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Abstract22

Temporal graphs are used to abstractly model real-life networks that are inherently dynamic in23

nature, in the sense that the network structure undergoes discrete changes over time. Given a24

static underlying graph G = (V, E), a temporal graph on G is a sequence of snapshots {Gt =25

(V, Et) ⊆ G : t ∈ N}, one for each time step t ≥ 1. In this paper we study stochastic temporal26

graphs, i.e. stochastic processes G = {Gt ⊆ G : t ∈ N} whose random variables are the snapshots27

of a temporal graph on G. A natural feature of stochastic temporal graphs which can be observed28

in various real-life scenarios is a memory effect in the appearance probabilities of particular edges;29

that is, the probability an edge e ∈ E appears at time step t depends on its appearance (or absence)30

at the previous k steps. In this paper we study the hierarchy of models memory-k, k ≥ 0, which31

address this memory effect in an edge-centric network evolution: every edge of G has its own32

probability distribution for its appearance over time, independently of all other edges. Clearly, for33

every k ≥ 1, memory-(k − 1) is a special case of memory-k. However, in this paper we make a clear34

distinction between the values k = 0 (“no memory”) and k ≥ 1 (“some memory”), as in some cases35

these models exhibit a fundamentally different computational behavior for these values of k, as our36

results indicate. For every k ≥ 0 we investigate the computational complexity of two naturally37

related, but fundamentally different, temporal path (or journey) problems: Minimum Arrival and38

Best Policy. In the first problem we are looking for the expected arrival time of a foremost journey39

between two designated vertices s, y. In the second one we are looking for the expected arrival time40

of the best policy for actually choosing a particular s-y journey. We present a detailed investigation41

of the computational landscape of both problems for the different values of memory k. Among42

other results we prove that, surprisingly, Minimum Arrival is strictly harder than Best Policy;43

in fact, for k = 0, Minimum Arrival is #P-hard while Best Policy is solvable in O(n2) time.44
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1 Introduction53

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one54

of the most active topics of research in network science and theory. A common task in55

this field is to use our prior knowledge of the network link dynamics to answer questions56

about the behavior of the network over time, e.g. how quickly information can flow through57

it. Many modern real-life networks are dynamic in nature, in the sense that the network58

structure undergoes discrete changes over time [31, 36]. Here we deal with the discrete-59

time dynamicity of the network links (edges) over a fixed set of nodes (vertices). That is,60

given an underlying static graph G, the network evolution over G is given by the successive61

appearance or absence of each edge of G at every time step t = 1, 2, . . .. This concept62

of dynamic network evolution is given by temporal graphs [27, 29], which are also known63

by other names such as evolving graphs [6, 20], or time-varying graphs [1]. For a recent64

attempt to integrate existing models, concepts, and results from the distributed computing65

perspective, see the survey papers [12, 13] and the references therein.66

I Definition 1 (Temporal graph). Given an underlying static graph G = (V,E) on n vertices67

and m edges, a temporal graph on G is a sequence G = {Gt = (V,Et) : t ∈ N} of graphs68

such that Et ⊆ E for all t ∈ N. Every Gt is the snapshot of G at time step t.69

Another way to think about temporal graphs is by assigning time-labels on the edges;70

for example, if an edge e appears in the snapshots G3, G5, and G8, then we equivalently71

assign to e the set of labels λ(e) = {3, 5, 8}. Due to the vast applicability of temporal graphs,72

various structural and algorithmic properties of them have been studied extensively, both73

via theoretical/algorithmic analysis and via empirical simulation-based analysis. In many74

of these works, one of the central temporal notions is that of a temporal path. A path in75

the underlying (static) graph G is a temporal path (or journey) if there exists an increasing76

sequence of time-labels as one walks along the edges of the path [27, 29]. Motivated by the77

fact that, due to causality, information in temporal graphs can only flow along sequences78

of edges that appear in an increasing time order, many temporal graph parameters and79

optimization problems that have been studied so far are based on the notion of a temporal80

path and other related notions, e.g. temporal analogs of distance, diameter, connectivity,81

reachability, and exploration [3, 4, 7, 8, 10, 14, 18, 19, 21, 23, 28, 33]. In addition to82

temporal paths, recently also various temporal non-path problems have been introduced83

and algorithmically studied, such as temporal vertex cover [5], temporal coloring [30], and84

temporal ∆-cliques [24, 38].85

Apart from the focus on the various algorithmic problems that one can study on temporal86

graphs, one can also view temporal graphs through several different levels of knowledge87

about the actual network evolution. On the one extreme, we may be given the whole88

temporal graph instance in advance, i.e. the times of appearance and absence of every edge89

at all times, as it typically happens e.g. when modeling transportation networks. On the90

other extreme, the temporal graph may be created by an adversary who reveals it to us91

snapshot-by-snapshot at every time step. Here we focus on the intermediate knowledge92

https://doi.org/10.4230/LIPIcs.ICALP.2019.126
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settings, captured by stochastic temporal graphs, where the network evolution is given by a93

probability distribution that governs the appearance of each edge over time.94

I Definition 2 (Stochastic temporal graph). A stochastic temporal graph is a stochastic95

process G = {Gt : t ∈ N} whose random variables are snapshots Gt ⊆ G of an underlying96

graph G. Every instantiation of G is a temporal graph.97

A natural feature of stochastic temporal graphs which can be observed in various real-98

life scenarios (and which we address in this paper) is that the appearance probability of99

a particular edge at a given time step t depends on the appearance (or absence) of the100

same edge at the previous k ≥ 1 time steps. This “memory effect” can often be observed,101

among others, in faulty network communication and in mobile, social, and peer-to-peer102

networks [15, 34, 37]. Several other models of temporal networks which exhibit some sort of103

probabilistic behavior have been considered in the past, see e.g. [25].104

In this paper, we study a hierarchy of models for stochastic temporal graphs which105

address an edge-centric network evolution, i.e. they assign to every edge of the underlying106

graph G a probability distribution for its appearance over time, independently of all the other107

edges. The first and most basic model (memoryless or memory-0) assigns independently to108

every edge e a probability pe such that, at every time step, e appears with probability pe.109

In the general model (memory-k), at every time step the appearance probability of every110

edge is a function of the history of its appearances/absences in the last k ≥ 1 time steps.111

Clearly, for every k ≥ 1, the memory-(k− 1) model is a special case of the memory-k model.112

However, in this paper we make a clear distinction between the values k = 0 (“no memory”)113

and k ≥ 1 (“some memory”), as in some cases these models exhibit a fundamentally different114

computational behavior for these values of k, as our results indicate (see Section 4).115

Our memory-k model, k ≥ 1, is a direct generalization of the homogeneous version of the116

memory-1 model that was introduced in a seminal paper by Clementi et al. [16], in which117

all edges have the same probability distribution for their appearance, based on their own118

appearance/absence at the previous step. In this homogeneous memory-1 model, Clementi119

et al. gave upper bounds for the flooding time and they provided tight characterizations of120

the graphs on which the flooding time is constant [16]. It is worth noting here that Avin et121

al. [7] studied the completely opposite extreme of our edge-centric evolution; namely they122

considered a graph-centric evolution model where a global probability distribution assigns123

specific transition probabilities among different snapshots [7]. Between the two extremes124

of the edge-centric and the graph-centric network evolution models, there exists a whole125

hierarchy of locally interdependent probabilistic patterns, i.e. probability distributions where126

the appearance probability of one edge also depends on the appearance of other edges over127

time; such models remain mostly unexplored.128

In both our memoryless and memory-k variations of stochastic temporal graphs, we study129

two fundamental temporal path (i.e. journey) problems that are defined on two designated130

vertices s and y. Consider a piece of information that is generated at s at time 1, which we131

would like to send to y via an s-y journey. The arrival time of an s-y journey in a realization132

of a stochastic temporal graph is the time the information reaches y using this journey. A133

foremost s-y journey is one with the smallest arrival time. In the first part of the paper we134

investigate the complexity of computing the expected arrival time of a foremost s-y journey.135

Basu et al. [9] and Nain et al. [32] studied a similar problem but their work is restricted to136

the simpler cases where the underlying graph is either a path or a grid.137

In the second part of the paper we investigate the complexity of computing the arrival138

time of a best policy for actually choosing a particular s-y journey in the stochastic temporal139

graph. To illustrate this notion of a best policy, assume that some piece of information140
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is carried by an entity, say Alice. Alice is given as input the parameters of the stochastic141

temporal graph (i.e. the probabilistic rules on the edges) and, at every time step, she knows142

the current snapshot and her current location. Based on this information, Alice has to143

decide at every step for her next action, while her goal is to reach y as quickly as possible on144

expectation, starting at time 1. In a very inspiring paper, Basu et al. [8] consider this problem145

in the special case of the memoryless model where all edges have the same probability of146

appearance at every time, and give a Dijkstra-like polynomial-time algorithm. Special cases147

of the memory-1 model were considered in [11].148

To illustrate the difference between the two problems we study, we make the following149

analogy. In the first problem (Minimum Arrival) we try to transfer information from s150

to y using an unbounded number of messages, i.e. we “flood” the stochastic temporal graph151

with information. Initially the information is stored at s at time 1 and then, at every step,152

every informed vertex informs all its neighbors as soon as the edge between them becomes153

available. In the second problem (Best Policy) we try to transfer a package with a tangible154

good from s to y. Now, at every step we need to decide for the actual route of the package155

through the network: when an edge appears, should we ship the package along it or rather156

wait where we currently are? Best Policy is more relevant to real-life applications than157

Minimum Arrival, where an actual good journey needs to be found in real time.158

Our contribution. In the first part of the paper, in Section 3, we provide our results for159

the problem Minimum Arrival, i.e. for computing the expected arrival time of a foremost160

s-y journey in a stochastic temporal graph. First we prove in Section 3.1 that Minimum161

Arrival is #P-hard even for the memoryless model (and thus also for the memory-k model,162

for every k ≥ 1). The reduction is done from the problem #PP2DNF which counts the163

number of satisfying assignments in a positive partitioned 2-DNF Boolean formula [35].164

Second, we provide in Section 3.2 a non-trivial approximation scheme for Minimum Ar-165

rival, based on dynamic programming, for the memoryless model in the case where the166

underlying graph G is a series-parallel graph with s and y being its terminals. More spe-167

cifically, it turns out that this is a Fully Polynomial-Time Approximation Scheme (FPTAS)168

whenever the probabilities pe are lower bounded by 1
nc for some c ≥ 1. Let X be the ran-169

dom variable that expresses the arrival time of a foremost s-y journey. For every ε ∈ (0, 1],170

our FPTAS gives an algorithm that produces a value µ where E(X) − ε ≤ µ ≤ E(X), and171

runs in polynomial time in both n and 1
ε . Although our main result of Section 3.2 concerns172

series-parallel graphs, we actually present a more general FPTAS approach (see Theorem 11)173

which is of independent interest and could lead to FPTASs also for more general classes of174

underlying graphs G.175

Third, we present in Section 3.3 a Fully Polynomial Randomized Approximation Scheme176

(FPRAS) for Minimum Arrival in the memory-k model, for every k ≥ 0, under the177

assumption that every edge appearance probability is lower bounded by 1
nc for some c ≥ 1.178

Let X be the random variable that expresses the arrival time of a foremost s-y journey. For179

every ε ∈ (0, 1), our FPRAS gives a randomized algorithm that produces an estimate X̃180

where (1 − ε)E(X) ≤ X̃ ≤ (1 + ε)E(X) with probability tending to 1 as n → ∞, and runs181

in polynomial time in both n and 1
ε .182

In the second part of the paper, in Section 4, we provide our results for the problem183

Best Policy, i.e. for computing the expected arrival time of a best policy for choosing a184

particular s-y journey. Initially we provide in Section 4.1 a dynamic programming algorithm185

for the memoryless model which runs in O(n2) time and space. In wide contrast, we prove186

in Section 4.2 that Best Policy becomes #P-hard for the memory-k model, where k ≥187

3, again by providing a reduction from the problem #PP2DNF. Finally, we provide in188
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Section 4.3 a formulation of Best Policy in the memory-k model using the general Markov189

Decision Process (MDP) framework which allows us to devise in Section 4 an exact doubly190

exponential-time algorithm with running time O(2(kmn+n logn)·2km). Due to lack of space,191

many proofs have been omitted; the full proofs of this paper can be found in our technical192

report [2].193

2 Preliminaries194

In this paper we consider temporal graphs (see Definition 1) in which the underlying (static)195

graph G = (V,E) has n vertices and m edges . A subgraph H = (V,EH) of G, denoted196

by H ⊆ G, is a graph where EH ⊆ E. For every vertex u ∈ V , the neighborhood ΓG(u)197

of u in G is the set of adjacent vertices of u in G. The closed neighborhood ΓG[u] also198

contains vertex u itself, i.e. ΓG[u] = ΓG(u) ∪ {u}. For simplicity of notation we denote199

[n] = {1, 2, . . . , n} for every n ∈ N. Furthermore, sometimes we refer to the discrete time200

steps t = 1, 2, . . . as days. Throughout the paper we consider stochastic temporal graphs201

that exhibit an edge-centric evolution, i.e. every edge e of G is assigned one probability202

distribution for its appearance over time, independently of all other edges. We investigate203

the case where there is a “memory effect” that governs the probability of appearance of every204

edge over time. We distinguish now the cases where the the memory is zero or non-zero.205

Memoryless (or memory-0) model. Every edge e ∈ E evolves stochastically and independ-206

ently of other edges as follows: at every time step t ∈ N, e appears in Gt with probabil-207

ity pe and is absent with probability 1 − pe, independently of any other time step. The208

numbers {pe : e ∈ E} are given parameters of the model. We denote this (memoryless)209

stochastic temporal graph by G(0) = (G, {pe : e ∈ E}) or simply G(0) = (G, {pe}).210

Memory-k model. This model of temporal graphs exhibits stochastic time-dependency211

of the edges: we assume an initial (arbitrary) sequence of k snapshots,212

G−k+1, . . . , G−1, G0 ⊆ G. At every time step t ≥ 1, every edge e appears independ-213

ently of all other edges with probability that depends only on (the edge and) the history214

of appearance of e in the k previous snapshots. At every time step t, this history is a215

k-bit binary vector, where a 0-entry (resp. 1-entry) on the i-th position denotes absence216

(resp. appearance) of e in Et−k+i−1, for i = 1, . . . , k. Therefore the snapshot Gt is the217

graph that appears at time t ≥ 1 as the result of the following experiment: given the218

history H
(k)
e of the appearance of edge e ∈ E in the last k snapshots, e belongs to Et219

independently with probability pe(H(k)
e ). We denote the memory-k stochastic temporal220

graph by G(k).221

In the particular case where k = 1, the memory-1 stochastic temporal graph G(1) is222

the sequence {Gt = (V,Et) : t ∈ N} of snapshots such that Et = {e ∈ E : Xe
t = 1},223

where {Xe
t }t∈N is a Markov chain for the edge e ∈ E with states {0, 1} (corresponding224

to non-appearance and appearance of e, respectively) and probability transition matrix:225

Me =

 0 1
0 1 − pe pe
1 qe 1 − qe

 , where 0 ≤ pe, qe ≤ 1.226

Using this formalism, pe (resp. qe) is the probability that the edge e changes its current227

state from absence to appearance (resp. from appearance to absence) in the next snapshot.228

Note here that, setting pe = p and qe = q for every edge e, we obtain exactly the well-229

established edge-Markovian evolving graph model introduced by Clementi et al. [16].230
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2.1 The problems231

This work studies two main problems, each under the models of stochastic temporal graphs232

defined above. To describe both of these problems, let us first recall that information in233

temporal graphs flows via journeys, i.e. temporal paths.234

I Definition 3 (Time-edge). A time-edge in a temporal graph G = {Gt : t ∈ N} is a pair235

(e, t) such that e ∈ Et.236

I Definition 4 (Journey / temporal path). Let G = {Gt : t ∈ N} be a temporal graph and237

s, y be two vertices of G. An s-y journey (or an s-y temporal path) in G is a sequence238 (
(e1, t1), . . . , (ex, tx)

)
of time-edges over a path (e1, . . . , ex) from s to y in G, where t1 <239

t2 < . . . < tx. The arrival time of the journey is the time tx of appearance of its last edge.240

I Definition 5 (Foremost Journey). A foremost s-y journey in a temporal graph G is an s-y241

journey with the minimum arrival time amongst all s-y journeys in G.242

Notice that the arrival time of a foremost s-y journey in a stochastic temporal graph is243

a random variable, which we henceforth denote by X(s, y). The first problem that we study244

here is how to compute the expected value of the latter, namely E[X(s, y)].245

◃ Problem 1 (Minimum Arrival). Given a stochastic temporal graph on an underlying246

graph G = (V,E) and two distinct vertices s, y ∈ V , compute the expected value of the247

arrival time of a foremost s-y journey, i.e. E[X(s, y)].248

Now suppose that an individual (say Alice) is at day 0 at vertex s and would like to arrive249

at vertex y through a temporal path as quickly as possible. Denote by st the vertex where250

she is located at time t; then s0 = s. Every day t Alice “wakes up” in the morning and looks251

at which edges are available in today’s snapshot; by only knowing her current position, the252

history of the last k snapshots, and the input parameters of the stochastic temporal graph253

(i.e. the probabilistic rules of edge appearance), Alice needs to decide whether:254

(a) to stay at the vertex st she currently is, or255

(b) to use an edge of Gt to move to a neighboring vertex.256

That is, st+1 is either equal to st or equal to some vertex of ΓGt
(st).257

A natural problem we can study here is to compute the expected arrival time of an s-y258

journey that Alice can follow, using a best policy1 possible, i.e. a policy (sequence of actions)259

that minimizes her expected arrival time at y. Notice that the arrival time of the journey260

suggested to Alice by the best policy is a random variable Y (s, y), whose distribution depends261

on the specific stochastic temporal graph. In particular, in the memoryless model, the262

expectation of Y (s, y) depends only on the edges’ probabilities of appearance. In the memory-263

k model, the expectation of Y (s, y) also depends on the initial snapshots G−k+1, . . . , G−1, G0.264

◃ Problem 2 (Best Policy). Given a stochastic temporal graph G(k) on an underlying265

graph G = (V,E) and two distinct vertices s, y ∈ V , compute EG(k) [Y (s, y)].266

In particular, we will write h(s, y) def= EG(0) [Y (s, y)] and h(s, y,G0) def= EG(1) [Y (s, y)].267

1 We use the term “policy” here (instead of “strategy”) since, as we will see later, this problem can be
formulated using a Markov Decision Process (MDP).
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Difference between the two problems.268

Before we proceed further, we first give an example illustrating that the problems Minimum269

Arrival and Best Policy are different. In fact, the gap between the solution to Minimum270

Arrival and the solution to Best Policy can be arbitrarily large: Consider the graph271

consisting of vertices s and y and n − 2 vertex disjoint paths of length 2 between s and272

y. Assume also that, under the memoryless model, every edge incident to s appears each273

day with probability 1 and every edge incident to y appears each day independently with274

probability n−0.9. Similarly to the above example of the graph with n − 2 vertex disjoint275

paths of length 2, here the expected arrival time of a best policy for Alice is h(s, y) =276

1 + n0.9. On the other hand, the arrival time of the foremost journey from s to y will be277

equal to the first day after day 1 on which some edge incident to y appears. But the time278

needed for the latter to happen follows the geometric distribution with success probability279

1 − (1 − n−0.9)n−2 = 1 − o(1). Therefore, the expected arrival time of the foremost journey280

will be E[X(s, y)] = 2 + o(1), i.e. much smaller than h(s, y) = 1 + n0.9.281

As a final note, the expected arrival time E[X(s, y)] of the foremost s-y journey is always282

upper-bounded by the minimum among the expected values of the arrival times of all s-y283

journeys in the temporal graph. This is actually implied by a more general and well-known284

lemma in Probability Theory (Fatou’s lemma [17, p. 29]) which establishes that the expected285

value of the minimum among n random variables is upper-bounded by the minimum among286

all the variables’ expectations.287

3 Computing the expected minimum arrival time288

3.1 Hardness of exact computation in the memoryless model289

In this section we show that, even in the memoryless model, Minimum Arrival is #P-hard290

in both undirected graphs and directed acyclic graphs (DAGs). In the proof of the following291

theorem, the edges can be treated either as oriented, in which case we obtain the result for292

DAGs, or as non-oriented, in which case we obtain the result for undirected graphs.293

I Theorem 6. Minimum Arrival in the memoryless model is #P-hard.294

I Corollary 7. For every k ≥ 0, Minimum Arrival in the memory-k model is #P-hard.295

3.2 The FPTAS for the memoryless model on series-parallel graphs296

3.2.1 The case of paths297

In this section we will consider a stochastic temporal graph P(0) = (P = (V,E), {pe}) with298

the underlying graph being a path P = (s = v0, v2, . . . , vn = y).299

I Lemma 8. E[XP(0)(s, y)] =
∑
e∈E

1
pe

.300

Let us denote by µ the expectation µ
def= E[XP(0)(s, y)] =

∑
e∈E

1
pe

. Note that301

µ =
∞∑
i=1

Pr[XP(0)(s, y) ≥ i]. (1)302

In the remainder of this section we will show that the first O(µ lnµ) terms of sum (1) already303

give a very good approximation of µ. In our analysis we will use the following bound.304
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I Theorem 9 ([26]). Let X =
∑n
i=1 Xi, where n ≥ 1 and Xi, i = 1, . . . , n, are independent305

geometric random variables with parameters p1, p2, . . . , pn ∈ (0, 1], respectively. Let µ =306

E[X] =
∑n
i=1

1
pi

. Then for any λ ≥ 1, Pr[X ≥ λµ] ≤ e1−λ.307

I Lemma 10. Let ε be a number such that 0 < ε ≤ 1. Then308

µ−
τ∑
i=1

Pr[XP(0)(s, y) ≥ i] =
∞∑

i=τ+1
Pr[XP(0)(s, y) ≥ i] < ε,309

for every τ ≥ µ
(
ln µ

ε + 1
)
, where µ = E[XP(0)(s, y)].310

3.2.2 A general FPTAS approach311

While deriving analytically and computing efficiently the exact solution of Minimum Ar-312

rival in a path is an easy task (cf. Lemma 8), it does not seem to be trivial for a slight313

generalization of paths, called parallel compositions of paths. A parallel composition of paths314

is the graph obtained from a collection of disjoint paths P1, P2, . . . , Pℓ with end vertices si, yi,315

i = 1, . . . , ℓ, respectively, by identifying the vertices s1, s2, . . . , sℓ in a single vertex s, and316

by identifying the vertices y1, y2, . . . , yℓ in a single vertex y.317

It is not clear whether there exists an efficient procedure for computing the expected ar-318

rival time from s to y in a parallel composition of paths, even if the parallel paths are of equal319

length and all the probabilities of edge appearance are the same. In this section we present320

a general approach for developing ε-additive approximation algorithms2 for computing the321

expected arrival time of a foremost journey in special classes of stochastic temporal graphs.322

In Section 3.2.3 we apply this approach to develop an efficient ε-additive approximation323

algorithm for the problem on the class of stochastic temporal graphs with underlying graphs324

being series-parallel graphs, which generalize parallel compositions of paths and graphs in325

which all simple s-y paths are of the same length.326

Throughout the section we denote by G(0) = (G = (V,E), {pe}) a memoryless stochastic327

temporal graph with n vertices and m edges, and by s, y ∈ V two distinct vertices in G.328

Furthermore, we denote by H = (V,E,w) the weighted graph obtained from the underlying329

graph G by assigning to every edge e ∈ E the weight w(e) = 1
pe

.330

I Theorem 11. Let c ∈ N and ε ∈ (0, 1]. Let pe ≥ 1
nc for every e ∈ E and suppose that there331

exists an algorithm A that computes in time O (f(ℓ, n,m)) the probabilities Pr[XG(0)(s, y) ≥332

i], for all i = 1, . . . , ℓ. Then there exists an algorithm B that approximates E[XG(0)(s, y)]333

within the additive factor of ε in time334

O
(
f

(
nc+1 ln n

ε
, n,m

)
+ n lnn+m

)
.335

Consequently, if f(ℓ, n,m) is a polynomial in variables ℓ, n, and m, then B is an FPTAS336

on the instance (G(0), s, y).337

Proof. Let P = (s = v0, v1, . . . , vr = y) be a minimum weight s-y path in H, and let P(0)
338

be the stochastic temporal subgraph of G(0) restricted to the edges of P . For convenience,339

let us denote ei = vi−1vi for every i = 1, . . . , r. Then, by definition and Lemma 8, the340

2 A feasible solution is ε-additive approximate if it is within ε additive factor from the optimal value.
An algorithm is called an ε-additive approximation algorithm if it returns an ε-additive approximate
solution for any instance.
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weight w∗ of P is equal to
∑r
i=1

1
pei

= E[XP(0)(s, y)]. Let τ := w∗
(

ln w∗

ϵ + 1
)

. Then, by341

Lemma 10, we have that342

∞∑
i=τ+1

Pr[XG(0)(s, y) ≥ i] ≤
∞∑

i=τ+1
Pr[XP(0)(s, y) ≥ i] < ε,343

and hence344

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] ≤ E[XG(0)(s, y)] =
∞∑
i=1

Pr[XG(0)(s, y) ≥ i]345

<

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] + ε,346

that is,
∑τ
i=1 Pr[XG(0)(s, y) ≥ i] approximates E[XG(0)(s, y)] within the additive factor of ε.347

Now we define the desired algorithm B as follows:348

1. Construct the graph H and compute the minimum weight w∗ of an s-y path in H using349

Dijkstra’s algorithm.350

2. Using algorithm A, compute the probabilities Pr[XG(0)(s, y) ≥ i], i = 1, . . . , τ , where351

τ = w∗
(

ln w∗

ϵ + 1
)

.352

3. Output
∑τ
i=1 Pr[XG(0)(s, y) ≥ i].353

The above discussion implies that algorithm B correctly computes the declared approx-354

imation of E[XG(0)(s, y)]. It remains to justify the time complexity. First, Dijkstra’s al-355

gorithm can be implemented to work in time O(n lnn + m) [22]. Second, the assumption356

on pe’s implies that w∗ = O(nc+1), and hence τ = w∗
(

ln w∗

ϵ + 1
)

= O
(
nc+1 ln n

ϵ

)
. There-357

fore the assumption of the theorem implies that the last two steps of the algorithm run in358

time O
(
f

(
nc+1 ln n

ε , n,m
))

, which in turn implies the complexity bound and completes the359

proof. J360

3.2.3 The FPTAS for stochastic temporal series-parallel graphs361

In the present section we use the approach from Section 3.2.2 to derive a polynomial-time362

approximation scheme for stochastic temporal series-parallel graphs.363

I Theorem 12. Let ε ∈ (0, 1] and let G(0) = {G = (V,E), {pe}} be a stochastic temporal364

series-parallel graph, where s and y are the terminals of G and pe ≥ 1
nc for every e ∈ E.365

Then Minimum Arrival on G(0) admits an FPTAS with running time O
(
m ·n2c+2 ln2 n

ε

)
,366

where |V | = n and |E| = m.367

3.3 The FPRAS for general graphs in the memory-k model, k ≥ 0368

In this section, we present our FPRAS for Minimum Arrival in the memory-k model, for369

every k ≥ 0, under the assumption that the appearance probability of every edge e is lower370

bounded by 1
nc for some c ≥ 1 regardless of the history H

(k)
e , i.e. pe(x) ≥ 1

nc holds for all371

x ∈ {0, 1}k.372

I Theorem 13. Let ε ∈ (0, 1) and let G(k) be a memory-k stochastic temporal graph with373

two designated vertices s, y. Furthermore let every edge appearance probability be at least 1
nc374

for some c ≥ 1, regardless of the history H
(k)
e of e. Then Minimum Arrival admits an375

FPRAS which runs in O
(
mn5c+8

ε4 · log(nε )
)

time with probability of success at least 1 − 2
n .376
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4 Computing the expected arrival time of a best policy377

In this section we investigate the computational complexity of our second problem, namely378

Best Policy.379

4.1 A polynomial-time algorithm for the memoryless model380

In this section we focus on the memoryless model and we derive a polynomial-time dynamic-381

programming algorithm for Best Policy. We define for every vertex v the expected arrival382

time h(v, y) def= EG(0) [Y (v, y)] of the v-y journey suggested to Alice by a best policy (i.e. when383

Alice starts her journey at vertex v). For simplicity of presentation, throughout Section 4.1384

we write h(v) def= h(v, y).385

Assume for now that for all v ∈ V , the value h(v) is given; let v1 = y, v2, . . . , vn be386

an ordering of vertices of V in non-decreasing values of h (ties broken arbitrarily), namely387

h(v1) ≤ h(v2) ≤ · · · ≤ h(vn). Clearly, v1 = y and h(v1) = h(y) = 0.388

Let st be the vertex that Alice occupied at time t and recall that ΓGt
(v) is the neigh-389

borhood of vertex v in the snapshot Gt, for all v ∈ V and all t ∈ N. Notice that, the best390

strategy of Alice at time t+1 is to look at all neighboring vertices of st in Gt+1 and find one391

with minimum h-value, namely a vertex u ∈ arg min{h(v) : v ∈ ΓGt+1(st)}. If h(u) ≥ h(st),392

then Alice has no incentive to change vertex and thus st+1 = st. Otherwise, if h(u) < h(st),393

then st+1 = u.394

Therefore, to find the best choice for Alice, it suffices to find the values h(v), v ∈ V .395

In view of the above, if Alice is on vertex vi at time 0 (i.e. she is on the i-th best vertex396

in terms of closeness to y), she will move to the j-th best (with j < i) only if an edge397

appears between vi and vj in the next step, and no edge to a vertex better than vj appears398

(i.e. no edge between vi and vℓ, 1 ≤ ℓ ≤ j − 1). This happens with probability Qi,j =399

p{vi,vj}
∏j−1
ℓ=1(1 − p{vi,vℓ}), where {vi, vℓ} denotes the (undirected) edge between vi and vℓ.400

Additionally, with probability Qi =
∏i−1
ℓ=1(1 − p{vi,vℓ}) no edge to a vertex better than vi401

will appear, in which case Alice will stay on vi. Therefore h(vi) can be recursively computed402

by h(vi) =
∑i−1
j=1 Qi,jh(vj) + Qih(vi) + 1, or equivalently h(vi) =

∑i−1
j=1 Qi,jh(vj) + 1

1 −Qi
,403

with initial condition h(v1) = 0. Indeed, the above equation follows by observing that404

the expected length of the foremost journey to y when Alice is on vi is equal to 1 + h(v1)405

with probability Qi,1 (which is the probability that an edge between vi and v1 = y exists),406

plus 1 + h(v2) with probability Qi,2 (which is the probability that an edge between vi and407

the second best vertex v2 exists, but there is no edge between vi and v1), and so on. In408

general, the above recurrence states that there is no incentive to visit vertices with larger409

index and also Alice will visit the smallest index vertex vj for which the edge {vi, vj} is410

present (otherwise, if no such edge exists, she will stay on vi). Using the above recurrence,411

we can compute all values of h(vi) by a bottom-up dynamic programming algorithm.412

I Theorem 14. Best Policy can be optimally computed in the memoryless model in O(n2)413

time and space.414

4.2 Hardness of computation for the memory-k model, k ≥ 3415

We now show that Best Policy is #P-hard for memory-3 stochastic temporal graphs on416

directed acyclic graphs, and consequently also for memory k ≥ 3.417
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I Theorem 15. When the underlying graph is a Directed Acyclic Graph (DAG), it is #P-418

hard to compute the expected arrival time of the best policy journey in the memory-3 model.419

Proof. We will provide a reduction from the counting problem #PP2DNF which is known420

to be #P-hard [35]. This problem takes as input a DNF formula Φ =
∨

(i,j)∈E xiyj on the421

sets of variables X = {x1, . . . , xn} and Y = {y1, . . . , ym}, for some E ⊆ [n] × [m], and the422

task is to compute the number ψ of truth assignments that satisfy Φ. We create a directed423

acyclic graph (DAG) H as follows. First, H has one vertex for each of the variables in X∪Y ;424

then we add two distinct vertices s, y and one other vertex v. For every vertex xi ∈ X and425

every vertex yi ∈ Y we add the directed edges (s, xi) and (yj , y). Furthermore we add the426

edge (xi, yj) whenever xiyj is a clause in Φ. Finally we add the edges (s, v) and (v, y). The427

construction of H is illustrated in Figure 1.428

. . . . . .

X Y

s

v

y

Figure 1 The construction of the DAG H.

Denote by M = 5 · 2n+m, and assume that 2n+m ≥ 3 in order to avoid trivialities.429

All edges (xi, yj) appear constantly in H, i.e. they appear at every time step i ≥ 1 in430

a memoryless fashion with probability 1. Both edges (s, v) and (v, y) also appear in a431

memoryless fashion, each of them with probability 2
M at every step i ≥ 1. Moreover, each432

of the edges (s, xi) and (yj , y) appears at each step i ≥ 1 according to the following table433

of memory 3. This table has four columns and eight rows. Each column is labeled with434

the sequence of consecutive time steps i − 3, i − 2, i − 1, and i. Each row corresponds to a435

different triple of appearances of each of the edges in {(s, xi), (yj , y) : x ∈ X, y ∈ Y } at the436

time steps i− 3, i− 2, i− 1 (here 1 means “edge exists” and 0 means “edge does not exist”).437

At the end of each row there is a pair of numbers (p, 1 − p) which denotes that, with the438

particular history of memory 3, at time step i the edge appears with probability p and it439

does not appear with probability 1 − p. For simplicity of notation, in the column of time440

step i, we write “0” and “1” to denote the entries (0, 1) and (1, 0), respectively.441

i − 3 i − 2 i − 1 i

0 0 1 0
0 1 0 ( 1

2 , 1
2 )

1 0 0 0
0 0 0 0
1 0 1 1
0 1 1 1
1 1 1 1
1 1 0 1

442

To complete the description of our memory-3 instance, we specify that, in the fictitious443

initialization snapshots G−2, G−1, G0, each of the edges (s, xi) and (yj , y) appears with444

probability 0, 0, and 1, respectively, i.e. according to the first row of the above table.445
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The intuition of this table for the edges (s, xi) and (yj , y) is as follows. In the snapshot446

G1, none of these edges appears (see the first line of the table). Then, to determine whether447

each of these edges appears at time step 2 (see the second row of the table), we need to toss448

an unbiased coin which with probability 1
2 outputs “appear” and with probability 1

2 outputs449

“does not appear”. Once this coin has been tossed at time step 2, the status of the edge450

does not change any more in any subsequent time step i ≥ 3. That is, if one of the edges451

(s, xi) and (yj , y) appears (resp. does not appear) at time 2, then it appears (resp. does not452

appear) at all times i ≥ 3 too. This is easy to be verified by observing the rows 3-7 of the453

table. Note that the last row of the table is included only for the sake of completeness, as454

it does not affect the appearance of any edge of H at any time step i.455

Let ℓ be the expected s-y arrival time of the best policy in the memory-3 model. Note456

that, from the above construction of the temporal graph instance, each of the edges (s, xi)457

and (yj , y) appears with probability 1
2 at all steps i ≥ 2, while it does not appear at any step458

i ≥ 2 with probability 1
2 . Therefore, the probability that there exists a directed temporal459

path (s, xi, yj , y) is equal to g = ψ
2n+m , where ψ is the number of satisfying truth assignments460

of the DNF formula Φ. That is, with probability 1 − g, there exists no such temporal path461

from s to y with 3 edges through some vertices xi and yj . Furthermore, the expected s-y462

arrival time through the edges (s, v) and (v, y) is equal to M
2 + M

2 = M . Therefore, since463

with probability 1 − g any policy (also the best one) needs to travel from s to y through464

vertex v, it follows that ℓ ≥ M(1 − g).465

We now define the following policy: at time step 1 do nothing and just wait for the466

outcome of the random coin tosses which occur at time step 2. Subsequently, at time step 2467

do the following: if there exists a directed temporal path (s, xi, yj , y) then follow it, starting468

at time step 2; otherwise follow the temporal path (s, v, y) which has an expected travel time469

M
2 +M

2 = M . The expected arrival time of this particular policy is equal to 1+3g+M(1−g),470

and thus it follows that ℓ ≤ 1 + 3g +M(1 − g). Summarizing, we have:471

M(1 − g) ≤ ℓ ≤ 1 + 3g +M(1 − g) ⇔472

5 · 2n+m − 5ψ ≤ ℓ ≤ 5 · 2n+m − 5ψ + 3 ψ

2n+m + 1.473

The first inequality can be written as 2n+m − ℓ
5 ≤ ψ, while the second one can be written474

as
(
1 − 3

5·2n+m

)
ψ ≤ 2n+m − ℓ

5 + 1
5 . Therefore:475

2n+m − ℓ

5
≤ ψ ≤

(
1 + 3

5 · 2n+m − 3

) (
2n+m − ℓ

5
+ 1

5

)
≤ 2n+m − ℓ

5
+ 1

5
+ 3

4
,476

and thus 2n+m − ℓ
5 ≤ ψ ≤ 0.95 + 2n+m − ℓ

5 . Therefore, knowing the expected value ℓ for the477

best policy we can derive the exact integer value for ψ in the counting problem #PP2DNF.478

This completes the #P-hardness reduction. J479

4.3 An exact algorithm for the memory-k model, k ≥ 1480

In this section we present a doubly exponential-time exact algorithm for computing the best481

policy for Alice in the memory-k model, where k ≥ 1. Our results in this section are derived482

using a Markov Decision Process (MDP) formulation of our problem under the memory-k483

model.484

I Theorem 16. Let k ≥ 1 and G(k) be a stochastic temporal graph, where the underly-485

ing graph G has n vertices and m edges. Then Best Policy can be solved on G(k) in486

O(2(kmn+n logn)·2km) time.487
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