial proof of the Friendship Theorem, which has been first proven by P. Erdös et al. by using also algebraic methods. Moreover, we generalize this theorem in a natural way, assuming that every pair of nodes occupies $\ell \geq 2$ common neighbors. We prove that every graph, which satisfies this generalized ℓ-friendship condition, is a regular graph.

Keywords: Friendship theorem, friendship graph, windmill graph, Kotzig's conjecture.

1 INTRODUCTION

A graph is called a friendship graph if every pair of its nodes has exactly one common neighbor. This condition is called the friendship condition. Furthermore, a graph is called a windmill graph, if it consists of $k \geq 1$ triangles, which have a unique common node, known as the "politician". Clearly, any windmill graph is a friendship graph. Erdös et al. [1] were the first who proved the Friendship Theorem on graphs:

Theorem 1 (Friendship Theorem). Every friendship graph is a windmill graph.

The proof of Erdös et al. used both combinatorial and algebraic methods [1]. Due to the importance of this theorem in various disciplines and applications except graph theory, such as in the field of block designs and

[^0]coding theory [2], as well as in the set theory [3], several different approaches have been used to provide a simpler proof.

In 1971, Wilf provided a geometric proof of the Friendship Theorem by using projective planes [4], while in 1972, Longyear and Parsons gave a proof by counting neighbors, walks and cycles in regular graphs [3]. Both Longyear et al. and Wilf refer to an unpublished proof of G. Higman in lecture form at a conference on combinatorics in 1969; however, to the best of our knowledge, no known printed article of this proof exists. Hammersley avoided the use of eigenvalues and provided in 1983 a proof using numerical techniques [5]. He extended the Friendship Theorem to the so called "love problem", where self loops are allowed. In 2001, Aigner and Ziegler mentioned the Friendship Theorem in [6] as one of the greatest theorems of Erdös of all time. In the same year, West gave a proof similar to that in [3], counting common neighbors and cycles [7]. Finally, Huneke gave in 2002 two proofs, one being more combinatorial and one that combines combinatorics and linear algebra [8].

The friendship condition can be rewritten as follows: "For every pair of nodes, there is exactly one path of length two between them". In this direction, the friendship problem can be generalized as follows: Find all graphs, in which every pair of nodes is connected with exactly ℓ paths of length k. Such graphs are called ℓ-regularly k-path connected graphs, or simply $P_{\ell}(k)$ graphs [9]. The Friendship Theorem implies that the $P_{1}(2)$-graphs are exactly the windmill graphs. For the case of $P_{1}(k)$-graphs, where $k>2$, Kotzig conjectured in 1974 that there exists no such graph (Kotzig's conjecture) [10] and he proved this conjecture for $3 \leq k \leq 8$ [11]. Kostochka proved in 1988 that the conjecture is true for $k \leq 20$ [12]. Furthermore, Xing and Hu proved the Kotzig's conjecture in 1994 for $k \geq 12$ [13] and Yang et al. in 2000 for the cases $k=9,10$ and 11 [14]. Thus, the Kotzig's conjecture is valid now as a theorem.

In Section 2 of this paper we propose a simple purely combinatorial proof of the Friendship Theorem. At first step, we prove that any graph G satisfying the friendship condition is a windmill graph, under the assumption that G has at least one node of degree at most two. At second step, we prove that G is a regular graph in the case that all its nodes have degree greater than two. Finally, we prove by contradiction that G has always a node of degree two, following a counting argument similar to [3].

In Section 3, we generalize the friendship condition in a natural way to the ℓ-friendship condition: "Every pair of nodes has exactly $\ell \geq 2$ common neighbors". The graphs that satisfy the ℓ-friendship condition are exactly the $P_{\ell}(2)$-graphs and they are called ℓ-friendship graphs. We prove that every ℓ friendship graph is a regular graph, for every $\ell \geq 2$. This result implies that the ℓ-friendship graphs coincide with the class of strongly regular graphs
$\operatorname{srg}(n, k, \lambda, \mu)$ with $\lambda=\mu=\ell$, which correspond to symmetric balanced incomplete block designs [7]. This class of graphs has been extensively studied and several non-trivial examples of them are known in the literature [15, 16]. Finally, in Section 4 we summarize the results obtained in this paper.

2 A COMBINATORIAL PROOF OF THE FRIENDSHIP THEOREM

In this section we propose a purely combinatorial proof of the Friendship Theorem, i.e. that every friendship graph is a windmill graph. In the following, denote by C_{4} a node-simple cycle on 4 nodes, by $N(v)$ the set of neighbors of v in G and $N[v]=N(v) \cup\{v\}$.

Lemma 1. Let G be a friendship graph. Then G is connected and it contains no C_{4} as a subgraph. Furthermore $\operatorname{deg}(v) \geq 2$ for every node v of G, and the distance between any two nodes in G is at most two.

Proof. The proof is done by contradiction. If G is not connected, then there are at least two nodes of G with no common neighbor, which is in contradiction to the friendship condition. If G includes C_{4} as a subgraph (not necessary induced), there are two nodes v and u with at least two common neighbors, as it is illustrated in Figure 1(a). This is a contradiction to the friendship condition. Assume that $\operatorname{deg}(v)=1$ for a node v of G, and let u be the unique neighbor of v. Then, v has no common neighbor with u, which is again a contradiction. Finally, if a pair (v, u) of G has distance at least three, then v and u have no common neighbor in G, which is also a contradiction.

Since $\operatorname{deg}(v) \geq 2$ for every node v of a friendship graph G by Lemma 1 , we may distinguish the nodes of a friendship graph by their degree, as Definition 1 states.

FIGURE 1
Three forbidden cases.

Definition 1. In a friendship graph G, every node v with $\operatorname{deg}(v)=2$ is called a simple node, otherwise it is called a complex node.

Lemma 2. For every node v of a friendship graph $G, N[v]$ induces a windmill graph.

Proof. Consider two nodes v and $u \in N(v)$. Due to the assumption, they have a unique common neighbor a, as it is illustrated in Figure 1(b). Consider now another node $b \in N(v) \backslash\{u, a\}$. If $b \in N(u)$, then G includes a C_{4} as a subgraph, which is a contradiction due to Lemma 1. Thus, $b \notin N(u)$. Since this holds for every node $b \in N(v) \backslash\{u, a\}$, it follows that every node $u \in N(v)$ produces with v exactly one triangle. Therefore, for every node v of $G, N[v]$ induces a windmill graph.

Lemma 3. If a friendship graph G has at least one simple node, then G is a windmill graph.

Proof. Consider a simple node v of G with $N(v)=\{u, w\}$, as it is illustrated in Figure 1(c). Due to Lemma 2, u and w are also neighbors. At first, since u and w have a unique common neighbor, all their neighbors are distinct, except v. In the case where G is constituted of only these three nodes, G is obviously a windmill graph. Otherwise, every node of $V \backslash\{v, u, w\}$ is either a neighbor of u or of w, since in the opposite case it would have no common neighbor with v, which is a contradiction. Finally, consider two nodes $a \in N(u) \backslash\{v, w\}$ and $b \in N(w) \backslash\{v, u\}$. Then, a and b are not neighbors, since otherwise u, w, b and a would induce a C_{4}, which is in contradiction to Lemma 1. It follows that the distance between a and b is three, which is also a contradiction. Thus, at least one node of $\{u, w\}$ is simple and the other one is neighbored to all other nodes in G. It follows that G is a windmill graph, due to Lemma 2.

Lemma 4. If a friendship graph G has no simple node, then G is a $2 k$ regular graph with $2 k(2 k-1)+1$ nodes, for some $k \geq 2$.

Proof. Suppose that all nodes of G are complex nodes, i.e. their degree is greater than two. Let v be such a node of G. Then, all the remaining nodes in $V \backslash\{v\}$ are partitioned into the sets $L=N(v)$ and $L^{\prime}=V \backslash N[v]$.

Due to Lemma 2 and the assumption, $N[v]$ induces a non-trivial windmill graph, as it is illustrated in Figure 2. Suppose now that the windmill graph $N[v]$ has $k \geq 2$ triangles. Thus the graph induced by $N(v)$ is a perfect matching of size k with edges: $\left\{v_{1}^{0}, v_{1}^{1}\right\},\left\{v_{2}^{0}, v_{2}^{1}\right\}, \ldots,\left\{v_{k}^{0}, v_{k}^{1}\right\}$. Now consider a node v_{i}^{x} of L, for some $i \in\{1,2, \ldots, k\}$ and $x \in\{0,1\}$. Denote

FIGURE 2
A non-trivial windmill graph.
by $N^{\prime}\left(v_{i}^{x}\right)=N\left(v_{i}^{x}\right) \cap L^{\prime}$ the set of nodes of the windmill graph $N\left[v_{i}^{x}\right]$ that belong to L^{\prime}, as it is illustrated in Figure 3. Due to the assumption it follows that $N^{\prime}\left(v_{i}^{x}\right) \neq \emptyset$.

Due to the windmill structure of $N\left[v_{i}^{x}\right], N^{\prime}\left(v_{i}^{x}\right)$ constitutes a perfect matching of $k_{i}^{x} \geq 1$ pairs of nodes in L^{\prime}, denoted by $P_{\ell}\left(v_{i}^{x}\right), \ell=1,2, \ldots, k_{i}^{x}$. Clearly, there is no edge connecting two nodes from two different pairs $P_{a}\left(v_{i}^{x}\right)$ and $P_{b}\left(v_{i}^{x}\right)$, since otherwise there exists a C_{4}, which is a contradiction due to Lemma 1. Similarly, an arbitrary node in $N^{\prime}\left(v_{i}^{x}\right)$ does not have any other neighbor in L except v_{i}^{x}, since otherwise there exists again a C_{4}. Define now the $i^{\text {th }}$ block $B_{i}:=N^{\prime}\left(v_{i}^{0}\right) \cup N^{\prime}\left(v_{i}^{1}\right)$, as it is illustrated in Figure 3.

Since $k \geq 2$, there are at least two different blocks B_{i} and B_{j} in G. Consider now a node $q \in N^{\prime}\left(v_{j}^{0}\right)$, as it is illustrated in Figure 4. Since the nodes q and v_{i}^{0} have exactly one common neighbor, q has exactly one neighbor p in $N^{\prime}\left(v_{i}^{0}\right)$. On the other hand, the only neighbor of p in $N^{\prime}\left(v_{j}^{0}\right)$ is q, since otherwise p would have more than one common neighbor with v_{j}^{0}, which is a contradiction. Thus, the edges between $N^{\prime}\left(v_{i}^{0}\right)$ and $N^{\prime}\left(v_{j}^{0}\right)$ constitute a perfect matching. This holds similarly for the edges between $N^{\prime}\left(v_{i}^{x}\right)$ and $N^{\prime}\left(v_{j}^{y}\right)$ as well, where $x, y \in\{0,1\}$ and hence, it holds $k_{i}^{0}=k_{i}^{1}=: k^{\prime}$ for every $i \in\{1,2, \ldots, k\}$.

Now, an arbitrary node $p \in N^{\prime}\left(v_{i}^{0}\right)$ is a neighbor to exactly two nodes q and s of any of the $k-1$ blocks $B_{j}, j \neq i$, one in $N^{\prime}\left(v_{j}^{0}\right)$ and one in $N^{\prime}\left(v_{j}^{1}\right)$, as it is illustrated in Figure 4. Similarly, q and s are neighbors to exactly two nodes q^{\prime} and s^{\prime} of $N^{\prime}\left(v_{i}^{1}\right)$, respectively. Therefore, since p has a common neighbor with every node of $N^{\prime}\left(v_{i}^{1}\right)$, it follows that $2(k-1) \geq\left|N^{\prime}\left(v_{i}^{1}\right)\right|=$ $2 k^{\prime}$. If $2(k-1)>2 k^{\prime}$, then there exist two neighbors q, s of p in $\bigcup_{j \neq i} B_{j}$, such that both q and s have the same neighbor $z \in N^{\prime}\left(v_{i}^{1}\right)$. Thus G contains a

FIGURE 3
The $i^{\text {th }}$ block B_{i}.
C_{4} on the vertices p, q, s, z, which is a contradiction by Lemma 1. Therefore $2(k-1)=2 k^{\prime}$, i.e. $k^{\prime}=k-1$. Thus, taking into account the two neighbors r and u_{i}^{0} of p, it has exactly $2(k-1)+2=2 k$ neighbors in G. Furthermore, any node v_{i}^{x} has $2 k^{\prime}+2=2 k$ neighbors in G as well. Thus, since $\operatorname{deg}(v)=$ $2 k$, it follows that G is a $2 k$-regular graph. Finally, since the blocks $B_{i}, i \in$ $\{1,2, \ldots, k\}$ have $2 k \cdot 2(k-1)$ nodes in total and since v has $2 k$ neighbors, it follows that G has $n=2 k(2 k-1)+1$ nodes.

Lemma 5. There is at least one simple node in any friendship graph G.

Proof. The proof will be done by contradiction. Suppose that all nodes of G are complex, i.e. their degree is greater than two. Then, by Lemma 4, G is a $2 k$-regular graph with $n=2 k(2 k-1)+1$ nodes, for some $k \geq 2$. For an arbitrary natural number $\ell \geq 2$, let $T(\ell)$ be the set of all ordered ℓ-tuples $\left\langle v_{1}, v_{2}, \ldots, v_{\ell}\right\rangle$ of (not necessary distinct) nodes of G, such that v_{i} is neighbored with v_{i+1} for every $i \in\{1,2, \ldots, \ell-1\}$. Since $n=2 k(2 k-1)+1$, it holds that

$$
\begin{equation*}
|T(\ell)|=n \cdot(2 k)^{\ell-1} \equiv 1 \bmod (2 k-1) \tag{1}
\end{equation*}
$$

FIGURE 4
The regularity of the friendship graph G.
for every $\ell \geq 2$. If the nodes v_{ℓ} and v_{1} are neighbored, then the tuple $\left\langle v_{1}, v_{2}, \ldots, v_{\ell}\right\rangle$ constitutes a closed ℓ-walk in G. Let $C(\ell) \subseteq T(\ell)$ be the set of all closed ℓ-walks. Let furthermore $C^{*}(\ell)=\left\{\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}, v_{\ell}\right\rangle \in\right.$ $\left.T(\ell): v_{\ell}=v_{1}\right\}$ be the set of all closed $(\ell-1)$-walks in G.

Consider now the surjective mapping $f: C(\ell) \rightarrow T(\ell-1)$, such that $f\left(\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}, v_{\ell}\right\rangle\right)=\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}\right\rangle$. For every tuple $\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}\right\rangle$ of $T(\ell-1) \backslash C^{*}(\ell-1)$, i.e. with $v_{\ell-1} \neq v_{1}$, it holds that $\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}\right\rangle=f\left(\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}, y\right\rangle\right)$, where y is the unique common neighbor of $v_{\ell-1}$ and v_{1} in G. On the other hand, for every tuple $\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}=v_{1}\right\rangle$ of $C^{*}(\ell-1)$ it holds that $\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}=v_{1}\right\rangle=f\left(\left\langle v_{1}, v_{2}, \ldots, v_{\ell-1}=v_{1}, z\right\rangle\right)$, where z is any of the $2 k$ neighbors of v_{1} in G. Since f is surjective and due to (1), it follows that

$$
\begin{align*}
|C(\ell)| & =2 k \cdot\left|C^{*}(\ell-1)\right|+\left|T(\ell-1) \backslash C^{*}(\ell-1)\right| \\
& \equiv|T(\ell-1)| \bmod (2 k-1) \tag{2}\\
& \equiv 1 \bmod (2 k-1)
\end{align*}
$$

for every $\ell \geq 2$.

Now, for an arbitrary prime divisor p of $2 k-1$, consider the bijective mapping (cyclic permutation) $\pi: C(p) \rightarrow C(p)$, with $\pi\left(\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle\right)=$ $\left\langle v_{2}, \ldots, v_{p}, v_{1}\right\rangle$. Since p is a prime number, all tuples $\pi^{i}\left(\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle\right)$, where $i \in\{1,2, \ldots, p\}$ are distinct. The mapping π defines in a trivial way an equivalence relation: the tuples $\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle$ and $\left\langle w_{1}, w_{2}, \ldots, w_{p}\right\rangle$ are equivalent if there is a number $t \in\{1,2, \ldots, p\}$, such that $\pi^{t}\left(\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle\right)=\left\langle w_{1}, w_{2}, \ldots, w_{p}\right\rangle$. This equivalence relation partitions $C(p)$ into equivalence classes of p elements each and thus, it holds that

$$
\begin{equation*}
|C(p)| \equiv 0 \bmod (p) \tag{3}
\end{equation*}
$$

Since p is a prime divisor of $2 k-1,(3)$ is in contradiction to (2) for $\ell=p$.

The Friendship Theorem follows now directly from to Lemmas 2, 3, 4 and 5 .

3 THE GENERALIZED FRIENDSHIP PROBLEM

In this section we generalize the friendship condition, assuming that each pair of nodes occupies exactly $\ell \geq 2$ common neighbors. We prove that these graphs are d-regular, with $d \geq \ell+1$.

Definition 2. The condition: "Every pair of nodes has exactly ℓ common neighbors" is called the ℓ-friendship condition. The graphs that satisfy the ℓ-friendship condition are exactly the $P_{\ell}(2)$-graphs and they are called ℓ friendship graphs.

Proposition 1. Every ℓ-friendship graph G is a regular graph, for $\ell \geq 2$.

Proof. Consider a node $v \in V$ with $d=\operatorname{deg}(v)$. Similarly to Section 2, denote $L=N(v)$ and $L^{\prime}=V \backslash N[v]$. Obviously, every node of the set L^{\prime} has distance 2 from v. Consider now a node $a \in L$. It follows that a has exactly ℓ neighbors in L, since the pair $\{v, a\}$ has exactly ℓ common neighbors in G.

Suppose at first that $L^{\prime}=\emptyset$. Let $L \cap N(a)=\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$. For every $i \in\{1,2, \ldots, \ell\}$, the pair $\left\{a, a_{i}\right\}$ has v as a common neighbor and $\ell-1$ more common neighbors in L. It follows that $a_{i} \in N\left(a_{j}\right)$ for every $i \neq j \in$ $\{1,2, \ldots, \ell\}$, i.e. the tuple $\left\{v, a, a_{1}, \ldots, a_{\ell}\right\}$ constitutes an $(\ell+2)$-clique, as it is illustrated in Figure 5. Now, suppose that $L \backslash\left\{a, a_{1}, a_{2}, \ldots, a_{\ell}\right\} \neq \emptyset$ and consider a node $b \in L \backslash\left\{a, a_{1}, a_{2}, \ldots, a_{\ell}\right\}$. This node has no neighbor in the

FIGURE 5
The case $L^{\prime}=\emptyset$.
set $\left\{a, a_{1}, a_{2}, \ldots, a_{\ell}\right\}$, since otherwise at least one node of this set would have more than ℓ neighbors in L, which is a contradiction. Thus, the pair $\{a, b\}$ has v as the only common neighbor, which is also a contradiction, since $\ell \geq 2$. Therefore, if $L^{\prime}=\emptyset$, then G is isomorphic to the complete graph $K_{\ell+1}$ and therefore G is an $(\ell+1)$-regular graph.

Suppose now that $L^{\prime} \neq \emptyset$. As it is illustrated in Figure 6, every node $x \in L^{\prime}$ has exactly ℓ neighbors in L, since otherwise the pair $\{v, x\}$ would not have exactly ℓ common neighbors in G. If we fix the node $a \in L$, then there exist in G exactly $(d-1) \ell$ paths of length two with extreme nodes a and b, where $b \in L$, since there are $d-1$ nodes $b \in L \backslash\{a\}$ and every such pair $\{a, b\}$ has exactly ℓ common neighbors in G. Among them, exactly $d-1$ ones have v as the intermediate node. Furthermore, exactly $\ell(\ell-1)$ ones have their intermediate node in L, since a has exactly ℓ neighbors in L and each of them has $\ell-1$ other neighbors in L except a. Thus, each of the remaining

$$
(d-1) \ell-(d-1)-\ell(\ell-1)=(d-\ell-1)(\ell-1)
$$

FIGURE 6
The case $L^{\prime} \neq \emptyset$.
paths has a node in L^{\prime} as their intermediate node. Consider now a node $x \in L^{\prime} \cap N(a)$. The edge between a and x is included in exactly $\ell-1$ paths of length two with extreme nodes a and b, where $b \in L$, since x has exactly $\ell-1$ other neighbors in L except a. Thus, every $a \in L$ is neighbored to exactly

$$
\begin{equation*}
\frac{(d-\ell-1)(\ell-1)}{(\ell-1)}=(d-\ell-1) \tag{4}
\end{equation*}
$$

nodes in L^{\prime}. It follows that

$$
\begin{equation*}
\left|L^{\prime}\right|=\frac{d(d-\ell-1)}{\ell} \tag{5}
\end{equation*}
$$

since L includes d nodes, each one of them has $d-\ell-1$ neighbors in L^{\prime} and each node of L^{\prime} is neighbored to ℓ nodes of L. Finally, since $|V|=$ $|L|+\left|L^{\prime}\right|+1$ and $|L|=d$, it follows from (5) that

$$
\begin{equation*}
|V|=\frac{d(d-1)}{\ell}+1 \tag{6}
\end{equation*}
$$

Since (6) holds for the degree d of an arbitrary node $v \in V$, it results that every node v has equal degree d in G and therefore G is a d-regular graph.

A graph G with n nodes is called a strongly regular graph if there exist parameters k, λ, μ such that G is k-regular, every pair of adjacent nodes have exactly λ common neighbors, and every pair of non-adjacent nodes has exactly μ common neighbors [7]. The class of strongly regular graphs with n nodes and parameters k, λ, μ is denoted by $\operatorname{srg}(n, k, \lambda, \mu)$. Due to Proposition 1, the ℓ-friendship graphs coincide with the strongly regular graphs $\operatorname{srg}(n, k, \lambda, \mu)$ with $\lambda=\mu=\ell$. Several non-trivial examples of $\operatorname{srg}(n, k, \ell, \ell)$ are known in the literature, e.g. the line graph of K_{6} with $n=15, k=8, \ell=4$ [16], the cartesian product $K_{4} \times K_{4}$ (or Shrikhande graph) with $n=16, k=6, \ell=2$ and the halved 5-cube graph with $n=$ $16, k=10, \ell=6$, which is referred to as Clebsch graph in [15].

4 CONCLUSION

In this paper we propose a purely combinatorial proof of the Friendship Theorem, originally proved by Erdös et al. Furthermore, we generalize the simple friendship condition in a natural way to the ℓ-friendship condition: "Every pair of nodes has exactly $\ell \geq 2$ common neighbors" and we prove that every
graph which satisfies this condition is a regular graph. It remains open to characterize fully this class of graphs, which together with the recent proof of the Kotzig's conjecture, will complete the characterization of the graphs $P_{\ell}(2)$ and $P_{1}(k)$ that are the direct generalizations of the class $P_{1}(2)$ of the friendship graphs.

REFERENCES

[1] P. Erdös, A. Rényi, and V. Sós. On a problem of graph theory. Studia Sci. Math., 1:215235, 1966.
[2] Katie Leonard. The friendship theorem and projective planes. Portland State University, December 72005.
[3] J.Q. Longyear and T.D. Parsons. The friendship theorem. Indagationes Math., 34:257262, 1972.
[4] H.S. Wilf. The friendship theorem. Combinatorial mathematics and its applications, 1971.
[5] J.M. Hammersley. The friendship problem and the love problem. Cambridge University Press, 1983.
[6] M. Aigner and G.M. Ziegler. Proofs from the Book. Springer, 2 edition, 2001.
[7] D.B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2001.
[8] C. Huneke. The friendship theorem. American Mathematical Monthly, 109:192-194, 2002.
[9] A. Kotzig. Regularly k-path connected graphs. Congresus Numerantium, 40:137-141, 1983.
[10] J.A. Bondy and U.S.R. Murty. Graph theory with applications. American Elsevier Publ. Co., Inc., 1976.
[11] A. Kotzig. Selected open problems in graph theory. Academic Press, New York, 1979.
[12] A. Kostochka. The nonexistence of certain generalized friendship graphs. Combinatorics (Eger, 1987), Colloq. Math. Soc. J'anos Bolyai, 52:341-356, 1988.
[13] K. Xing and H.U. Baosheng. On Kotzig's conjecture for graphs with a regular pathconnectedness. Discrete Mathematics, 135:387-393, 1994.
[14] Y. Yang, J. Lin, C. Wang, and K. Li. On Kotzig's conjecture concerning graphs with a unique regular path-connectivity. Discrete Mathematics, 211:287-298, 2000.
[15] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer Verlag, 1989.
[16] J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge University Press, 2 edition, 2001.

[^0]: * This work was partially supported by the EPSRC Grant EP/K022660/1.
 ${ }^{\dagger}$ Corresponding author: E-mail: george.mertzios@durham.ac.uk

