
The temporal explorer who returns to the base?

Eleni C. Akrida1, George B. Mertzios2, and Paul G. Spirakis1,3

1 Department of Computer Science, University of Liverpool, UK
{eleni.akrida,p.spirakis}@liverpool.ac.uk

2 Department of Computer Science, Durham University, UK
george.mertzios@durham.ac.uk

3 Computer Engineering and Informatics Department, University of Patras, Greece

Abstract. In this paper we study the problem of exploring a temporal
graph (i.e. a graph that changes over time), in the fundamental case
where the underlying static graph is a star on n vertices. The aim of
the exploration problem in a temporal star is to find a temporal walk
which starts at the center of the star, visits all leaves, and eventually
returns back to the center. We present here a systematic study of the
computational complexity of this problem, depending on the number k of
time-labels that every edge is allowed to have; that is, on the number k
of time points where each edge can be present in the graph. To do so, we
distinguish between the decision version StarExp(k), asking whether a
complete exploration of the instance exists, and the maximization version
MaxStarExp(k) of the problem, asking for an exploration schedule of
the greatest possible number of edges in the star. We fully characterize
MaxStarExp(k) and show a dichotomy in terms of its complexity: on
one hand, we show that for both k = 2 and k = 3, it can be efficiently
solved in O(n logn) time; on the other hand, we show that it is APX-
complete, for every k ≥ 4 (does not admit a PTAS, unless P = NP,
but admits a polynomial-time 1.582-approximation algorithm). We also
partially characterize StarExp(k) in terms of complexity: we show that
it can be efficiently solved in O(n logn) time for k ∈ {2, 3} (as a corollary
of the solution to MaxStarExp(k), for k ∈ {2, 3}), but is NP-complete,
for every k ≥ 6.

1 Introduction and motivation

A temporal graph is, roughly speaking, a graph that changes over time. Several
networks, both modern and traditional, including social networks, transportation
networks, information and communication networks, can be modeled as temporal
graphs. The common characteristic in all the above examples is that the network
structure, i.e. the underlying graph topology, is subject to discrete changes
over time. Temporal graphs naturally model such time-varying networks using
time-labels on the edges of a graph to indicate moments of existence of those

? Partially supported by the NeST initiative of the School of EEE and CS at the Uni-
versity of Liverpool and by the EPSRC Grants EP/P020372/1 and EP/P02002X/1.



2 E.C. Akrida, G.B. Mertzios, and P.G. Spirakis

edges, while the vertex set remains unchanged. This formalism originates in the
foundational work of Kempe et al. [15].

In this work, we focus in particular on temporal graphs where the underlying
graph is a star graph and we consider the problem of exploring such a temporal
graph starting and finishing at the center of the star. The motivation behind this
is inspired from the well known Traveling Salesperson Problem (TSP). The latter
asks the following question: “Given a list of cities and the distances between
each pair of cities, what is the shortest possible route that visits each city and
returns to the origin one?”. In other words, given an undirected graph with edge
weights where vertices represent cities and edges represent the corresponding
distances, find a minimum-cost Hamiltonian cycle. However, what happens when
the traveling salesperson has particular temporal constraints that need to be
satisfied, e.g. (s)he can only go from city A to city B on Mondays or Tuesdays, or
(s)he can only travel by train and, hence, needs to schedule his/her visit based on
the train timetables? In particular, consider a traveling salesperson who, starting
from his/her home town, has to visit n−1 other towns via train, always returning
to his/her own home town after visiting each city. There are trains between
each town and the home town only on specific times/days, possibly different
for different towns, and the salesperson knows those times in advance. Can the
salesperson decide whether (s)he can visit all towns and return to his/her own
home town by a certain day?

Previous work. Recent years have seen a growing interest in dynamic
network studies. Due to its vast applicability in many areas, the notion of
temporal graphs has been studied from different perspectives under various
names such as time-varying [1], evolving [10], dynamic [8, 11, 23, 24]; for a recent
attempt to integrate existing models, concepts, and results from the distributed
computing perspective see the survey papers [7] and the references therein.
Various temporal analogues of known static graph concepts have also been
studied in [2, 3, 5, 13,17,22].

Notably, temporal graph exploration has been studied before; Erlebach et
al. [12] define the problem of computing a foremost exploration of all vertices in
a temporal graph (Texp), without the requirement of returning to the starting
vertex. They show that it is NP-hard to approximate Texp with ratio O(n1−ε)
for any ε > 0, and give explicit construction of graphs that need Θ(n2) steps for
Texp. They also consider special classes of underlying graphs, such as the grid, as
well as the case of random temporal graphs where edges appear in every step with
independent probabilities. Michail and Spirakis [18] study a temporal analogue
of TSP(1,2) where the objective is to explore the vertices of a complete directed
temporal graph with edge weights from {1, 2} with the minimum total cost.
Ilcinkas et al. [14] study the exploration of constantly connected dynamic graphs
on an underlying cactus graph. Bodlaender and van der Zanden [6] show that
exploring temporal graphs of small pathwidth is NP-complete; they start from



On Temporally Connected Graphs of small cost 3

the problem that we define in this paper4, which we prove is NP-complete, and
give a reduction to the problem of exploring temporal graphs of small pathwidth.

We focus here on the exploration of temporal stars, inspired by the Traveling
Salesperson Problem (TSP) where the salesperson returns to his/her base
after visiting every city. TSP is one of the most well-known combinatorial
optimization problems, which still poses great challenges despite having been
intensively studied for more than sixty years.

The model and definitions. It is generally accepted to describe a network
topology using a graph, the vertices and edges of which represent the communi-
cating entities and the communication opportunities between them, respectively.
Unless otherwise stated, we denote by n and m the number of vertices and
edges of the graph, respectively. We consider graphs whose edge availabilities are
described by sets of positive integers (labels), one set per edge.

Definition 1 (Temporal Graph). Let G = (V,E) be a graph. A temporal
graph on G is a pair (G,L), where L : E → 2N is a time-labeling function, called
a labeling of G, which assigns to every edge of G a set of discrete-time labels. The
labels of an edge are the discrete time instances (“days”) at which it is available.

More specifically, we focus on temporal graphs whose underlying graph is an
undirected star, i.e. a connected graph of m = n− 1 edges which has n− 1 leaves,
i.e. vertices of degree 1.

Definition 2 (Temporal Star). A temporal star is a temporal graph (Gs, L)
on a star graph Gs = (V,E). Henceforth, we denote by c the center of Gs, i.e. the
vertex of degree n− 1.

Definition 3 (Time edge). Let e = {u, v} be an edge of the underlying graph
of a temporal graph and consider a label l ∈ L(e). The ordered triplet (u, v, l) is
called time edge.5

A basic assumption that we follow here is that when a message or an entity
passes through an available link at time (day) t, then it can pass through a
subsequent link only at some time (day) t′ > t and only at a time at which that
link is available.

Definition 4 (Journey). A temporal path or journey j from a vertex u to a
vertex v ((u, v)-journey) is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . . ,
(uk−1, v, lk), such that li < li+1, for each 1 ≤ i ≤ k − 1. We call the last time
label, lk, arrival time of the journey.

Given a temporal star (Gs, L), on the one hand we investigate the complexity
of deciding whether Gs is explorable: we say that (Gs, L) is explorable if there

4 A preliminary version of this paper appeared publicly in ArXiv on 12th May 2018
(https://arxiv.org/pdf/1805.04713.pdf).

5 Note that an undirected edge e = {u, v} is associated with 2 · |L(e)| time edges,
namely both (u, v, l) and (v, u, l) for every l ∈ L(e).



4 E.C. Akrida, G.B. Mertzios, and P.G. Spirakis

is a journey starting and ending at the center of Gs that visits every node of
Gs. Equivalently, we say that there is an exploration that visits every node, and
explores every edge, of Gs; an edge of Gs is explored by crossing it from the
center to the leaf at some time t and then from the leaf to the center at some
time t′ > t. On the other hand, we investigate the complexity of computing
an exploration schedule that explores the greatest number of edges. A (partial)
exploration of a temporal star is a journey J that starts and ends at the center
of Gs which visits some nodes of Gs; its size |J | is the number of nodes of Gs

that are visited by J , where the centre is only accounted for once even if it is
visited multiple times. We, therefore, identify the following problems:
StarExp(k)

Input: A temporal star (Gs, L) such that every edge has at most k labels.
Question: Is (Gs, L) explorable?

MaxStarExp(k)

Input: A temporal star (Gs, L) such that every edge has at most k labels.
Output: A (partial) exploration of (Gs, L) of maximum size.

Note that the case where one edge e of the input temporal star has only
one label is degenerate. Indeed, in the decision variant (i.e. StarExp(k)) we
can immediately conclude that (Gs, L) is a no-instance as this edge cannot be
explored; similarly, in the maximization version (i.e. MaxStarExp(k)) we can
just ignore edge e for the same reason. We say that we “enter” an edge e = {c, v}
of (Gs, L) when we cross the edge from c to v at a time on which the edge is
available. We say that we “exit” e when we cross it from v to c at a time on
which the edge is available. Without loss of generality we can assume that, in an
exploration of (Gs, L), the entry to any edge e is followed by the exit from e at
the earliest possible time (after the entry). That is, if the labels of an edge e are
l1, l2, . . . , lk and we enter e at time li, we exit at time li+1. The reason is that,
waiting at a leaf (instead of exiting as soon as possible) does not help in exploring
more edges; we are better off returning to the center c as soon as possible.

In order to solve the problem of exploring as many edges of a temporal star
as possible, we define here the Job Interval Selection Problem where each
job has at most k associated intervals (JISP(k)), k ≥ 1.

Job Interval Selection Problem - JISP(k) [21]
Input: n jobs, each described as a set of at most k intervals on the real line.
Output: A schedule that executes as many jobs as possible; to execute a job
one needs to select one interval associated with the job.

Notice that every edge e with labels l1, l2, . . . , lk can be seen as a job to be
scheduled where the corresponding intervals are [l1, l2], [l2, l3], . . . , [lk−1, lk], hence
MaxStarExp(k) is a special case of JISP(k−1); in the general JISP(k−1), the
intervals associated with each job are not necessarily consecutive. JISP(k) is a
well-studied problem in the Scheduling community, with several known complexity



On Temporally Connected Graphs of small cost 5

results. In particular, Spieksma [21] showed a 2-approximation for the problem,
later improved to a 1.582-approximation by Chuzhoy et al. [9]. This immediately
implies a 1.582-approximation algorithm for MaxStarExp(k); we use the latter
to conclude on the APX-completeness6 of MaxStarExp(k). JISP(k) was also
shown [21] to be APX-hard for any k ≥ 2, but since MaxStarExp(k) is a special
case of JISP(k − 1), its hardness does not follow from the already known results.
In fact, we show that MaxStarExp(3) -which is a special case of JISP(2)- is
polynomially solvable.

Our contribution. In this paper we do a systematic study of the com-
putational complexity landscape of the temporal star exploration problems
StarExp(k) and MaxStarExp(k), depending on the maximum number k of
labels allowed per edge. As a warm-up, we first prove in Section 2 that the
maximization problem MaxStarExp(2) and MaxStarExp(3), i.e. when every
edge has at most three labels per edge, can be efficiently solved in O(n log n)
time; sorting the labels of the edges is the dominant part in the running time.

In Section 3 we prove that, for every k ≥ 6, the decision problem StarExp(k)
is NP-complete and, for every k ≥ 4, the maximization problem MaxStarExp(k)
is APX-hard, and thus it does not admit a Polynomial-Time Approximation
Scheme (PTAS), unless P = NP. These results are proved by reductions from
special cases of the satisfiability problem, namely 3SAT(3) and Max2SAT(3).
The APX-hardness result is complemented by a 1.582-approximation algorithm
for MaxStarExp(k) for any k, which concludes that MaxStarExp(k) is
APX-complete for k ≥ 4. This approximation algorithm carries over from an
approximation for the Job Interval Selection Problem [9], which we show
is generalization of MaxStarExp(k).

The table below summarizes the results presented in this paper regarding
the complexity of the two studied problems, shows the clear dichotomy in the
complexity of MaxStarExp(k), as well as the open problem regarding the
complexity of StarExp(k) for k ∈ {4, 5}. The entry NP-c (resp. APX-c) denotes
NP-completeness (resp. APX-completeness). Where k = 1, any instance of either
problem is clearly a NO-instance, since one can explore no edge (i.e. by also
returning to the center) with a single label:

Maximum number of labels per edge

k = 1 k = 2 k = 3 k = 4 k = 5 k ≥ 6

StarExp(k) No O(n log n) O(n log n) ? ? NP-c

MaxStarExp(k) No O(n log n) O(n log n) APX-c APX-c APX-c

6 APX is the complexity class of optimization problems that allow constant-factor
approximation algorithms.



6 E.C. Akrida, G.B. Mertzios, and P.G. Spirakis

2 Efficient algorithm for k ≤ 3 labels per edge

In this section we show that, when every edge has two or three labels, a maximum
size exploration in (Gs, L) can be efficiently solved in O(n log n) time. Thus,
clearly, the decision variation of the problem, i.e. StarExp(2) and StarExp(3),
can also be solved within the same time bound. We give here the proof for k = 3
labels, which also covers the case of k = 2.

Theorem 1. MaxStarExp(3) can be solved in O(n log n) time.

Proof. We show that MaxStarExp(3) is reducible to the Interval Scheduling
Maximization Problem (ISMP).
Interval Scheduling Maximization Problem (ISMP)
Input: A set of intervals, each with a start and a finish time.
Output: Find a set of non-overlapping intervals of maximum size.

Given (Gs, L) we construct a set I of at most 2(n− 1) intervals as follows:
all edges of (Gs, L) with a single label can be ignored as they can not be

explored in any exploration of (Gs, L); for every edge e of (Gs, L) with labels
le < l′e we create a single closed time interval, [le, l′e]; for every edge e of (Gs, L)
with labels le < l′e < l′′e we create two closed time intervals, [le, l′e] and [l′e, l

′′
e ].

We may now compute a maximum size subset I ′ of I of non-conflicting (i.e.,
disjoint) time intervals, using the greedy algorithm that can find an optimal
solution for ISMP [16]. It suffices to observe that no two intervals associated
with the same edge will ever be selected in I ′, as any two such intervals are
non-disjoint; indeed, two intervals associated with the same edge e are of the
form [le, l

′
e] and [l′e, l

′′
e ], hence they overlap at the single time point l′e.

So a maximum-size set I ′ of non-overlapping intervals corresponds to a
maximum-size exploration of (Gs, L) (in fact, of the same size as the size of I ′).
Also, we may indeed solve StarExp(3) by checking whether |I ′| = n− 1 or not.
The above works in O(n log n) time [16]. ut

3 Hardness for k ≥ 4 labels per edge

In this section we show that, whenever k ≥ 6, StarExp(k) is NP-complete.
Furthermore, we show that MaxStarExp(k) is APX-hard for k ≥ 4. Thus, in
particular, MaxStarExp(k) does not admit a Polynomial-Time Approximation
Scheme (PTAS), unless P = NP. In fact, due to a known polynomial-time constant-
factor approximation algorithm for JISP(k) [9], it follows that MaxStarExp(k)
is also APX-complete.

3.1 StarExp(k) is NP-complete for k ≥ 6 labels per edge

We prove our NP-completeness result through a reduction from a special case of
3SAT, namely 3SAT(3), which is known to be NP-complete [19].



On Temporally Connected Graphs of small cost 7

3SAT(3)
Input: A boolean formula in CNF with variables x1, x2, . . . , xp and clauses
c1, c2, . . . , cq, such that each clause has at most 3 literals, and each variable
appears in at most 3 clauses.
Output: Decision on whether the formula is satisfiable.

Intuition and overview of the reduction: Given an instance F of 3SAT(3), we
shall create an instance (Gs, L) of StarExp(k) such that F is satisfiable if and
only if (Gs, L) is explorable. Henceforth, we denote by |τ(F )| the number of
clauses of F that are satisfied by a truth assignment τ of F . Without loss of
generality we make the following assumptions on F . Firstly, if a variable occurs
only with positive (resp. only with negative) literals, then we trivially set it to
true (resp. false) and remove the associated clauses. Furthermore, without loss
of generality, if a variable xi appears three times in F , we assume that it appears
once as a negative literal ¬xi and two times as a positive literal xi; otherwise we
rename the negation with a new variable. Similarly, if xi appears two times in F ,
then it appears once as a negative literal ¬xi and once as a positive literal xi.

We introduce here the intuition behind the reduction. (Gs, L) will have one
edge corresponding to each clause of F , and three edges (one “primary” and two
“auxiliary” edges) corresponding to each variable of F . We shall assign labels
in pairs to those edges so that it is possible to explore an edge only by using
labels from the same pair to enter and exit the edge; for example, if an edge e
is assigned the pairs of labels l1, l2 and l3, l4, with l1 < l2 < l3 < l4, we shall
ensure that one cannot enter e with, say, label l2 and exit with, say, label l3. In
particular, for the “primary” edge corresponding to a variable xi we will assign
to it two pairs of labels, namely (αi − β, αi − β + γ) and (αi+ β, αi+ β + γ),
for some α, β, γ ∈ N. The first (entry,exit) pair corresponds to setting xi to false,
while the second pair corresponds to setting xi to true. We shall choose α, β, γ
so that the entry and exit from the edge using the first pair is not conflicting
with the entry and exit using the second pair.

Then, to any edge corresponding to a clause cj that contains xi unnegated
for the first time (resp. second time7), we shall assign an (entry, exit) pair of
labels (αi− δ, αi− δ + ε) (resp. (αi− δ′, αi− δ′ + ε′)), choosing δ, ε ∈ N (resp.
δ′, ε′ ∈ N) so that (αi− δ, αi− δ + ε) (resp. (αi− δ′, αi− δ′ + ε′)) is in conflict
with the (αi− β, αi− β+ γ) pair of labels of the edge corresponding to xi, which
is associated with xi = false but not in conflict with the (αi + β, αi + β + γ)
pair. If xi is false in F then cj cannot be satisfied through xi so we should not
be able to explore a corresponding edge via a pair of labels associated with xi. If
cj contains xi negated, we shall assign to its corresponding edge an (entry, exit)
pair of labels (αi+ ζ, αi+ ζ + θ), choosing ζ, θ ∈ N so that the latter is in conflict
with the (αi+ β, αi+ β+ γ) pair of labels of the edge corresponding to xi, which
is associated with xi = true but not in conflict with the (αi− β, αi− β + γ) pair.

7 We consider here the order c1, c2, . . . , cq of the clauses of C; we say that xi appears
unnegated for the first time in some clause cµ if xi 6∈ cm, m < µ.



8 E.C. Akrida, G.B. Mertzios, and P.G. Spirakis

If xi is true in F then cj cannot be satisfied through ¬xi so we should not be
able to explore a corresponding edge via a pair of labels associated with ¬xi.

Finally, for every variable xi we also introduce two additional “auxiliary”
edges: the first one will be assigned the pair of labels (αi, αi+ ξ), ξ ∈ N, so that
it is not conflicting with any of the above pairs – the reason for introducing this
first auxiliary edge is to avoid entering and exiting an edge corresponding to some
variable xi using labels from different pairs. The second auxiliary edge for variable
xi will be assigned the pair of labels (αi+χ, αi+χ+ψ), χ, ψ ∈ N, so that it is not
conflicting with any of the above pairs – the reason for introducing this edge is to
avoid entering an edge that corresponds to some clause cj using a label associated
with some variable xi and exiting using a label associated with a different
variable xi′ . The reader is referred to Figure 1 for an example construction, where
the specific choices of the constants α, β, γ, δ, ε, δ′, ε′, ζ, θ, ξ, χ, ψ are α = 50, β =
10, γ = 3, δ = 12, ε = 3, δ′ = 8, ε′ = 3, ζ = 8, θ = 3, ξ = 1, χ = 15, ψ = 1.

e1

e2

e3
e′1

e′2

e′3

e′′1

e′′2

e′′3

e4

e5

e6

40, 43, 60, 63

90, 93, 110, 113

140, 143, 160, 163

50, 51

10
0,
10
1

150
, 15

1

65, 66

115, 116

165, 166

38
,4
1,
88
,9
1,
13
8,
14
1

42
, 4
5,
10
8,
11
1,
15
8,
16
1

58,
61,

142
, 14

5

(a)

e1

e2

e3
e′1

e′2

e′3

e′′1

e′′2

e′′3

e4

e5

e6

[60, 63]

[110, 113]

[160, 163]

[50, 51][1
00
, 1
01
]

[15
0, 1

51]

[65, 66]

[115, 116]

[165, 166]

[3
8,
41
]

[4
2,
45
]

[14
2, 1

45]

2

9

11

12

4

7

3
6

10

5

8

1

(b)

Fig. 1. The temporal star constructed for the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨
¬x3)∧ (¬x1 ∨ x3). Setting x1 to true, x2 to true and x3 to true yields a satisfying truth
assignment whose corresponding exploration is indicated in (b), where the numbers in
the circles indicate the order over time of the exploration of each edge.

The following lemmas are needed for the NP-completeness proof (Theorem 2).

Lemma 1. There exists a (partial) exploration J of (Gs, L) of maximum size
which explores all 3p edges associated with the variables of F .

Lemma 2. There exists a truth assignment τ of F with |τ(F )| ≥ β if and only
if there exists a (partial) exploration J of (Gs, L) of size |J | ≥ 3p+ β.

Theorem 2. StarExp(k) is NP-complete for every k ≥ 6.



On Temporally Connected Graphs of small cost 9

3.2 MaxStarExp(k) is APX-complete for k ≥ 4 labels per edge

It can be shown that the reduction of Section 3.1 linearly preserves approxima-
bility features; this would in turn prove that MaxStarExp(k) is APX-hard
for k ≥ 6, since MAX3SAT(3), i.e. the maximization version of 3SAT(3), is
APX-complete [4]. However, this leaves a gap in the complexity of the prob-
lem for k ∈ {4, 5}. To close this gap we instead give an L-reduction [20] from
the Max2SAT(3) problem, i.e. an approximation preserving reduction which
linearly preserves approximability features. Max2SAT(3) is known to be APX-
complete [20].

MAX2SAT(3)
Input: A boolean formula in CNF with variables x1, x2, . . . , xp and clauses
c1, c2, . . . , cq, such that each clause has at most 2 literals, and each variable
appears in at most 3 clauses.
Output: Maximum number of satisfiable clauses in the formula.

The reduction: Given an instance F of MAX2SAT(3) we shall create an instance
(Gs, L) of MaxStarExp(k) such that F has β satisfiable clauses if and only
if (Gs, L) has β + 3p explorable edges. As previously, we assume without loss
of generality that every variable appears once as a negative literal and once or
twice as a positive literal.

The reduction is the same as the one presented in Section 3.1, with the
edges of (Gs, L) being assigned the same labels as in the previous reduction to
appropriately introduce conflicts between exploration windows of edges. The
only difference in the construction is that now we start from a 2-CNF formula F
(instead of a 3-CNF formula in Section 3.1). Thus every edge of (Gs, L) that
corresponds to a clause of F now receives four labels instead of six, i.e. two labels
for every literal that appears in the clause.

The following lemmas are needed for the APX-hardness proof (Theorem 3).

Lemma 3. There exists a (partial) exploration J of (Gs, L) of maximum size
which explores all 3p edges associated with the variables of F .

Lemma 4. There exists a truth assignment τ of F with |τ(F )| ≥ β if and only
if there exists a (partial) exploration J of (Gs, L) of size |J | ≥ 3p+ β.

Theorem 3. MaxStarExp(k) is APX-hard, for k ≥ 4.

Proof. Denote by OPTMax2SAT(3)(F ) the greatest number of clauses that can
be simultaneously satisfied by a truth assignment of F . The proof is done by
an L-reduction [20] from the Max2SAT(3) problem, i.e. by an approximation
preserving reduction which linearly preserves approximability features. For such
a reduction, it suffices to provide a polynomial-time computable function g and
two constants γ, δ > 0 such that:

– OPTMaxStarExp((Gs, L)) ≤ γ · OPTMax2SAT(3)(F ), for any boolean for-
mula F , and



10 E.C. Akrida, G.B. Mertzios, and P.G. Spirakis

– for any (partial) exploration J ′ of (Gs, L), g(J ′) is a truth assignment for
F and OPTMax2SAT(3)(F ) − |g(J ′)| ≤ δ(OPTMaxStarExp((Gs, L)) − |J ′|),
where |g(J ′)| is the number of clauses of F that are satisfied by g(J ′).

We will prove the first condition for γ = 13. Recall that p and q are the
numbers of variables and clauses of F , respectively. Note that a random truth
assignment satisfies each clause of F with probability at least 1

2 (if each clause
had exactly 2 literals, then it would be satisfied with probability 3

4 , but we have
to account also for single-literal clauses), and thus there exists an assignment
τ that satisfies at least q

2 clauses of F . Furthermore, since every clause has at
most 2 literals and every variable appears at least once, it follows that q ≥ p

2 .
Therefore OPTMax2SAT(3)(F ) ≥ q

2 ≥
p
4 , and thus p ≤ 4 · OPTMax2SAT(3)(F ).

Now Lemma 4 implies that:

OPTMaxStarExp((Gs, L)) = 3p+OPTMAX2SAT (3)(F )

≤ 3 · 4 ·OPTMAX2SAT (3)(F ) +OPTMAX2SAT (3)(F )

= 13 ·OPTMax2SAT(3)(F )

To prove the second condition for δ = 1, consider an arbitrary partial ex-
ploration J ′ of Gs(L) of maximum size. In the proof of Lemma 4, we describe
how one can start from any such J ′ and construct in polynomial time a truth
assignment g(J ′) = τ that satisfies at least OPTMaxStarExp((Gs, L))− 3p clauses
of F , i.e. |g(J ′)| = |τ(F )| ≥ |J ′| − 3p. Then:

OPTMax2SAT(3)(F )− |g(J ′)| ≤ OPTMax2SAT(3)(F )− |J ′|+ 3p

= OPTMaxStarExp((Gs, L))− 3p− |J ′|+ 3p

= OPTMaxStarExp((Gs, L))− |J ′|

This completes the proof of the theorem. ut

Corollary 1. MaxStarExp(k) is APX-complete, for k ≥ 4.

Now we prove a correlation between the inapproximability bounds for the
MaxStarExp(k) problem and Max2SAT(3), as a result of the L-reduction
presented in the proof of Theorem 3. Note that, since Max2SAT(3) is APX-
hard [4], there exists a constant ε0 > 0 such that there exists no polynomial-time
constant-factor approximation algorithm for Max2SAT(3) with approximation
ratio greater than (1− ε0), unless P = NP.

Theorem 4. Let ε0 > 0 be the constant such that, unless P = NP, there exists no
polynomial-time constant-factor approximation algorithm for Max2SAT(3) with
approximation ratio greater than (1− ε0). Then, unless P = NP, there exists no
polynomial-time constant-factor approximation algorithm for MaxStarExp(k)
with approximation ratio greater than (1− ε0

13 ).



On Temporally Connected Graphs of small cost 11

Proof. Let ε > 0 be a constant such that there exists a polynomial-time
approximation algorithm A for MaxStarExp(k) with ratio (1 − ε). Let F
be an instance of MAX2SAT(3) with p variables and q clauses. We construct
the instance (Gs, L) of MaxStarExp(k) corresponding to F , as described in
the L-reduction (see Theorem 3). Then we apply the approximation algorithm
A to (Gs, L), which returns a (partial) exploration J . Note that |J | ≥ (1− ε) ·
OPTMaxStarExp. We construct from J in polynomial time a truth assignment
τ ; we denote by |τ | the number of clauses in F that are satisfied by the truth
assignment τ . It now follows from the proof of Theorem 3 that:

OPTMax2SAT(3)(F )− |τ | ≤ OPTMaxStarExp((Gs, L))− |J |
≤ 13ε ·OPTMax2SAT(3)(F )

Therefore |τ | ≥ (1− 13ε) ·OPTMax2SAT(3)(F ). That is, using algorithm A, we
can devise a polynomial-time algorithm for MAX2SAT(3) with approximation
ratio (1− 13ε). Therefore, due to the assumptions of the theorem it follows that
ε ≥ ε0

13 , unless P = NP. This completes the proof of the theorem. ut

Note that we have fully characterized MaxStarExp(k) in terms of complexity,
for all values of k ∈ N. However, the reduction that shows APX-hardness for
MaxStarExp(k) cannot be employed to show NP-hardness of the decision
version StarExp(k), since the decision problem 2SAT is polynomially solvable.

Open Problem What is the complexity of StarExp(k), for k ∈ {4, 5}?

References

1. E. Aaron, D. Krizanc, and E. Meyerson. DMVP: foremost waypoint coverage of
time-varying graphs. In International Workshop on Graph-Theoretic Concepts in
Computer Science (WG), pages 29–41, 2014.

2. E. C. Akrida, L.Gasieniec, G. B. Mertzios, and P. G. Spirakis. The complexity
of optimal design of temporally connected graphs. Theory of Computing Systems,
61(3):907–944, 2017.

3. E. C. Akrida, G. Mertzios, P. G. Spirakis, and V. Zamaraev. Temporal vertex covers
and sliding time windows. In International Colloquium on Automata, Languages
and Programming (ICALP), 2018.

4. G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and
V. Kann. Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer-Verlag, 1st edition, 1999.

5. S. Biswas, A. Ganguly, and R. Shah. Restricted shortest path in temporal graphs.
In Database and Expert Systems Applications (DEXA), 2015.

6. H. L. Bodlaender and T. C. van der Zanden. On exploring temporal graphs of
small pathwidth. CoRR, abs/1807.11869, 2018.

7. A. Casteigts and P. Flocchini. Deterministic Algorithms in Dynamic Networks:
Formal Models and Metrics. Technical report, Defence R&D Canada, April 2013.

8. T.-H. Hubert Chan and Li Ning. Fast convergence for consensus in dynamic
networks. ACM Trans. Algorithms, 10, 2014.



12 E.C. Akrida, G.B. Mertzios, and P.G. Spirakis

9. J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the
job interval selection problem and related scheduling problems. Mathematics of
Operations Research, pages 730–738, 2006.

10. A. E. F. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding
time of edge-markovian evolving graphs. SIAM Journal on Discrete Mathematics
(SIDMA), 24(4):1694–1712, 2010.

11. C. Demetrescu and G. F. Italiano. Algorithmic techniques for maintaining shortest
routes in dynamic networks. Electronic Notes in Theoretical Computer Science,
171, 2007.

12. T. Erlebach, M. Hoffmann, and Frank Kammer. On temporal graph exploration.
In International Colloquium on Automata, Languages, and Programming (ICALP),
pages 444–455, 2015.

13. A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. Adapting the bron-kerbosch
algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35:1–35:16, 2017.

14. D. Ilcinkas, R. Klasing, and A. M. Wade. Exploration of constantly connected
dynamic graphs based on cactuses. In International Colloquium on Structural
Information and Communication Complexity (SIROCCO), 2014.

15. D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivity and inference problems
for temporal networks. In ACM symposium on Theory of computing (STOC), pages
504–513, 2000.

16. J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman, 2005.
17. G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Temporal network

optimization subject to connectivity constraints. In International Colloquium on
Automata, Languages and Programming (ICALP), pages 657–668, 2013.

18. O. Michail and P. G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016.

19. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, 1982.

20. C. H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.

21. F. C. R. Spieksma. On the approximability of an interval scheduling problem.
Journal of Scheduling, pages 215–227, 1999.

22. T. Viard, M. Latapy, and C. Magnien. Computing maximal cliques in link streams.
Theoretical Computer Science, 609:245–252, 2016.

23. D. Wagner, T. Willhalm, and C. D. Zaroliagis. Dynamic shortest paths containers.
Electronic Notes in Theoretical Computer Science, 92, 2004.

24. H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun. Influence maximization in
dynamic social networks. In International Conference on Data Mining, 2013.


