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Abstract
In this paper we initiate the study of populations of agents with very limited capabilities that are
globally able to compute order statistics of their arithmetic input values via pair-wise meetings.
To this extent, we introduce the Arithmetic Population Protocol (APP) model, embarking from
the well known Population Protocol (PP) model and inspired by two recent papers [1, 11] in
which states are treated as integer numbers. In the APP model, every agent has a state from a
set Q of states, as well as a fixed number of registers (independent of the size of the population),
each of which can store an element from a totally ordered set S of samples. Whenever two
agents interact with each other, they update their states and the values stored in their registers
according to a joint transition function. This transition function is also restricted; it only allows
(a) comparisons and (b) copy / paste operations for the sample values that are stored in the
registers of the two interacting agents. Agents can only meet in pairs via a fair scheduler and
are required to eventually converge to the same output value of the function that the protocol
globally and stably computes. We present two different APPs for stably computing the median
of the input values, initially stored on the agents of the population. Our first APP, in which every
agent has 3 registers and no states, stably computes (with probability 1) the median under any
fair scheduler in any strongly connected directed (or connected undirected) interaction graph.
Under the probabilistic scheduler, we show that our protocol stably computes the median in
O(n6) number of interactions in a connected undirected interaction graph of n agents. Our
second APP, in which every agent has 2 registers and O(n2 logn) states, computes to the correct
median of the input with high probability in O(n3 logn) interactions, assuming the probabilistic
scheduler and the complete interaction graph. Finally we present a third APP which, for any k,
stably computes the kth smallest element of the input of the population under any fair scheduler
and in any strongly connected directed (or connected undirected) interaction graph. In this APP
every agent has 2 registers and n states. Upon convergence every agent has a different state; all
these states provide a total ordering of the agents with respect to their input values.
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1 Introduction

The population protocol (PP) model [2, 5] was originally defined to represent sensor networks
consisting of very limited mobile agents with no control over their own movement. It
has been defined by analogy to population processes [8] in probability theory and has
already been used in various fields, such as in statistical physics, genetics, epidemiology,
chemistry and biology [6]. An exciting feature of such systems of simple agents is that,
by exchanging information through local pairwise interactions (rendezvous), the entities
can collectively perform significant global computational tasks. In the basic model, in each
pairwise interaction both participating agents update their state according to a (pre-specified)
joint transition function that only depends on the states of the two agents. Furthermore
the interactions between agents happen under some kind of a fairness condition. Assuming
the complete interaction graph, it is known that population protocols compute exactly the
class of semilinear predicates [3], i.e., the predicates definable in first-order logic Presburger
arithmetic. In addition, it is well known that population protocols do not compose, except
for certain cases; for a survey we refer to [5, 10].

One limitation of the PP model is that, as every agent is characterized at every time
point by its state, the predicates that can be stably computed are defined over variables
that count the number of nodes having initially some specific state from the set of allowable
states (see for example [4, 9]). However, in several circumstances, it is natural to assume that
nodes may also store some arithmetic values, for instance a temperature or some other local
measurement. Imagine for instance a huge network of elementary sensors that measure local
temperature and want to compute some statistical function of the temperatures of the whole
network. The computation of elementary functions (e.g. the median) of such arithmetic
values by a population of autonomous agents requires an extension of the standard PP model.
On the other hand, it is worth noting that computations of statistics in classical distributed
network models have been already considered, e.g. [7].

In order to overcome such limitations, we introduce in this paper the Arithmetic Population
Protocols (APP) model, which is inspired by the PP model and by two recent papers [1, 11].
Similarly to the spirit of population protocols, we still assume in arithmetic population
protocols that agents are weak computational devices with very small local memory, thus
still staying on the pragmatic side. In [11], the authors consider the problem of determining
the exact difference between the majority and the minority type in a two-type population.
The basic idea of their protocol generalizes an idea of [1], where the set of states available to
each agent was a set of integers, thus implying a total ordering of the states. In particular,
an agent at state i was considered to be more firm in supporting her type than another agent
at state i′, with |i| > |i′|.

In our APP model, every agent has a state from a set Q of states, as well as r ≥ 1 registers,
each of which can store an element from a totally ordered set S of samples (e.g. S ⊆ N
or S ⊆ R). We assume that r is a fixed constant, i.e., independent of the population size.
Furthermore, agents have limited knowledge of the set S and limited computational power
over S. In particular, no agent is aware of the whole set S. Furthermore, whenever two agents
interact with each other, they update their states and the values stored in their registers
according to a joint transition function. This transition function only allows (a) comparisons
and (b) copy / paste operations for values in S that are stored in the registers of the two
interacting agents. Initially, each agent v ∈ V is given an element xv ∈ S as input; her
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initial state and the initial values of her registers are then determined according to xv. The
goal is that eventually, after a sequence of local pairwise interactions (which are planned
by a scheduler that satisfies a general “fairness” condition), every agent computes the same
function on the input values in one of her registers. We assume that agents are oblivious
of their own identity and of identities of other agents they interact with. Therefore, at any
time, each agent is completely characterized by the values stored in its registers, together
with its state.

1.1 Our model
More formally, let S denote a totally ordered set of samples and let Q be a totally ordered1
set of states. We assume that there is a population V of computationally weak agents with
limited memory. In particular, each agent can be in one of the states in Q and has r registers
at its disposal, each one of which can store an element of S.

For any t ≥ 0 let R(t) be a |V| × r matrix, such that Rv,j(t) is the value of the j-th
register of agent v ∈ V at time t. Furthermore, for every t ≥ 0, let q(t) be a |V|-dimensional
vector such that qv(t) is the state of agent v ∈ V at time t. We refer to C(t) def= (R(t),q(t))
as the configuration at time t. We will assume that the number of registers r of each agent is
a fixed constant independent of the population size, i.e., every agent has a limited number of
registers available. For every agent v ∈ V, we will refer to the first register of v as the input
register ; we also refer to Rv,1(t) as the value of the input register of v. Furthermore, we will
say that R:,1(0) (i.e., the first column of R(0)) is the population input at time 0.

An Arithmetic Population Protocol (APP) is defined on a population V of agents and
consists of an input initialization function ι : S → Sr×Q, an output function γ : Sr×Q → D
(D is the set of output values; usually it is the same as the sample set S), and a joint
transition function f : (Sr × Q) × (Sr × Q) → (Sr × Q) × (Sr × Q). In particular, if v
interacts with u at time t + 1, then the new values of their registers and states become
(Rv,:(t + 1),qv(t + 1)) and (Ru,:(t + 1),qu(t + 1)) respectively, where (Rv,:(t + 1),qv(t +
1),Ru,:(t + 1),qu(t + 1)) = f(Rv,:(t),qv(t),Ru,:(t),qu(t)). As also mentioned earlier, the
transition function f is not arbitrary: it only allows (a) comparisons and (b) copy / paste
operations for values in S that are stored in the registers of the two interacting agents.
Therefore, if agents v, u interact at time t + 1, then for any register j ∈ [r], we have
Rv,j(t+ 1),Ru,j(t+ 1) ∈ {Rx,j′(t) : x ∈ {v, u}, j′ ∈ [r]}.

Initially, the values of the registers of each agent are determined by the input initialization
function ι, i.e., for each agent v ∈ V that has input xv ∈ S, we initially set (Rv,:(0),qv(0)) =
ι(xv), where Rv,:(0) denotes the row of R(0) corresponding to agent v. Subsequently, in
every time step t+ 1 ≥ 1, a pair of agents interacts and updates the values of their registers
according to the transition function f .

Agent pairwise interactions are planned by a scheduler under a general “fairness” condition;
the actual mechanism for choosing which agents interact each time is abstracted away. The
fairness condition states that the scheduler cannot postpone a possible finite sequence of agent
interactions indefinitely. The direction of interaction may or may not be relevant (see also
the discussion below on the probabilistic scheduler); if it is not relevant, we say that the
APP is symmetric.

Due to lack of coordination and storage restrictions, the agents in a population executing
an APP cannot determine when the computation has finished. Instead, the values of the

1 This assumption on Q is not necessary for our results, but is given for the sake of presentation.
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output registers of every agent is required to converge to a common (correct) value. More
formally, we have the following:

I Definition 1 (Stable computation). LetM be the (infinite) set of multi-sets of a (finite or
infinite) totally ordered set S and let F :M→D be a function. We say that an APP stably
computes the function F if and only if under any fair scheduler, for any multi-set M ∈M,
and starting from any configuration where the elements in M are assigned bijectively to the
input registers of the agents in a population V (where |V| = |M |) we have that, after a finite
time τ , γ(Rv,:(t),qv(t)) = F(M), for all agents v ∈ V and for all t ≥ τ .

To allow for the comparison of our APPs in terms of the number of pairwise interactions
needed to compute some function, we will consider in this paper a special case of a fair
scheduler, namely the probabilistic scheduler, which is defined on directed interaction graphs
as follows. In each time step a directed edge (v, u) of the interaction graph is chosen uniformly
at random, where v (i.e., the tail of (v, u)) is called the initiator and u (i.e., the head of
(v, u)) is called the responder of the interaction. Then, agents v and u update the values of
their registers jointly according to the transition function f . The direction of interaction
plays an important role in the general case, as the initiator will update its register values
according to the first part of the outcome of f (consisting of r numeric values), while the
responder will use the second part of the outcome (which also consists of r numeric values).
The values of the registers of all other agents remain unchanged. The probabilistic scheduler
is defined on undirected graphs similarly, by replacing every undirected edge {v, u} by the
two directed edges (v, u) and (u, v).

1.2 Our contribution
In this paper, we initiate the study of populations of agents with very limited capabilities
that are globally able to compute order statistics of their input via pair-wise meetings. We
initially focus on the fundamental problem of computing the median of the input values in
a population of n agents, which is defined as the dn/2e-th minimum element of the input
values. We provide two different APPs for stably computing the median.

In our first APP (see Section 2) every agent has 3 registers and no states. This APP
stably computes (with probability 1) the median under any fair scheduler in any strongly
connected directed (or connected undirected) interaction graph. We also show that, under
the probabilistic scheduler, our protocol stably computes the median in O(n6) number of
interactions in a connected undirected interaction graph of n agents.

Our second APP for stably computing the median (see Section 3) is considerably faster
than the first one, however it works with high probability (rather than with probability 1)
and it requires additional assumptions on the scheduler and the structure of the underlying
interaction graph. In particular, in our second APP for the median, every agent has 2
registers and O(n2 logn) states. Assuming the probabilistic scheduler and the complete
interaction graph, this APP converges to the correct median of the input of the population
with high probability in O(n3 logn) interactions. Additionally, agents are required to know
the size of the population. The latter assumption can be dropped by assuming additional
states and computational power for the agents.

As our final contribution, we present in Section 4 an APP which, for any k, stably
computes the kth smallest element of the input of the population under any fair scheduler
and in any strongly connected directed (or connected undirected) interaction graph. In this
APP every agent has 2 registers and n states. Upon convergence every agent has a different
state; all these states provide a total ordering of the agents with respect to their input values.
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2 A 3-register APP for median

In this section we describe a APP using 3 registers and no states that stably computes
the median of the input of a population of agents V, i.e., the median of the (multi-) set
of elements {xv : v ∈ V} ∈ Sn. We will assume without loss of generality that the set of
measurements S is the set of real numbers, i.e., S = R. Our protocol is not symmetric,
hence in every interaction we distinguish between initiator and responder. For the sake of
clarity of presentation, we will assume that the size n = |V| of the population is odd, so
that the median is well (and uniquely) defined. In fact, without further modifications, our
protocol may not converge if there is an even number of nodes (because in this case there
are 2 candidates for the median).2 Additionally, we will initially assume that the interaction
graph is complete and we later show how this assumption can be dropped.

For every agent v ∈ V, the first register will contain the (input) number xv initially
assigned to node v (i.e., Rv,1(0) = xv); the value of Rv,1(t) will remain unchanged throughout
the computation. The third register of each agent v, i.e., Rv,3, will eventually converge to
median of the input of the population {xv : v ∈ V}. The first two registers (i.e., Rv,1,Rv,2)
are used to make virtual connections between agents; upon convergence, the agent with
the smallest number will be virtually connected to the agent with the largest number, the
agent with the second smallest number will be virtually connected to the agent with the
second largest number and so on. Furthermore, for any agent v ∈ V, we will denote by
Iv(t) def= {s ∈ R : min (Rv,1(t),Rv,2(t)) ≤ s ≤ max (Rv,1(t),Rv,2(t))}. For simplicity, we
will write Iv(t) = [min (Rv,1(t),Rv,2(t)) ,max (Rv,1(t),Rv,2(t))] and we will refer to Iv(t)
as the closed interval of v at time t (we use this term loosely, since in general the set of
measurements may not be compact). Finally, we denote Cv(t) def= (Rv,1(t),Rv,2(t),Rv,3(t)).

The initialization function of our protocol is given by ιMDN(xv) = Cv(0) = [xv, xv, xv],
for any xv ∈ S and v ∈ V, and the output function is given by γMDN(Cv(t)) = Rv,3(t), for
any v ∈ V. Consequently, for any v ∈ V, the closed interval Iv(0) contains just one point.
The joint transition function is defined as follows: if agent v (the initiator) interacts with u
(the responder) at time t+ 1 = 1, 2, . . ., then (Cv(t+ 1),Cu(t+ 1)) = fMDN(Cv(t),Cu(t)),
where fMDN is given below.

Transition function fMDN

Input: Cv(t), Cu(t)

Case I: Rv,1(t) = Rv,2(t) AND Iv(t) ⊆ Iu(t).

fMDN(Cv(t), Cu(t)) = ([Cv(t)], [xu, Ru,2(t), xv])

Case II: Iv(t) * Iu(t) AND Iu(t) * Iv(t) AND xv ∈ {r2, r3} AND xu ∈ {r1, r4}, where
r1, r2, r3 and r4 are the first, second, third and fourth smallest value in the set
{Rv,1(t), Rv,2(t), Ru,1(t), Ru,2(t)} respectively.

fMDN(Cv(t), Cu(t)) = ([xv, {r2, r3}\xv, Rv,3(t)], [xu, {r1, r4}\xu, Ru,3(t)])

Case III: Every other case.

fMDN(Cv(t), Cu(t)) = (Cv(t), Cu(t))

2 Nevertheless, it is not difficult to extend our APP so that it converges to one of the 2 candidate values
(say the smallest) for the median in the case where n is even.
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We can prove the following:

I Theorem 2 (Correctness). The APP with initialization function ιMDN, output function
γMDN and transition function fMDN stably computes the median function when the underlying
interaction graph is the complete graph.

Proof. Let n = |V| and define the potential function φ : Rn × Rn → R as follows:

φ(R:,1(t),R:,2(t)) =
∑
v∈V

(Rv,2(t)−Rv,1(t))2.

Clearly, φ remains unchanged if two agents interact according to one of the cases I, or III,
since the values of the first two registers of the agents remain unchanged. On the other hand,
φ strictly increases in case II. Indeed, suppose that agent v (the initiator) interacts with
agent u (the responder) at time t+ 1 according to case II, and let r1, r2, r3 and r4 be the first,
second, third and fourth smallest value in the set {Rv,1(t),Rv,2(t),Ru,1(t),Ru,2(t)}. Then

φ(R:,1(t+ 1),R:,2(t+ 1))− φ(R:,1(t),R:,2(t))
=
[
(r3 − r2)2 + (r4 − r1)2]− [(Rv,2(t)−Rv,1(t))2 + (Ru,2(t)−Ru,1(t))2]

= 2 (Rv,1(t)Rv,2(t) + Ru,1(t)Ru,2(t)− r2r3 − r1r4) > 0. (1)

Notice also that, by the definition of ιMDN and fMDN, our protocol maintains the following
invariant:
(INV) For any v ∈ V and any time t ≥ 0, there are exactly 2 copies of xv, one in R:,1(t) and

one in R:,2(t) (obviously, if two or more nodes have the same input, there will be two
copies for each).

Let 0 ≤ i ≤ dn
2 e. We say that a configuration C(t) is non-crossing up to i if, for every

1 ≤ k ≤ i, the agent with the kth smallest input value is matched in an interval with the kth
largest input value. That is, a configuration C(t) is non-crossing up to i if there are sets of
distinct agents L(i) and U (i) for which the following conditions hold:
(C1) L(i) = {z1, . . . , zi} ⊆ V, such that xz1 ≤ · · · ≤ xzi

and, for each z ∈ L(i) and
z′ ∈ V\L(i), we have xz ≤ xz′ .

(C2) U (i) = {u1, . . . , ui} ⊆ V, such that xu1 ≥ · · · ≥ xui
and, for each u ∈ U (i) and

u′ ∈ V\U (i), we have xu ≥ xu′ .
(C3) Izj

(t) = Iuj
(t) = [zj , uj ], for all j ∈ [i].

The sets L(i), U (i) will be called witnesses for the fact that C(t) is non-crossing up to i.
We can prove the following:
I Claim 1. Let i < dn

2 e. If C(t) is non-crossing up to i but not up to i+ 1, then there is a
pair of agents that can interact according to Case II. Equivalently, there is an interaction of
agents that can strictly increase the value of φ.

Proof. Let i be the maximum index such that C(t) is non-crossing up to i and let L(i), U (i)

be witnesses of this fact. Let L+ def= {z : z /∈ L(i), xz ≤ xz′ , for every z′ ∈ V\L(i)} and
U−

def= {u : u /∈ U (i), xu ≥ xu′ , for every u′ ∈ V\U (i)}. Notice that, by definition, xz

(respectively xu) is the same for all z ∈ L+ (respectively u ∈ U−).
The fact that C(t) is non-crossing up to i (and not up to i+ 1) implies that at least one

of the following holds:
(i) For all agents z ∈ L+, there is no agent u ∈ U−, such that Iz(t) = [xz, xu].
(ii) For all agents u ∈ U−, there is no agent z ∈ L+, such that Iu(t) = [xz, xu].
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Assume without loss of generality that (i) holds; the case where (ii) holds is similar, by
symmetry. Let zmax ∈ L+ be such that the length of the interval Izmax(t) is maximal. In
particular, this means that there is some agent w such that Izmax(t) = [xzmax , xw], with
xzmax ≤ xw < xu, for each u ∈ U−. Indeed, by assumption we have that xw 6= xu, for each
u ∈ U−. But also, we cannot have xw > xu or xw < xzmax , by definition of the sets L+, U−.

Notice now that, by invariant (INV) there also exists a pair of agents z′, w′ /∈ L(i) ∪ U (i),
such that Iz′(t) = [xz′ , xw′ ], with xw′ > xw (and xz′ ≤ xw′). Indeed, let Iw(t) be the interval
of node w at time t. If max(Rw,1(t),Rw,2(t)) > xw, then we have z′ = w. Otherwise,
let xy be the other endpoint of Iw(t) (in fact xy = min(Rw,1(t),Rw,2(t)). Similarly, if
max(Ry,1(t),Ry,2(t)) > xw, then we have z′ = y. Proceeding inductively, we will eventually
find an agent z′ with max(Rz′,1(t),Rz′,2(t)) > xw. Notice also that z′ does not belong to
U−, by construction, but also neither to L+, by maximality of Izmax

(t).
We can then see that the pair of agents (z′, zmax) is suitable for interaction according

to Case II. Indeed, Rz′,1(t) = xz′ > xzmax = Rzmax,1(t), so Izmax(t) * Iz′(t), Rz′,2(t) =
xw′ > xw = Rzmax,2(t), so Iz′(t) * Izmax(t) and finally xz′ ∈ {r2, r3} = {xz′ , xw} and
xzmax ∈ {r1, r4} = {xzmax , xw′}. This completes the proof of the claim, since by equation
(1), any interaction according to Case II strictly increases the value of φ. J

By the above claim, we can now show that the potential function φ is maximized whenever
the system reaches a configuration C(t) that is non-crossing up to dn

2 e. Indeed, by inequality
(1), any interaction according to case II strictly increases the value of the potential φ, and
since this increment is independent of t and the maximum value of φ is finite (e.g. it is
at most n(max{xv} −min{xv})2), we conclude that, in finite time (because of the fairness
assumption of the scheduler) we will have reached the desired configuration. Finally, notice
that in such a configuration, the node that corresponds to the median will have the same
value stored in both its first two registers (by the assumption that n is odd). In particular,
whenever it interacts as an initiator with another agent, it will do so according to case I. In
fact, no agent with assigned value different than the median will be able to interact with
other nodes according to this case after convergence of the protocol. This implies that,
eventually, all agents will have the value of the correct median stored in their third register.
This completes the proof. J

Notice that our protocol does not make any assumption on the uniqueness of assigned
values to agents. For example, if there are several agents that have Rv,1(t) = Rv,2(t) and φ
is maximum, then this means that there are at least 3 nodes that are equal to the median;
our protocol will still stably compute the correct median value. It is only required that nodes
have registers that can store any element in the multi-set {xv : x ∈ V}.

Before moving on to the running time analysis of our protocol under the probabilistic
scheduler, it is worth noting that we can slightly modify our transition function fMDN so
that the protocol works on arbitrary strongly connected directed interaction graphs. Indeed,
we just need to guarantee that every two agents will eventually be able to compare their
input. This can be achieved if agents that interact also exchange the values of their registers.
Therefore, we have the following more general result:

I Theorem 3. Let f ′MDN : S3 × S3 → S3 × S3 be a transition function defined as follows:
for any ~x, ~y, ~x′, ~y′ ∈ S3, f ′MDN(~x, ~y) = (~y′, ~x′) if and only if fMDN(~x, ~y) = (~x′, ~y′). Then the
APP with input initialization function ιMDN, output function γMDN and transition function
f ′MDN stably computes the median function under any strongly connected directed interaction
graph.

MFCS 2016
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We note that the potential function φ defined for the proof of correctness of our protocol,
together with inequality (1) can be used to give upper bounds on the expected time needed
for the protocol to stably compute the median under the probabilistic scheduler. However,
this bound will depend on the input of the population. Nevertheless, by using Claim 1 and
the definition of non-crossing configurations from the proof of Theorem 2, we can also provide
an upper bound that only depends on the population size.

I Theorem 4. Assuming the probabilistic scheduler under any connected undirected inter-
action graph, the expected time needed for the APP with input initialization function ιMDN,
output function γMDN and transition function f ′MDN to stably compute the median of the
input of a population V of n agents is O(n6).

Proof. Let T1 be the time until the population reaches a configuration that is non-crossing
up to dn

2 e (see the definition in the proof of Theorem 2) and let T2 be the additional time
needed for the value of the median to be propagated to all agents in the population. Clearly,
the expected time needed for the protocol to stably compute the correct median value is
E[T1 + T2].

Notice that, by definition of f ′MDN, whenever two agents interact, they also exchange the
values of their registers. Therefore, it is as if each agent is performing a random walk on the
interaction graph G = (V,E). Furthermore, these random walks performed by two agents
are independent until those 2 agents interact with each other.

Remember that, (arguing as in the proof of Theorem 2) if at some time t the configuration
reached is non-crossing up to i, but not up to i+ 1, we have that at least one of the following
holds:
(i) For all agents z ∈ L+, there is no agent u ∈ U−, such that Iz(t) = [xz, xu].
(ii) For all agents u ∈ U−, there is no agent z ∈ L+, such that Iu(t) = [xz, xu].

In particular, by definition of fMDN, agents z ∈ L+ ∪U− can never decrease the length of
the interval Iz(t′), for any t′ ≥ t. But then, the proof of Claim 1 implies that there is a pair
of agents z, z′, with z ∈ L+ ∪ U−, who can interact according to Case II, which will strictly
increase the length of Iz(t′). By Corollary 1 of [12], the expectation of the maximum meeting
time is O(n3). If we also take into account the interactions which do not involve agents z, z′,
we then have that the expected number of steps before some agent z ∈ L+ ∪ U− increases
the length of its interval is at most O(n4), where we also used the fact that the expected
number of steps between two interactions that involve z, z′ is O(n). Since the length of the
interval of any z ∈ L+ ∪ U− can increase at most n times and there are at most n agents,
we have that E[T1] = O(n6).

To bound E[T2], we can use Theorem 3 of [12], which states that the expected number of
steps needed for a single random walk to cover all vertices of a graph is O(n4). If we also take
into account the interactions which do not involve the median (there are O(n) such steps
in expectation between any interaction involving the median), we have that E[T2] = O(n5),
which completes the proof. J

3 A faster protocol for median using random walks

In this section we describe another APP for stably computing the median of the input of
a population of agents V. Our protocol is not symmetric (hence in every interaction we
distinguish between initiator and responder) and it converges with high probability (rather
than with probability 1) to the correct median faster than the one in Section 2, at the expense
of additional assumptions on the scheduler and the structure of the underlying interaction
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graph; in particular, we assume the probabilistic scheduler, under the complete interaction
graph. For the sake of clarity of presentation, we will assume that the size n = |V| of the
population is known to all agents. However, it is worth noting that this assumption can be
dropped if one combines the APP presented here with the APP described in the Remark at
the end of Section 4 for stably computing the population size, provided that agents are able
to locally compute the value of a certain function p(n) (for any n) that will be defined later.

Our APP uses 2 registers and 3p(n) + 2 states per agent; the value of p(n) will be
determined in Theorem 5 below. For every agent v ∈ V , the value of the input register Rv,1(t)
will be initialized to xv and will remain unchanged throughout the computation. The second
register Rv,2(t) will eventually contain the median, i.e., with high probability, Rv,2(t) will
eventually converge to the median of the set {xv : v ∈ V}. We view the state space Q for each
agent v ∈ V as two counters qv,1(t) and qv,2(t); the first one can store an integer between
−p(n) and p(n), and the second an integer between 0 and p(n). These counters are used
as follows: whenever agent v (the initiator) interacts with another agent u (the responder)
at time t + 1, it will increase (respectively decrease) the value of qv,1(t) by 1 if xv ≥ xu

(respectively if xv < xu). Therefore, for each agent v, qv,1(t) describes a (possibly) biased
random walk, the least biased (or ideally unbiased) of which will correspond to the median.
This means that, with high probability, if we stop those random walks after a sufficient
number of steps, the one closest to 0 will correspond to the median of the population. The
total number of steps that the random walk for agent v takes are counted in qv,2(t).

More precisely, let p(n) be any large enough integer function of the size of the population,
which will stand for the maximum number of steps that we allow each random walk to take.
We denote Cv(t) def=

(
Rv,1(t),Rv,2(t),qv,1(t),qv,2(t)

)
. Also, for any agent v, we denote by

1v the indicator variable that is equal to 1 if qv,2(t) < p(n) and 0 otherwise. The initialization
function of our protocol is given by ιRW-MDN(xv) = Cv(0) = [xv, xv, 0, 0], for any xv ∈ S and
v ∈ V, and the output function is given by γRW-MDN(Cv(t)) = Rv,2(t), for any v ∈ V. The
transition function is defined as follows: if agent v (the initiator) interacts with agent u (the
responder) at time t + 1 = 1, 2, . . ., then (Cv(t + 1),Cu(t + 1)) = fRW-MDN(Cv(t),Cu(t)),
where fRW-MDN is given below.

Transition function fRW-MDN

Input: Cv(t), Cu(t)

Case I: xv ≥ xu AND qv,2(t) < p(n).
fRW-MDN(Cv(t), Cu(t)) =

([xv, Rv,2(t), qv,1(t) + 1v, qv,2(t) + 1v], [xu, Ru,2(t), qu,1(t)− 1u, qu,2(t) + 1u])
Case II: xv < xu AND qv,2(t) < p(n).

fRW-MDN(Cv(t), Cu(t)) =
([xv, Rv,2(t), qv,1(t)− 1v, qv,2(t) + 1v], [xu, Ru,2(t), qu,1(t) + 1u, qu,2(t) + 1u])

Case III: qv,2(t) = qu,2(t) = p(n) AND |qv,1(t)| ≤ |qu,1(t)|.

fRW-MDN(Cv(t), Cu(t)) = (Cv(t), [xu, Rv,2(t), qu,1(t), qu,2(t)])

Case IV: Every other case.

fRW-MDN(Cv(t), Cu(t)) = (Cv(t), Cu(t))

We can prove the following:

I Theorem 5. If p(n) ≥ 16n2 lnn, then the APP with input initialization function ιRW-MDN,
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output function γRW-MDN(v) and transition function fRW-MDN stably computes the median
of the input of a population of n agents with high probability (i.e., with probability tending to
0 as n goes to ∞), under the complete interaction graph, assuming the probabilistic scheduler.

Proof. Consider an ordering v1, . . . , vn of the agents of the population V in non-decreasing
order of their input, i.e., xv1 ≤ xv2 ≤ · · · ≤ xvn . For any agent v, we will denote by mv the
number of agents that have the same input as v (including v herself), i.e., mv

def= |{u ∈ V :
xu = xv}|.

For any agent v, and ` = 1, 2, . . . , p(n), define the random variable X(v)
` as follows:

X
(v)
` = 1 if at the `-th interaction of agent v (either as an initiator or responder) the value

of qv,1(t) increases and X(v)
` = −1 otherwise. In particular, for any ` = 1, 2, . . . , p(n), at

the `-th interaction of agent v, the following disjoint events may happen: (a) either v will
interact with an agent u that has xv > xu, in which case X(v)

` = 1, or (b) v will interact
with an agent u that has xv < xu, in which case X(v)

` = −1, or (c) v will interact with
another agent u that has xv = xu, in which case if v is the initiator (which happens with
probability 1

2 , by definition of the probabilistic scheduler) then X(v)
` = 1, otherwise (i.e., if v

is the responder of the interaction) X(v)
` = −1.

Therefore, for any fixed agent v ∈ V, the p(n) random variables X(v)
` , 1 ≤ ` ≤ p(n) are

independent and also

Pr
(
X

(v)
` = 1

)
= 1− Pr

(
X

(v)
` = −1

)
= |{u : xv > xu}|

n− 1 + 1
2

(mv − 1)
n− 1 .

For each agent vi, i ∈ [n], define now the discrete time stochastic process {Y (vi)
` }`≥0 as

follows:

(i) Y (vi)
0 = 0

(ii) Y (vi)
` = Y

(vi)
`−1 +X

(vi)
` − E[X(vi)

` ] =
∑`

i=1 X
(vi)
` − `n−2|{u:xvi

>xu}|−mvi

n−1 , for any 1 ≤ ` ≤
p(n)

(iii) Y (vi)
` = Y

(vi)
`−1 , for any ` > p(n)

Since X(vi)
` are independent, for every 1 ≤ ` ≤ p(n), it is easy to prove that {Y (vi)

` }`≥0 is
a Martingale, that also satisfies |Y (vi)

` − Y (vi)
`−1 | ≤ 2, for all ` ≥ 1. Therefore, by Azuma’s

inequality, for any x ≥ 0,

Pr
(∣∣∣Y (vi)

p(n) − Y
(vi)

0

∣∣∣ ≥ x) = Pr
(∣∣∣Y (vi)

p(n)

∣∣∣ ≥ x) ≤ 2e
−x2

8p(n) .

Let now t∗vi
the time just after the p(n)-th interaction of vi, i.e., the values of the counters

qvi,1,qvi,2 remain unchanged after t∗vi
. By the definition of X(vi)

` , 1 ≤ ` ≤ p(n), we then have
that qvi,1(t∗vi

) =
∑p(n)

`=1 X
(vi)
` . Furthermore, by the previous inequality and by definition of

{Y (vi)
` }`≥0, we have that

Pr
(∣∣∣∣qvi,1(t∗vi

)− p(n)n− 2|{u : xvi
> xu}| −mvi

n− 1

∣∣∣∣ ≥ x) = Pr
(∣∣∣Y (vi)

p(n)

∣∣∣ ≥ x) ≤ 2e
−x2

8p(n) . (2)

For any agent v ∈ V, let Av = p(n)n−2|{u:xv>xu}|−mv

n−1 . Notice now that, for any two
agents v, v′, such that xv 6= x′v, we have that |(|{u : xv > xu}| − |{u : xv′ > xu}|)| ≥ 1, since
for one of v, v′, the number of agents with strictly greater input must be larger. Similarly,
|(|{u : xv > xu}|+mv)− (|{u : xv′ > xu}|+mv′)| = |(|{u : xv ≥ xu}| − |{u : xv′ ≥ xu}|)| ≥
1. Therefore, we have proved the following separation inequality:

|Av −Av′ | ≥ 2 p(n)
n− 1 , for every v, v′ with xv 6= x′v.
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Now set x = p(n)
n in (2). Since p(n) ≥ 16n2 lnn, we have that, for any vi, i ∈ [n],

Pr
(∣∣qvi,1(t∗vi

)−Avi

∣∣ ≥ p(n)
n

)
≤ 2
n2

By the union bound, we conclude that, with probability at least 1 − 2
n , not only are the

values qvi,1(t∗vi
), for all nodes vi, concentrated around their mean values Avi

, but they are
also well separated, i.e., just by looking at qvi,1(t∗vi

), we can uniquely determine the value of
Avi . Furthermore, node vi will never change the value of its first register after time t∗vi

.
Finally note that the smallest value of |Avi

| (hence also the smallest value of |qvi,1(t∗vi
)|

whp, because of well separation) will correspond to agent vdn/2e, i.e., the agent with the
median of {xv, v ∈ V} as input. Indeed, it is not hard to see that, by definition, |Avi

| is
a function of i, for which |Avi | ≤ |Avi−1 | for every i ≤ dn

2 e, and |Avi+1 | ≥ |Avi | for every
i ≥ dn

2 e. Therefore, with high probability, the correct median will be propagated because of
Case III of the protocol. This completes the proof. J

4 k-th minimum element

In this section, we present an APP with n states and 2 registers per agent (the first of which
serves as the input register and does not change throughout the computation) that stably
computes the k-th minimum element of the input values xv, v ∈ V. Our protocol is not
symmetric, hence in every interaction we distinguish between initiator and responder. For
simplicity, we first present a protocol that stably computes the k-minimum function assuming
the complete interaction graph and then we generalize it for arbitrary interaction graphs.

The set of states of our protocol is Q = {0, 1, . . . , n− 1}; without loss of generality, we
treat the state of each agent v at time t as a counter qv(t) which is initialized to the value 0
and can count up to n− 1. For simplicity, we will denote Cv(t) def= (Rv,1(t),Rv,2(t),qv(t)).

The input initialization function of our protocol is given by ιk-MIN(xv) = Cv(0) =
(xv, xv, 0), for any xv ∈ S and v ∈ V, and the output function is given by γk-MIN(Cv(t)) =
Rv,2(t), for any v ∈ V . The transition function is defined as follows: if agent v (the initiator)
interacts with agent u (the responder) at time t+ 1 = 1, 2, . . ., then (Cv(t+ 1),Cu(t+ 1)) =
fk-MIN(Cv(t),Cu(t)), where fk-MIN is given below.

Transition function fk-MIN

Input: Cv(t), Cu(t)

Case I: qv(t) = qu(t) AND Rv,1(t) ≥ Ru,1(t).

fk-MIN(Cv(t), Cu(t)) = ([xv, Rv,2(t), qv(t) + 1], [Cu(t)])

Case II: qv(t) = qu(t) AND Rv,1(t) < Ru,1(t).

fk-MIN(Cv(t), Cu(t)) = ([Cv(t)], [xu, Ru,2(t), qu(t) + 1])

Case III: qv(t) 6= qu(t) AND qv(t) = k − 1.

fk-MIN(Cv(t), Cu(t)) = ([xv, xv, qv(t)], [xu, xv, qu(t)])

Case IV: Every other case.

fk-MIN(Cv(t), Cu(t)) = (Cv(t), Cu(t))

MFCS 2016
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I Theorem 6. The APP with initialization function ιk-MIN, output function γk-MIN and
transition function fk-MIN stably computes the k-minimum of the set {xv : v ∈ V}.

Proof. We first prove that, eventually, there will be exactly one agent in state i, for each
0 ≤ i ≤ n − 1. To this end, define ti to be the earliest time when exactly one agent has
state j, for each j ≤ i. Note that, after time ti, every agent vj , 1 ≤ j ≤ i + 1, which has
qvj

(ti) = j − 1, will never change her state. Indeed, by definition of fk-MIN, for every v ∈ V,
qv(t) never decreases; it can only increase if there is another agent u 6= v with qu(t) = qv(t).
Thus we only need to prove that tn−1 is finite; we do this by induction on i.

For the base case of our inductive argument we need to prove that t0 is finite. This is
true because, if at some time t there are at least 2 agents at state 0, then, since the scheduler
is fair, after finite time, two of these agents will eventually interact, which, by Cases I and II
of fk-MIN, will result in one of the agents increasing her state by 1. This will continue until
there is only one agent in state 0.

For the inductive step, suppose that ti is finite, for some i. By definition, at time ti we
have exactly one agent in state j, for each j = 0, . . . , i. However, by definition of fk-MIN, we
also have that at time ti some agent v set qv(ti) = i+ 1 (i.e., either the one with the largest
value stored in its first register, or the initiator in the interaction if both agents had the same
value stored in their first registers). If this agent v was the only agent in state i+ 1 after ti,
then we also have that ti = ti+1. If not, then, similarly to the base case, after finite time the
number of agents in state i+ 1 will decrease by 1, and this will continue until (within finite
time) only one agent remains in state i + 1. This completes the induction step, implying
that ti is finite, for every i = 0, 1, . . . , n− 1. In particular, in finite time tn−1, there will be
exactly one agent in state i, for each i = 0, . . . , n − 1 and these values will never change
thereafter. Moreover, after time tn−1, the agent in state k − 1 will have the k-minimum of
the set {xv : v ∈ V} stored in its first register and this item will eventually appear in the
second register of each agent in the population (because of Case III of fk-MIN). J

We now slightly modify our transition function fk-MIN so that the protocol works on
arbitrary strongly connected directed interaction graphs. Notice that we just need to
guarantee that every two agents will eventually be able to exchange their local information.
This can be achieved if agents that interact also swap their register values and states.
Therefore, we have the following more general result:

I Theorem 7. Let f ′k-MIN : (S2 × Q) × (S2 × Q) → (S2 × Q) × (S2 × Q) be a transition
function defined as follows: for any ~x, ~y, ~x′, ~y′ ∈ S2 ×Q, f ′k-MIN(~x, ~y) = (~y′, ~x′) if and only
if fk-MIN(~x, ~y) = (~x′, ~y′). Then the APP with initialization function ιk-MIN, output function
γk-MIN and transition function f ′k-MIN stably computes the k-minimum of the set {xv : v ∈ V}
under any strongly connected interaction graph.

Note that, upon convergence in this APP, each of the n agents has a different state which
is an integer between 0 and n− 1. Therefore all these states provide a total ordering of the
agents with respect to their input values.
I Remark. This APP can be slightly modified to stably compute the population size n = |V|,
under any strongly connected interaction graph. Indeed, we only need that the second
register of each agent v ∈ V is replaced by another counter q′v(t), which stores the value n
(instead of the k-minimum element). This can be achieved trivially by initializing q′v(0) to 1,
for each agent v and modifying f ′k-MIN as follows: whenever agents v, u interact at time t+ 1,
we set q′v(t + 1) = q′u(t + 1) = max{qv(t) + 1,qu(t) + 1,q′v(t),q′u(t)}; the rest of f ′k-MIN,
i.e., the part that affects the first registers and the states, remains unchanged.
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