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Abstract. In this work we consider temporal networks, i.e. networks
defined by a labeling λ assigning to each edge of an underlying graph G
a set of discrete time-labels. The labels of an edge, which are natural
numbers, indicate the discrete time moments at which the edge is avail-
able. We focus on path problems of temporal networks. In particular, we
consider time-respecting paths, i.e. paths whose edges are assigned by λ
a strictly increasing sequence of labels. We begin by giving two efficient
algorithms for computing shortest time-respecting paths on a temporal
network. We then prove that there is a natural analogue of Menger’s the-
orem holding for arbitrary temporal networks. Finally, we propose two
cost minimization parameters for temporal network design. One is the
temporality of G, in which the goal is to minimize the maximum number
of labels of an edge, and the other is the temporal cost of G, in which
the goal is to minimize the total number of labels used. Optimization of
these parameters is performed subject to some connectivity constraint.
We prove several lower and upper bounds for the temporality and the
temporal cost of some very basic graph families such as rings, directed
acyclic graphs, and trees.

1 Introduction

A temporal (or dynamic) network is, loosely speaking, a network that changes
with time. This notion encloses a great variety of both modern and traditional
networks such as information and communication networks, social networks,
transportation networks, and several physical systems.

In this work, embarking from the foundational work of Kempe et al. [KKK00],
we consider discrete time, that is, we consider networks in which changes occur
at discrete moments in time, e.g. days. This choice is not only a very natural

? Supported in part by (i) the project FOCUS implemented under the “ARISTEIA”
Action of the OP “Education and Lifelong Learning” and co-funded by the EU
(ESF) and Greek National Resources, (ii) the FET EU IP project MULTIPLEX
under contract no 317532, and (iii) the EPSRC Grant EP/G043434/1. Full version:
http://ru1.cti.gr/aigaion/?page=publication&kind=single&ID=977

http://ru1.cti.gr/aigaion/?page=publication&kind=single&ID=977


abstraction of many real systems but also gives to the resulting models a purely
combinatorial flavor. In particular, we consider those networks that can be de-
scribed via an underlying graph G and a labeling λ assigning to each edge of
G a (possibly empty) set of discrete labels. Note that this is a generalization of
the single-label-per-edge model used in [KKK00], as we allow many time-labels
to appear on an edge. These labels are drawn from the natural numbers and
indicate the discrete moments in time at which the corresponding connection is
available. For example, in the case of a communication network, availability of
a communication link at some time t may mean that a communication protocol
is allowed to transmit a data packet over that link at time t.

In this work, we initiate the study of the following fundamental network de-
sign problem: “Given an underlying (di)graph G, assign labels to the edges of
G so that the resulting temporal graph λ(G) minimizes some parameter while
satisfying some connectivity property”. In particular, we consider two cost opti-
mization parameters for a given graph G. The first one, called temporality of G,
measures the maximum number of labels that an edge of G has been assigned.
The second one, called temporal cost of G, measures the total number of labels
that have been assigned to all edges of G (i.e. if |λ(e)| denotes the number of
labels assigned to edge e, we are interested in

∑
e∈E |λ(e)|). Each of these two

cost measures can be minimized subject to some particular connectivity prop-
erty P that the temporal graph λ(G) has to satisfy. In this work, we consider
two very basic connectivity properties. The first one, that we call the all paths
property, requires the temporal graph to preserve every simple path of its under-
lying graph, where by “preserve a path of G” we mean that the labeling should
provide at least one strictly increasing sequence of labels on the edges of that
path (we also call such a path time-respecting).

For an illustration, consider a directed ring u1, u2, . . . , un. We want to deter-
mine the temporality of the ring subject to the all paths property, that is, we
want to find a labeling λ that preserves every simple path of the ring and at the
same time minimizes the maximum number of labels of an edge. Consider the
paths P1 = (u1, . . . , un) and P2 = (un−1, un, u1, u2). It is immediate to observe
that an increasing sequence of labels on the edges of path P1 implies a decreasing
pair of labels on edges (un−1, un) and (u1, u2). On the other hand, path P2 uses
first (un−1, un) and then (u1, u2) thus it requires an increasing pair of labels
on these edges. It follows that in order to preserve both P1 and P2 we have to
use a second label on at least one of these two edges, thus the temporality is at
least 2. Next, consider the labeling that assigns to each edge (ui, ui+1) the labels
{i, n+ i}, where 1 ≤ i ≤ n and un+1 = u1. It is not hard to see that this labeling
preserves all simple paths of the ring. Since the maximum number of labels that
it assigns to an edge is 2, we conclude that the temporality is also at most 2. In
summary, the temporality of preserving all simple paths of a directed ring is 2.

The other connectivity property that we define, called the reach property,
requires the temporal graph to preserve a path from node u to node v whenever
v is reachable from u in the underlying graph. Furthermore, the minimization
of each of our two cost measures can be affected by some problem-specific con-
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straints on the labels that we are allowed to use. We consider here one of the
most natural constraints, namely an upper bound of the age of the constructed
labeling λ, where the age of a labeling λ is defined to be equal to the maximum
label of λ minus its minimum label plus 1. Now the goal is to minimize the cost
parameter, e.g. the temporality, satisfy the connectivity property, e.g. all paths,
and additionally guarantee that the age does not exceed some given natural k.
Returning to the ring example, it is not hard to see, that if we additionally re-
strict the age to be at most n− 1 then we can no longer preserve all paths of a
ring using at most 2 labels per edge. In fact, we must now necessarily use the
worst possible number of labels, i.e. n− 1 on every edge.

Minimizing such parameters may be crucial as, in most real networks, mak-
ing a connection available and maintaining its availability does not come for
free. At the same time, such a study is important from a purely graph-theoretic
perspective as it gives some first insight into the structure of specific families
of temporal graphs (e.g. no temporal ring exists with fewer than n + 1 labels).
Finally, we believe that our results are a first step towards answering the follow-
ing fundamental question: “To what extent can algorithmic and structural results
of graph theory be carried over to temporal graphs?”. For example, is there an
analogue of Menger’s theorem for temporal graphs? One of the results of the
present work is an affirmative answer to the latter question.

1.1 Related Work

Single-label Temporal Graphs and Menger’s Theorem. The model of
temporal graphs that we consider in this work is a direct extension of the single-
label model studied in [Ber96] and [KKK00] to allow for many labels per edge.
In [KKK00], Kempe et al., among other things, proved that there is no analogue
of Menger’s theorem, at least in its original formulation, for arbitrary single-
label temporal networks. In this work, we go a step ahead showing that if one
reformulates Menger’s theorem in a way that takes time into acount then a very
natural temporal analogue of Menger’s theorem is obtained. Furthermore, in the
present work, we consider a path as time-respecting if its edges have strictly
increasing labels and not non-decreasing as in the above papers.

Continuous Availabilities (Intervals). Some authors have naturally assumed
that an edge may be available for continuous time-intervals. The techniques used
there are quite different than those needed in the discrete case [XFJ03, FT98].

Distributed Computing on Dynamic Networks. A notable set of recent
works has studied (distributed) computation in worst-case dynamic networks in
which the topology may change arbitrarily from round to round (see e.g. [KLO10,
MCS12]). Population protocols [AAD+06] and variants [MCS11a] are collections
of passively mobile finite-state agents that compute something useful in the
limit. Another interesting direction assumes random network dynamicity and the
interest is on determining “good” properties of the dynamic network that hold
with high probability and on designing protocols for distributed tasks [CMM+08,
AKL08]. For introductory texts cf. [CFQS12, MCS11b, Sch02].
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Distance Labeling. A distance labeling of a graph G is an assignment of unique
labels to the vertices of G so that the distance between any two vertices can be
inferred from their labels alone [GPPR01, KKKP04]. There, the labeling param-
eter to be minimized is the binary length of an appropriate distance encoding,
which is different from our cost parameters.

1.2 Contribution

In Section 2, we formally define the model of temporal graphs under consid-
eration and provide all further necessary definitions. In Section 3, we give two
efficient algorithms for computing shortest time-respecting paths. Then in Sec-
tion 4 we present an analogue of Menger’s theorem which we prove valid for
arbitrary temporal graphs. In the full paper, we also apply our Menger’s ana-
logue to substantially simplify the proof of a recent result on distributed token
gathering. In Section 5, we formally define the temporality and temporal cost
optimization metrics for temporal graphs. In Section 5.1, we provide several up-
per and lower bounds for the temporality of some fundamental graph families
such as rings, directed acyclic graphs (DAGs), and trees, as well as an inter-
esting trade-off between the temporality and the age of rings. Furthermore, we
provide in Section 5.2 a generic method for computing a lower bound of the
temporality of an arbitrary graph w.r.t. the all paths property, and we illustrate
its usefulness in cliques and planar graphs. Finally, we consider in Section 5.3
the temporal cost of a digraph G w.r.t. the reach property, when additionally
the age of the resulting labeling λ(G) is restricted to be the smallest possible.
We prove that this problem is APX-hard. To prove our claim, we first prove
(which may be of interest in its own right) that the Max-XOR(3) problem is
APX-hard via a PTAS reduction from Max-XOR. In Max-XOR(3) problem, we
are given a 2-CNF formula φ, every literal of which appears in at most 3 clauses,
and we want to compute the greatest number of clauses of φ that can be simul-
taneously XOR-satisfied. Then we provide a PTAS reduction from Max-XOR(3)
to our temporal cost minimization problem. On the positive side, we provide
an (r(G)/n)-factor approximation algorithm for the latter problem, where r(G)
denotes the total number of reachabilities in G.

2 Preliminaries

Given a (di)graph G = (V,E), a labeling of G is a mapping λ : E → 2IN, that is,
a labeling assigns to each edge of G a (possibly empty) set of natural numbers,
called labels.

Definition 1. Let G be a (di)graph and λ be a labeling of G. Then λ(G) is the
temporal graph (or dynamic graph) of G with respect to λ. Furthermore, G is
the underlying graph of λ(G).

We denote by λ(E) the multiset of all labels assigned to the underlying graph
by the labeling λ and by |λ| = |λ(E)| their cardinality (i.e. |λ| =

∑
e∈E |λ(e)|).
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We also denote by λmin = min{l ∈ λ(E)} the minimum label and by λmax =
max{l ∈ λ(E)} the maximum label assigned by λ. We define the age of a tempo-
ral graph λ(G) as α(λ) = λmax−λmin+1. Note that in case λmin = 1 then we have
α(λ) = λmax. For every graph G we denote by LG the set of all possible labelings
λ of G. Furthermore, for every k ∈ N, we define LG,k = {λ ∈ LG : α(λ) ≤ k}.

For every time r ∈ IN, we define the rth instance of a temporal graph λ(G)
as the static graph λ(G, r) = (V,E(r)), where E(r) = {e ∈ E : r ∈ λ(e)} is the
(possibly empty) set of all edges of the underlying graph G that are assigned label
r by labeling λ. A temporal graph λ(G) may be also viewed as a sequence of static
graphs (G1, G2, . . . , Gα(λ)), where Gi = λ(G,λmin + i − 1) for all 1 ≤ i ≤ α(λ).
Another, often convenient, representation of a temporal graph is the following.

Definition 2. The static expansion of a temporal graph λ(G) is a DAG H =
(S,A) defined as follows. If V = {u1, u2, . . . , un} then S = {uij : λmin − 1 ≤ i ≤
λmax, 1 ≤ j ≤ n} and A = {(u(i−1)j , uij′) : if j = j′ or (uj , u

′
j) ∈ E(i) for some

λmin ≤ i ≤ λmax}.

A journey (or time-respecting path) J of a temporal graph λ(G) is a path
(e1, e2, . . . , ek) of the underlying graph G = (V,E), where ei ∈ E, together with
labels l1 < l2 < . . . < lk such that li ∈ λ(ei) for all 1 ≤ i ≤ k. In words, a
journey is a path that uses strictly increasing edge-labels. If labeling λ defines
a journey on some path P of G then we also say that λ preserves P . A natural
notation for a journey is (e1, l1), (e2, l2), . . . , (ek, lk) where each (ei, li) is called a
time-edge. A (u, v)-journey J is called foremost from time t ∈ IN if l1 ≥ t and lk
is minimized. We say that a journey J leaves from node u (arrives at, resp.) at
time t if (u, v, t) ((v, u, t), resp.) is a time-edge of J . Two journeys are called out-
disjoint (in-disjoint, respectively) if they never leave from (arrive at, resp.) the
same node at the same time. If, in addition to the labeling λ, a positive weight
w(e) > 0 is assigned to every edge e ∈ E, then we get a weighted temporal
graph. If this is the case, then a journey J is called shortest if it minimizes the
sum of the weights of its edges.

Throughout the text, unless otherwise stated, we denote by n the number
of nodes of (di)graphs and by d(G) the diameter of a (di)graph G, that is the
length of the longest shortest path between any two nodes of G. Finally, by δu
we denote the degree of a node u ∈ V (G) (in case of an undirected graph G).

3 Journey Problems

Theorem 1. Let λ(G) be a temporal graph, s ∈ V be a source node, and tstart
a time s.t. λmin ≤ tstart ≤ λmax. There is an algorithm that correctly computes
for all w ∈ V \{s} a foremost (s, w)-journey from time tstart. The running time
of the algorithm is O(nα3(λ) + |λ|).

Theorem 2. Let λ(G) be a weighted temporal graph and let s, t ∈ V . Assume
also that |λ(e)| = 1 for all e ∈ E. Then, we can compute a shortest journey J
between s and t in λ(G) (or report that no such journey exists) in O(m logm+∑
v∈V δ

2
v) = O(n3) time, where m = |E|.
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4 A Menger’s Analogue for Temporal Graphs

In this section, we prove that, in contrast to an important negative result from
[KKK00], there is a natural analogue of Menger’s theorem that is valid for all
temporal networks. In the full paper, we also apply our theorem to substantially
simplify the proof of a recent token gathering result.

When we say that we remove node departure time (u, t) we mean that we
remove all edges leaving u at time t, i.e. we remove the set {(u, v) ∈ E : t ∈
λ(u, v)}. So, when we ask how many node departure times are needed to separate
two nodes s and v we mean how many node departure times must be selected so
that after the removal of all the corresponding time-edges the resulting temporal
graph has no (s, v)-journey.

Theorem 3 (Menger’s Temporal Analogue). Take any temporal graph
λ(G), where G = (V,E), with two distinguished nodes s and v. The maximum
number of out-disjoint journeys from s to v is equal to the minimum number of
node departure times needed to separate s from v.

Proof. Assume, in order to simplify notation, that λmin = 1. Take the
static expansion H = (S,A) of λ(G). Let {ui1} and {uin} represent s and
v over time, respectively (first and last colums, respectively), where 0 ≤
i ≤ λmax. We extend H as follows. For each uij , 0 ≤ i ≤ λmax − 1,
with at least 2 outgoing edges to nodes different than u(i+1)j , e.g. to nodes
u(i+1)j1 , u(i+1)j2 , . . . , u(i+1)jk , we add a new node wij and the edges (uij , wij)
and (wij , u(i+1)j1), (wij , u(i+1)j2), . . . , (wij , u(i+1)jk). We also define an edge ca-
pacity function c : A→ {1, λmax} as follows. All edges of the form (uij , u(i+1)j)
take capacity λmax and all other edges take capacity 1. We are interested in the
maximum flow from u01 to uλmaxn. As this is simply a usual static flow network,
the max-flow min-cut theorem applies stating that the maximum flow from u01
to uλmaxn is equal to the minimum of the capacity of a cut separating u01 from
uλmaxn. Finally, observe that (i) the maximum number of out-disjoint journeys
from s to v is equal to the maximum flow from u01 to uλmaxn and (ii) the min-
imum number of node departure times needed to separate s from v is equal to
the minimum of the capacity of a cut separating u01 from uλmaxn. ut

5 Minimum Cost Temporal Connectivity

In this section, we introduce (in Definition 3) the temporality and temporal cost
measures. These measures can be minimized subject to some particular connec-
tivity property P that the labeled graph λ(G) has to satisfy. For simplicity of
notation, we consider the connectivity property P as a subset of the set LG of all
possible labelings λ on the (di)graph G. Furthermore, the minimization of each
of these two cost measures can be affected by some problem-specific constraints
on the labels that we are allowed to use. We consider one of the most natural
constraints, namely an upper bound on the age of the constructed labeling.
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Definition 3. Let G = (V,E) be a (di)graph, αmax ∈ N, and P be a connectivity
property. Then the temporality of (G,P, αmax) is

τ(G,P, αmax) = min
λ∈P∩LG,αmax

max
e∈E
|λ(e)|

and the temporal cost of (G,P, αmax) is

κ(G,P, αmax) = min
λ∈P∩LG,αmax

∑
e∈E
|λ(e)|

Furthermore τ(G,P) = τ(G,P,∞) and κ(G,P) = κ(G,P,∞).

Note that Definition 3 can be stated for an arbitrary property P of the labeled
graph λ(G) (e.g. some proper coloring-preserving property). Nevertheless, we
only consider here P to be a connectivity property of λ(G). In particular, we
investigate the following two connectivity properties P:

– all-paths(G) = {λ ∈ LG : for all simple paths P of G, λ preserves P},
– reach(G) = {λ ∈ LG : for all u, v ∈ V where v is reachable from v in G, λ

preserves at least one simple path from u to v}.

5.1 Basic Properties of Temporality Parameters

5.1.1 Preserving All Paths. We begin with some simple observations on
τ(G, all paths). Recall that given a (di)graph G our goal is to label G so that all
simple paths of G are preserved by using as few labels per edge as possible. First
note that if p(G) is the length of the longest path in G then τ(G, all paths) ≤
p(G) for all graphs G: just give to every edge the labels {1, 2, . . . , p(G)}.

A topological sort of a digraph G is a linear ordering of its nodes such that
if G contains an edge (u, v) then u appears before v in the ordering. It is well
known that a digraph G can be topologically sorted iff is a DAG.

Proposition 1. If G is a DAG then τ(G, all paths) = 1.

Proof. Take a topological sort u1, u2, . . . , un of G. Give to every edge (ui, uj),
where i < j, label i. ut

5.1.2 Preserving All Reachabilities. Now, instead of preserving all paths,
we impose the apparently simpler requirement of preserving just a single path
between every reachability pair u, v ∈ V . We claim that it is sufficient to un-
derstand how τ(G, reach), behaves on strongly connected digraphs. Let C(G)
be the set of all strongly connected components of a digraph G. The following
lemma proves that, w.r.t. the reach property, the temporality of any digraph G
is upper bounded by the maximum temporality of its components.

Lemma 1. τ(G, reach) ≤ maxC∈C(G) τ(C, reach) for every digraph G.
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Lemma 1 implies that any upper bound on the temporality of preserving the
reachabilities of strongly connected digraphs can be used as an upper bound
on the temporality of preserving the reachabilities of general digraphs. An in-
teresting question is whether there is some bound on τ(G, reach) either for all
digraphs or for specific families of digraphs. By using Lemma 1, it can be proved
that indeed there is a very satisfactory generic upper bound.

Theorem 4. τ(G, reach) ≤ 2 for all digraphs G.

5.1.3 Restricting the Age. Now notice that for all G we have
τ(G, reach, d(G)) ≤ d(G); recall that d(G) denotes the diameter of (di)graph
G. Indeed it suffices to label each edge by {1, 2, . . . , d(G)}. Thus, a clique G
has trivially τ(G, reach, d(G)) = 1 as d(G) = 1 and we can only have large
τ(G, reach, d(G)) in graphs with large diameter. For example, a directed ring G
of size n has τ(G, reach, d(G)) = n− 1. Indeed, assume that from some edge e,
label 1 ≤ i ≤ n− 1 is missing. It is easy to see that there is some shortest path
between two nodes of the ring that in order to arrive by time n−1 must use edge
e at time i. As this label is missing, it uses label i + 1, thus it arrives by time
n which is greater than the diameter. On a ring we can preserve the diameter
only if all edges have the labels {1, 2, . . . , n− 1}.

On the other hand, there are graphs with large diameter in which
τ(G, reach, d(G)) is small. This may also be the case even if G is strongly con-
nected. For example, consider the graph with nodes u1, u2, . . . , un and edges
(ui, ui+1) and (ui+1, ui) for all 1 ≤ i ≤ n− 1. In words, we have a directed line
from u1 to un and an inverse one from un to u1. The diameter here is n−1 (e.g.
the shortest path from u1 to un) but τ(G, reach, d(G)) = 1: simply label one
path 1, 2, ..., n− 1 and label the inverse one 1, 2, ..., n− 1 again, i.e. give to edges
(ui, ui+1) and (un−i+1, un−i+2) label i. Now consider an undirected tree T .

Theorem 5. If T is an undirected tree then τ(T, all paths, d(T )) ≤ 2.

We next present an interesting trade-off between the temporality and the age
of a directed ring.

Theorem 6. If G is a directed ring and α = (n−1)+k, where 1 ≤ k ≤ n−1, then
τ(G, all paths, α) = Θ(n/k) and in particular bn−1k+1 c + 1 ≤ τ(G, all paths, α) ≤
d n
k+1e+ 1. Moreover, τ(G, all paths, n− 1) = n− 1 (i.e. when k = 0).

5.2 A Generic Method for Lower Bounding Temporality

We show here that there are graphs G for which τ(G, all paths) = Ω(p(G))
(recall that p(G) denotes the length of the longest path in G), that is graphs
in which the optimum labeling, w.r.t. temporality, is very close to the trivial
labeling λ(e) = {1, 2, . . . , p(G)}, for all e ∈ E.

Definition 4. Call a set K = {e1, e2, . . . , ek} ⊆ E(G) of edges of a digraph G
an edge-kernel if for every permutation π = (ei1 , ei2 , . . . , eik) of K there is a
simple path of G that visits all edges of K in the ordering defined by π.
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The following theorem states that an edge-kernel of size k needs at least k
labels on some edge(s).

Theorem 7 (Edge-kernel Lower Bound). If a digraph G contains an edge-
kernel of size k then τ(G, all paths) ≥ k.

The usefulness of Theorem 7 is that it allows us to establish a lower bound k
on the temporality of a graph G by only proving the existence of an edge-kernel
of size k in G. We now apply this to complete digraphs and planar graphs.

Lemma 2. If G is a complete digraph of order n then it has an edge-kernel of
size bn/2c.

Now Theorem 7 implies that if G is a complete digraph then bn/2c ≤
τ(G, all paths) ≤ n− 1.

Lemma 3. There exist planar graphs having edge-kernels of size Ω(n
1
3 ).

5.3 Computing the Cost

5.3.1 Hardness of Approximation. Consider a boolean formula φ in con-
junctive normal form with two literals in every clause (2-CNF). Let τ be a truth
assignment of the variables of φ and α = (`1 ∨ `2) be a clause of φ. Then α is
XOR-satisfied in τ , if one of the literals {`1, `2} of the clause α is true in τ and
the other one is false in τ . The number of clauses of φ that are XOR-satisfied
in τ is denoted by |t(φ)|. The formula φ is XOR-satisfiable if there exists a
truth assignment τ of φ such that every clause of φ is XOR-satisfied in τ . The
Max-XOR problem is the following maximization problem: given a 2-CNF for-
mula φ, compute the greatest number of clauses of φ that can be simultaneously
XOR-satisfied in a truth assignment τ , i.e. compute the greatest value for |t(φ)|.
The Max-XOR( k) problem is the special case of the the Max-XOR problem,
where every literal of the input formula φ appears in at most k clauses of φ.
Max-XOR is known to be APX-hard, i.e. it does not admit a PTAS unless
P = NP [KMSV99, CKS01]. In the next lemma we prove that Max-XOR(3)
remains APX-hard by providing a PTAS reduction from Max-XOR.

Lemma 4. The Max-XOR(3) problem is APX-hard.

Now we provide a reduction from the Max-XOR(3) problem to the problem
of computing κ(G, reach, d(G)). Let φ be an instance formula of Max-XOR(3)
with n variables x1, x2, . . . , xn and m clauses. Since every variable xi appears in
φ (either as xi or as xi) in at most 3 clauses, it follows that m ≤ 3

2n. We will
construct from φ a graph Gφ having length of a directed cycle at most 2. Then,
as we prove in Theorem 8, κ(Gφ, reach, d(Gφ)) ≤ 39n − 4m − 2k if and only if
there exists a truth assignment τ of φ with |t(φ)| ≥ k, i.e. τ XOR-satisfies at
least k clauses of φ. Since φ is an instance of Max-XOR(3), we can replace every
clause (xi ∨ xj) by the clause (xi ∨ xj) in φ, since (xi ∨ xj) = (xi ∨ xj) in XOR.
Furthermore, whenever (xi ∨ xj) is a clause of φ, where i < j, we can replace
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this clause by (xi∨xj), since (xi∨xj) = (xi∨xj) in XOR. Thus, we can assume
w.l.o.g. that every clause of φ is either of the form (xi ∨ xj) or (xi ∨ xj), i < j.

For every i = 1, 2, . . . , n we construct the graph Gφ,i of Figure 1. Note
that the diameter of Gφ,i is d(Gφ,i) = 9 and the maximum length of a di-
rected cycle in Gφ,i is 2. In this figure, we call the induced subgraph of Gφ,i on
the 13 vertices {sxi , uxi1 , . . . , u

xi
6 , v

xi
1 , . . . , v

xi
6 } the trunk of Gφ,i. Furthermore,

for every p ∈ {1, 2, 3}, we call the induced subgraph of Gφ,i on the 5 vertices
{uxi7,p, u

xi
8,p, v

xi
7,p, v

xi
8,p, t

xi
p , } the pth branch ofGφ,i. Finally, we call the edges uxi6 u

xi
7,p

and vxi6 v
xi
7,p the transition edges of the pth branch of Gφ,i. Furthermore, for every

i = 1, 2, . . . , n, let ri ≤ 3 be the number of clauses in which variable xi appears
in φ. For every 1 ≤ p ≤ ri, we assign the pth appearance of the variable xi
(either as xi or as xi) in a clause of φ to the pth branch of Gφ,i.

Consider now a clause α = (`i ∨ `j) of φ, where i < j. Then, by our as-
sumptions on φ, it follows that `i = xi and `j ∈ {xj , xj}. Assume that the
literal `i (resp. `j) of the clause α corresponds to the pth (resp. to the qth)
appearance of the variable xi (resp. xj) in φ. Then we identify the vertices of
the pth branch of Gφ,i with the vertices of the qth branch of Gφ,j as follows.
If `j = xj then we identify the vertices uxi7,p, u

xi
8,p, v

xi
7,p, v

xi
8,p, t

xi
p with the vertices

v
xj
7,q, v

xj
8,q, u

xj
7,q, u

xj
8,q, t

xj
q , respectively. Otherwise, if `j = xj then we identify the

vertices uxi7,p, u
xi
8,p, v

xi
7,p, v

xi
8,p, t

xi
p with the vertices u

xj
7,q, u

xj
8,q, v

xj
7,q, v

xj
8,q, t

xj
q , respec-

tively. This completes the construction of the graph Gφ. Note that, similarly to
the graphs Gφ,i, 1 ≤ i ≤ n, the diameter of Gφ is d(Gφ) = 9 and the maximum
length of a directed cycle in Gφ is 2. Furthermore, note that for each of the m
clauses of φ, one branch of a gadget Gφ,i coincides with one branch of a gadget
Gφ,j , where 1 ≤ i < j ≤ n, while every Gφ,i has three branches. Therefore Gφ
has exactly 3n − 2m branches which belong to only one gadget Gφ,i, and m
branches that belong to two gadgets Gφ,i, Gφ,j .

. . .

. . .

uxi
1

vxi
1 vxi

2

uxi
2

Gi : sxi

uxi
6

vxi
6

uxi
7,1 uxi

8,1

vxi
7,3 vxi

8,3

vxi
7,1 vxi

8,1

vxi
7,2

vxi
8,2

uxi
7,2 uxi

8,2

uxi
7,3

uxi
8,3

txi
1

txi
2

txi
3

Fig. 1. The gadget Gφ,i for the variable xi.
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Theorem 8. There exists a truth assignment τ of φ with |t(φ)| ≥ k if and only
if κ(Gφ, reach, d(Gφ)) ≤ 39n− 4m− 2k.

Using Theorem 8, we are now ready to prove the main theorem of this section.

Theorem 9 (Hardness of Approximating the Temporal Cost). The
problem of computing κ(G, reach, d(G)) is APX-hard, even when the maximum
length of a directed cycle in G is 2.

Proof. Denote now by OPTMax-XOR(3)(φ) the greatest number of clauses that
can be simultaneously XOR-satisfied by a truth assignment of φ. Then Theo-
rem 8 implies that

κ(Gφ, reach, d(Gφ)) ≤ 39n− 4m− 2 ·OPTMax-XOR(3)(φ)

Note that a random assignment XOR-satisfies each clause of φ with probability
1
2 , and thus we can easily compute (even deterministically) an assignment τ that
XOR-satisfies m

2 clauses of φ. Therefore OPTMax-XOR(3)(φ) ≥ m
2 , and thus, since

every variable xi appears in at least one clause of φ, it follows that n ≤ m ≤
2 ·OPTMax-XOR(3)(φ1).

Assume that there is a PTAS for computing κ(G, reach, d(G)). Then, for
every ε > 0 we can compute in polynomial time a labeling λ for the graph Gφ,
such that |λ| ≤ (1 + ε) · κ(Gφ, reach, d(Gφ)).

Given such a labeling λ we can compute by the sufficiency part (⇐) of the
proof of Theorem 8 a truth assignment τ of φ such that 39n−4m−2|t(φ)| ≤ |λ|,
i.e. 2|t(φ)| ≥ 39n− 4m− |λ|.

Therefore it follows by all the above that 2|t(φ)| ≥ 39n − 4m − (1 + ε) ·
κ(Gφ, reach, d(Gφ)) ≥ 39n−4m−(1+ε)·

(
39n− 4m− 2 ·OPTMax-XOR(3)(φ)

)
=

ε (4m− 39n)+2(1+ε)·OPTMax-XOR(3)(φ)≥ −35εm+(2+2ε)·OPTMax-XOR(3)(φ)
≥ −35ε · 2OPTMax-XOR(3)(φ) + (2 + 2ε) · OPTMax-XOR(3)(φ) = (2 − 68ε) ·
OPTMax-XOR(3)(φ) and thus

|t(φ)| ≥ (1− 34ε) ·OPTMax-XOR(3)(φ).

That is, assuming a PTAS for computing κ(G, reach, d(G)), we obtain a PTAS
for the Max-XOR(3) problem, which is a contradiction by Lemma 4. Therefore
computing κ(G, reach, d(G)) is APX-hard. Finally, notice that the constructed
graph Gφ has maximum length of a directed cycle at most 2. ut

5.3.2 Approximating the Cost. In this section, we provide an approxima-
tion algorithm for computing κ(G, reach, d(G)), which complements the hard-
ness result of Theorem 9. Given a digraph G define, for every u ∈ V , u’s reach-
ability number r(u) = |{v ∈ V : v is reachable from u}| and r(G) =

∑
u∈V r(u),

that is r(G) is the total number of reachabilities in G.

Theorem 10. There is an r(G)
n−1 -factor approximation algorithm for computing

κ(G, reach, d(G)) on any weakly connected digraph G.
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