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Abstract

Graph coloring is one of the most famous computational
problems with applications in a wide range of areas such
as planning and scheduling, resource allocation, and pattern
matching. So far coloring problems are mostly studied on
static graphs, which often stand in stark contrast to prac-
tice where data is inherently dynamic and subject to discrete
changes over time. A temporal graph is a graph whose edges
are assigned a set of integer time labels, indicating at which
discrete time steps the edge is active. In this paper we present
a natural temporal extension of the classical graph coloring
problem. Given a temporal graph and a natural number ∆,
we ask for a coloring sequence for each vertex such that (i) in
every sliding time window of ∆ consecutive time steps, in
which an edge is active, this edge is properly colored (i.e. its
endpoints are assigned two different colors) at least once dur-
ing that time window, and (ii) the total number of different
colors is minimized. This sliding window temporal color-
ing problem abstractly captures many realistic graph color-
ing scenarios in which the underlying network changes over
time, such as dynamically assigning communication chan-
nels to moving agents. We present a thorough investigation of
the computational complexity of this temporal coloring prob-
lem. More specifically, we prove strong computational hard-
ness results, complemented by efficient exact and approxi-
mation algorithms. Some of our algorithms are linear-time
fixed-parameter tractable with respect to appropriate parame-
ters, while others are asymptotically almost optimal under the
Exponential Time Hypothesis (ETH).

1 Introduction
A great variety of modern, as well as of traditional networks
are dynamic in nature as their link availability changes over
time. Just a few indicative examples of such inherently dy-
namic networks are information and communication net-
works, social networks, transportation networks, and several
physical systems (Holme and Saramäki 2013; Michail and
Spirakis 2018). All these application areas share the com-
mon characteristic that the network structure, i.e. the un-
derlying graph topology, is subject to discrete changes over
time. In this paper, embarking from the foundational work

∗GM and VZ are supported by the EPSRC grant EP/P020372/1.
HM is supported by the DFG project MATE (NI 369/17).
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of Kempe, Kleinberg, and Kumar (2002), we adopt a sim-
ple and natural model for time-varying networks, given by
a graph with time-labels on its edges, while the vertex set is
fixed.
Definition 1.1 (Temporal Graph). A temporal graph is a pair
(G,λ), where G = (V,E) is an underlying (static) graph
and λ : E → 2N is a time-labeling function which assigns
to every edge of G a set of discrete-time labels.

For every edge e ∈ E in the underlying graph G of a
temporal graph (G,λ), λ(e) denotes the set of time slots
at which e is active. Due to their relevance and appli-
cability in many areas, temporal graphs have been stud-
ied from various perspectives and under different names
such as time-varying (Flocchini, Mans, and Santoro 2009;
Tang et al. 2010; Aaron, Krizanc, and Meyerson 2014),
dynamic (Casteigts et al. 2012; Giakkoupis, Sauerwald,
and Stauffer 2014), evolving (Bui-Xuan, Ferreira, and Jarry
2003; Ferreira 2004; Clementi et al. 2010), and graphs over
time (Leskovec, Kleinberg, and Faloutsos 2007). For a com-
prehensive overview on the existing models and results on
temporal graphs from a (distributed) computing perspective
see the surveys (Michail 2016; Latapy, Viard, and Magnien
2018; Casteigts et al. 2012; Casteigts and Flocchini 2013a;
2013b).

The conceptual shift from static to temporal graphs im-
poses new challenges in algorithmic computation and com-
plexity. Now the classical computational problems have to
be appropriately redefined in the temporal setting in order
to properly capture the notion of time. Motivated by the
fact that, due to causality, information in temporal graphs
can “flow” only along sequences of edges whose time-
labels are increasing, most temporal graph parameters and
optimization problems that have been studied so far are
based on the notion of temporal paths and other “path-
related” notions, such as temporal analogues of distance,
reachability, separators, diameter, exploration, and central-
ity (Akrida et al. 2016; Erlebach, Hoffmann, and Kam-
mer 2015; Mertzios et al. 2013; Michail and Spirakis 2016;
Akrida et al. 2017; Enright et al. 2018; Zschoche et al. 2018;
Fluschnik et al. 2018).

Recently only few attempts have been made to define
and study “non-path” temporal graph problems. Motivated
by the contact patterns among high-school students, Viard,
Latapy, and Magnien (2016), introduced ∆-cliques, an ex-



tension of the concept of cliques to temporal graphs (see
also (Himmel et al. 2017; Bentert et al. 2018)). Chen et
al. (2018) presented an extension of the cluster editing prob-
lem to temporal graphs. Furthermore, Akrida et al. (2018)
introduced the notion of temporal vertex cover, motivated
by applications of covering problems in transportation and
sensor networks. Temporal extensions of the classical graph
coloring problem have also been previously studied by Yu
et al. (2013) (see also (Ghosal and Ghosh 2015)) in the con-
text of channel assignment in mobile wireless networks. In
this problem, every edge has to be properly colored in every
snapshot of the input temporal graph (G,λ), while the goal
is to minimize some linear combination of the total number
of colors used and the number of color re-assignments on
the vertices (Yu et al. 2013). In this temporal coloring ap-
proach, the notion of time is only captured by the fact that
the number of re-assignments affects the value of the target
objective function, while the fundamental solution concept
remains the same as in static graph coloring; that is, every
individual (static) snapshot has to be properly colored. Us-
ing this, Yu et al. (2013) presented generic methods to adapt
known algorithms and heuristics from static graph coloring
to deal with their new objective function.

In this paper we introduce and rigorously study a differ-
ent, yet natural temporal extension of the classical graph
coloring problem, called SLIDING WINDOW TEMPORAL
COLORING (for short, SW-TEMP. COLORING). In SW-
TEMP. COLORING the input is a temporal graph (G,λ) and
two natural numbers ∆ and k. At every time step t, every
vertex has to be assigned one color, under the following con-
straint: Every edge e has to be properly colored at least once
during every time window of ∆ consecutive time steps, and
this must happen at a time step t in this window when e is
active. Now the question is whether there exists such a tem-
poral coloring over the whole lifetime of the input temporal
graph that uses at most k colors. In contrast to the model of
Yu et al. (2013), the solution concept in SW-TEMP. COL-
ORING is fundamentally different to that of static graph col-
oring as it takes into account the inherent dynamic nature of
the network. Indeed, even to verify whether a given solution
is feasible, it is not sufficient to just consider every snapshot
independently.

Our temporal extension of the static graph coloring prob-
lem is motivated by applications in mobile sensor networks
and in planning. Consider the following scenario: every mo-
bile agent broadcasts information over a specific communi-
cation channel while it listens on all other channels. Thus,
whenever two mobile agents are sufficiently close, they can
exchange information only if they broadcast on different
channels. We assume that agents can switch channels at any
time. To ensure a high degree of information exchange, it
makes sense to find a schedule of assigning broadcasting
channels to the agents over time which minimizes the num-
ber of necessary channels, while allowing each pair of agents
to communicate at least once within every small time win-
dow in which they are close to each other.

To further motivate the questions raised in this work,
imagine an organization which, in order to ensure compli-
ance with the national laws and the institutional policies, re-

quires its employees to regularly undertake special training
that is relevant to their role within the organization. Such
training requirements can be naturally grouped within train-
ing “themes”, concerning –for example– the General Data
Protection Regulation (GDPR) of the EU for staff dealing
with personal data or equality and diversity issues when hir-
ing new employees for Human Resources staff, etc).

One reasonable organizational requirement for such a reg-
ular staff training is that every employee has to undertake all
needed pieces of training at least once within every time-
window of a specific length ∆ (e.g. ∆ = 12 months). All
training sessions are offered by experts in predefined “train-
ing periods” (e.g. annually every January, May, and Septem-
ber), while each session takes a fixed amount of time to run
(e.g. a full day during the corresponding training period).
This situation can be naturally modeled as a temporal graph
problem: (i) each time slot t represents a predefined “train-
ing period”; (ii) each vertex v denotes one of the themes that
are offered for training by the organization; (iii) the differ-
ent colors that a vertex v can take at time slot t represent
all different days in which the theme v can be taught during
the training period t; (iv) an edge {u, v} that is active at the
time slot t means that the themes u and v share at least one
participant at the corresponding training period. Note that,
since the training needs of specific staff members change
over time, an edge between two themes u and v may re-
peatedly appear and disappear over time, and thus the above
graph is temporal. If a participant is planned to undertake
training on both themes u, v at the same time slot t, then
these themes have to run at different days of the time slot t,
i.e. u and v have to be assigned different colors at time t.
In such a situation, it is natural for the organization to try to
schedule all training sessions in such a way that the total du-
ration (i.e. number of different colors) of every training pe-
riod t never exceeds k different days, while simultaneously
meeting all regular training requirements.

Our Contribution. In this paper we introduce the prob-
lem SLIDING WINDOW TEMPORAL COLORING (for short,
SW-TEMP. COLORING) and we present a thorough investi-
gation of its computational complexity. All our notation and
the formal definition of the temporal problems that we study
are presented in Section 2. First we investigate in Section 3
an interesting special case of SW-TEMP. COLORING, called
TEMPORAL COLORING, where the length ∆ of the sliding
time window is equal to the whole lifetime T of the input
temporal graph. We start by proving in Theorem 3.1 that
TEMPORAL COLORING is NP-hard even for k = 2, and
even when every time slot consists of one clique and iso-
lated vertices. This is in wide contrast to the static coloring
problem, where it can be decided in linear time whether a
given (static) graph G is 2-colorable, i.e. whether G is bi-
partite. On the positive side, we show in Theorem 3.3 that,
given any input temporal graph (G,λ) for TEMPORAL COL-
ORING with n vertices and lifetime T , we can compute an
equivalent instance (G′, λ′) on the same vertices but with
lifetime T ′ ≤ m, where m is the number of edges in the
underlying graph G. Moreover we show that the new in-
stance can be computed in polynomial time. Formally, The-



orem 3.3 shows that TEMPORAL COLORING admits a poly-
nomial kernel when parameterized by the number n of ver-
tices of the input temporal graph. That is, we can efficiently
preprocess any instance of TEMPORAL COLORING to obtain
an equivalent instance whose size only depends polynomi-
ally on the size of the underlying graph G and not on the
lifetime T of (G,λ).

In Section 4 and in the reminder of the paper we deal with
the general version of SW-TEMP. COLORING, where the
value of ∆ is arbitrary. On the one hand, we show that the
problem is hard even on very restricted special classes of in-
put temporal graphs. On the other hand, assuming the Expo-
nential Time Hypothesis (ETH), we give an asymptotically
optimal exponential-time algorithm for SW-TEMP. COLOR-
ING whenever ∆ is constant. Moreover we show how to ex-
tend it to get an algorithm which runs in linear time if the
number n of vertices is constant. Note here that the size
of the input temporal graph also depends on its lifetime T
whose value can still be arbitrarily large, independently of n.
Furthermore note that this assumption about n being a con-
stant can be also reasonable in practical situations; for exam-
ple, in our motivation above about planning the training of
staff in an organization, the value of n equals the number of
different “training themes” to be run, which can be expected
to be rather small.

Finally we consider in Section 4 an optimization variant
of SW-TEMP. COLORING where the number of colors is to
be minimized. We give an approximation algorithm with an
additive error of 1 which runs in linear time on instances
where the underlying graph G of the input temporal graph
(G,λ) has a constant-size vertex cover. From a classification
standpoint this is also optimal since the problem remains
NP-hard to solve optimally on temporal graphs where the
underlying graph has a constant-size vertex cover.

Due to space constraints, some proofs are deferred to a
full version (Mertzios, Molter, and Zamaraev 2018).

2 Preliminaries and Notation
Given a (static) graph G, we denote by V (G) and E(G)
the sets of its vertices and edges, respectively. An edge be-
tween two vertices u and v of G is denoted by {u, v}, and
in this case u and v are said to be adjacent in G. A com-
plete graph (or a clique) is a graph where every pair of
vertices is adjacent. The complete graph on n vertices is
denoted by Kn. For every i, j ∈ N, where i ≤ j, we
let [i, j] = {i, i + 1, . . . , j} and [j] = [1, j]. Throughout
the paper we consider temporal graphs with finite lifetime
T , that is, there is an maximum label assigned by λ to an
edge of G, called the lifetime of (G,λ); it is denoted by
T (G,λ), or simply by T when no confusion arises. For-
mally, T (G,λ) = max{t ∈ λ(e) : e ∈ E}. We refer
to each integer t ∈ [T ] as a time slot of (G,λ). The in-
stance (or snapshot) of (G,λ) at time t is the static graph
Gt = (V,Et), where Et = {e ∈ E : t ∈ λ(e)}. If Et = ∅,
we call Gt = (V,Et) a trivial snapshot. For every subset
S ⊆ [T ] of time slots, we denote by (G,λ)|S the restric-
tion of (G,λ) to the time slots in the set S. In particular,
for the case where S = [i, j] for some i, j ∈ [T ], where

i ≤ j, we have that (G,λ)|[i,j] is the sequence of the in-
stances Gi, Gi+1, . . . , Gj . We assume in the remainder of
the paper that every edge of G appears in at least one time
slot until T , namely

⋃T
t=1Et = E.

In the remainder of the paper we denote by n = |V | and
m = |E| the number of vertices and edges of the underly-
ing graph G, respectively, unless otherwise stated. Further-
more, unless otherwise stated, we assume that the labeling
λ is arbitrary, i.e. (G,λ) is given with an explicit list of la-
bels for every edge. That is, the size of the input temporal
graph (G,λ) is O

(
|V |+

∑T
t=1 |Et|

)
= O(n + mT ). In

other cases, where λ is more restricted, e.g. if λ is periodic
or follows another specific temporal pattern, there may exist
more succinct representations of the input temporal graph.

For every v ∈ V and every time slot t, we denote the ap-
pearance of vertex v at time t by the pair (v, t). That is, every
vertex v has T different appearances (one for each time slot)
during the lifetime of (G,λ). For every time slot t ∈ [T ] we
denote by Vt = {(v, t) : v ∈ V } the set of all vertex ap-
pearances of (G,λ) at the time slot t. Note that the set of all
vertex appearances in (G,λ) is the set V ×[T ] = ∪1≤t≤TVt.

TEMPORAL COLORING. A temporal coloring of a tem-
poral graph (G,λ) is a function φ : V × [T ] → N, which
assigns to every vertex appearance (v, t) in (G,λ) one color
φ(v, t) ∈ N. For every time slot t ∈ [T ] we denote by φt the
restriction of φ to the vertex appearances at time slot t; then
φt is referred to as the time slot coloring for the time slot t.
That is, φt : V → N, such that φt(v) = φ(v, t), for every
v ∈ V . Furthermore, for simplicity of the presentation, we
will refer to the temporal coloring φ as the ordered sequence
(φ1, φ2, . . . , φT ) of all its time slot colorings. Let e ∈ E
be an edge of the underlying graph G. We say that an edge
e = {u, v} of the underlying graphG is temporally properly
colored at time slot t if (i) φt(u) 6= φt(v), and (ii) t ∈ λ(e),
i.e. the edge e is active in the time slot t. We now introduce
the notion of a proper temporal coloring and the decision
problem TEMPORAL COLORING.

Definition 2.1. Let (G,λ) be a temporal graph with lifetime
T , where G = (V,E). A proper temporal coloring of (G,λ)
is a temporal coloring φ = (φ1, φ2, . . . , φT ) such that every
edge e ∈ E is temporally properly colored in at least one
time slot t ∈ λ(e). The size of φ is the total number |φ| =

|
⋃T

i=1 φi(V )| of colors used by φ.

TEMPORAL COLORING

Input: A temporal graph (G,λ) with lifetime T and an
integer k ∈ N.
Question: Does there exist a proper temporal coloring
φ = (φ1, φ2, . . . , φT ) of (G,λ) using |φ| ≤ k colors?

Note that TEMPORAL COLORING is a natural extension
of the problem COLORING to temporal graphs. In particular,
COLORING is the special case of TEMPORAL COLORING
where the lifetime of the input temporal graph is T = 1, and
therefore TEMPORAL COLORING is clearly NP-complete.



SLIDING-WINDOW TEMPORAL COLORING. In the
definition of a proper temporal coloring given in Defini-
tion 2.1, we require that every edge is properly colored
at least once during the whole lifetime T of the tempo-
ral graph (G,λ). However, in many real-world applications,
where T is expected to be arbitrarily large, we may need to
require that every edge is properly colored more often, and
in particular, at least once during every fixed period ∆ of
time, regardless of how large the lifetime T is.

Before we proceed with the formal definition of this prob-
lem, we first present some needed terminology. For every
time slot t ∈ [1, T − ∆ + 1], the ∆-time window Wt =
[t, t + ∆ − 1] is the sequence of the ∆ consecutive time
slots t, t + 1, . . . , t + ∆ − 1. Furthermore we denote by
E[Wt] =

⋃
i∈Wt

Ei the union of all edges appearing at least
once in the ∆-time window Wt. We are now ready to in-
troduce the notion of a sliding ∆-window temporal coloring
and the decision problem SW-TEMP. COLORING.

Definition 2.2. Let (G,λ) be a temporal graph with lifetime
T , where G = (V,E), and let ∆ ≤ T . A proper sliding ∆-
window temporal coloring of (G,λ) is a temporal coloring
φ = (φ1, φ2, . . . , φT ) such that, for every ∆-time window
Wt and for every edge e ∈ E[Wt], e is temporally properly
colored in at least one time slot t ∈ Wt. The size of φ is the
total number |φ| = |

⋃T
i=1 φi(V )| of colors used by φ.

SLIDING WINDOW TEMPORAL COLORING
(SW-TEMP. COLORING)

Input: A temporal graph (G,λ) with lifetime T , and two
integers k ∈ N and ∆ ≤ T .
Question: Does there exist a proper sliding ∆-window
temporal coloring φ = (φ1, φ2, . . . , φT ) of (G,λ) using
|φ| ≤ k colors?

Whenever the parameter ∆ is a fixed constant, we will
refer to the above problem as the ∆-SW-TEMP. COLOR-
ING (i.e. ∆ is now a part of the problem name). Moreover,
whenever both ∆ and k are fixed constants, we will refer to
the problem as the ∆-SW-TEMP. k-COLORING. Note that
the problem TEMPORAL COLORING defined above in this
section is the special case of SW-TEMP. COLORING where
∆ = T , i.e. where there is only one ∆-window in the whole
temporal graph. Another special case of SW-TEMP. COL-
ORING is the problem 1-SW-TEMP. COLORING, whose so-
lution is obtained by iteratively solving the (static) COLOR-
ING problem on each of the T static instances of (G,λ).
Thus 1-SW-TEMP. COLORING fails to fully capture the time
dimension in temporal graphs; in the remainder of the paper
we will assume that ∆ ≥ 2.

Parameterized complexity. We use standard notation and
terminology from parameterized complexity (Cygan et al.
2015). A parameterized problem is a language L ⊆ Σ∗×N,
where Σ is a finite alphabet. We call the second compo-
nent the parameter of the problem. A parameterized prob-
lem is fixed-parameter tractable (in the complexity class
FPT) if there is an algorithm that solves each instance (I, r)
in f(r) · |I|O(1) time, for some computable function f . A pa-

rameterized problemL admits a polynomial kernel if there is
a polynomial-time algorithm that transforms each instance
(I, r) into an instance (I ′, r′) such that (I, r) ∈ L if and
only if (I ′, r′) ∈ L and |(I ′, r′)| ≤ rO(1).

3 TEMPORAL COLORING
In this section we investigate the complexity of TEMPORAL
COLORING. We start with our first hardness result.
Theorem 3.1. TEMPORAL COLORING is NP-hard even if
k = 2 and each snapshot has a clique and isolated vertices.

One can also show that TEMPORAL COLORING remains
hard even if each snapshot has very few edges.
Theorem 3.2. TEMPORAL COLORING is NP-hard for all
k ≥ 2 even if each snapshot has O(k2) edges.

Polynomial Kernel for TEMPORAL COLORING. We
prove that, given a temporal graph (G,λ) for TEMPORAL
COLORING with n vertices and T time slots, we can effi-
ciently compute an equivalent instance (G′, λ′) with T ′ ≤
m time slots, where m is the number of edges in G. The
main idea is that if we have sufficiently many time slots,
every edge can be colored in its own time slot and any ex-
cess time slots can be removed (as they could be colored
arbitrarily). Formally, Theorem 3.3 shows that TEMPORAL
COLORING admits a polynomial kernel when parameterized
by the number n of vertices.
Theorem 3.3. Let (G,λ) be a temporal graph of lifetime T .
Then there exists a temporal graph (G′, λ′) = (G,λ)|S
for some S ⊆ [T ], |S| ≤ m = |E(G)| such that for
any k ≥ 2 we have that (G,λ) admits a proper temporal
k-coloring if and only if (G′, λ′) admits a proper tempo-
ral k-coloring. Furthermore, (G′, λ′) can be constructed in
O(mT

√
m+ T ) time.

4 SW-TEMP. COLORING
In this section we thoroughly investigate the computational
complexity of SW-TEMP. COLORING.

NP-Hardness. Before we present our main hardness re-
sult for SW-TEMP. COLORING, we start with the following
intuitive observation.
Lemma 4.1. For every fixed ∆, the problem (∆ + 1)-SW-
TEMP. k-COLORING is computationally at least as hard as
the problem ∆-SW-TEMP. k-COLORING.

The main idea is the following: given an algorithm A for
(∆ + 1)-SW-TEMP. k-COLORING, we can use A to also
solve ∆-SW-TEMP. k-COLORING: we modify the instance
of ∆-SW-TEMP. k-COLORING by inserting a trivial snap-
shot after every ∆ consecutive snapshots, thus obtaining an
equivalent instance of (∆ + 1)-SW-TEMP. k-COLORING.

Since 1-SW-TEMP. k-COLORING is equivalent to solving
T independent instances of static k-COLORING, Lemma 4.1
demonstrates that for any natural ∆, ∆-SW-TEMP. k-
COLORING is at least as hard as k-COLORING. Thus, if k-
COLORING is hard on some class X of static graphs, then
∆-SW-TEMP. k-COLORING is also hard for the class of al-
ways X temporal graphs.



Theorems 4.2 and 4.8 below imply that the converse is not
true. In fact, there exist specific classes X of static graphs
(graphs whose connected components have size O(k) and
graphs whose vertex cover has size O(k), respectively) for
which k-COLORING can be solved in linear time (for every
fixed k ≥ 2), although 2-SW-TEMP. k-COLORING is NP-
hard on always X temporal graphs.
Theorem 4.2. Let k ≥ 2. Then 2-SW-TEMP. k-COLORING
is NP-hard, even if T = 3 and:
• the underlying graph is (k + 1)-colorable,
• the underlying graph has a maximum degree inO(k), and
• every snapshot has connected components with sizeO(k).

Proof. We present a reduction from EXACT (3,4)-
SAT (Tovey 1984) to 2-SW TEMP. 2-COLORING. The re-
duction can be easily modified to a larger number of colors,
but we omit here the details. Recall that in EXACT (3,4)-
SAT we are asked to decide whether a given Boolean for-
mula φ is satisfiable and φ is in conjunctive normal form
where every clause has exactly three distinct literals and ev-
ery variable appears in exactly four clauses. Given a formula
φ with n variables and m clauses, we construct a temporal
graph (G,λ) consisting of three snaphots, which we will re-
fer to as G1 = (V,E1), G2 = (V,E2), and G3 = (V,E3).
We construct the following variable gadgets and clause gad-
gets. An illustration of the construction is given in Figure 1.

Variable gadget: For each variable xi with 1 ≤ i ≤ n

of φ we create five vertices v(1)
xi , v(2)

xi , v(3)
xi , v(4)

xi , and v(5)
xi .

The vertices v(1)
xi , v(2)

xi , and v
(3)
xi form a (not necessarily

induced) P3 in every snapshot, that is {v(1)
xi , v

(2)
xi } ∈ Et

and {v(2)
xi , v

(3)
xi } ∈ Et for all 1 ≤ t ≤ 3. Further-

more, we connect v(1)
xi and v(3)

xi in the second snapshot, that
is, {v(1)

xi , v
(3)
xi } ∈ E2. Lastly, we create a full C5 in snap-

shot three, that is, {v(3)
xi , v

(4)
xi } ∈ E3, {v(4)

xi , v
(5)
xi } ∈ E3,

and {v(1)
xi , v

(5)
xi } ∈ E3.

Clause gadget: For each clause ci with 1 ≤ i ≤ m of
φ we create a total of 18 vertices. We create vertices v(1)

ci ,
v

(2)
ci , and v(3)

ci and connect them to a triangle in every snap-
shot, that is, {v(1)

ci , v
(2)
ci } ∈ Et, {v(2)

ci , v
(3)
ci } ∈ Et, and

{v(1)
ci , v

(3)
ci } ∈ Et for all 1 ≤ t ≤ 3. In this proof, we refer to

these vertices as the core of the clause gadget of clause ci.
Next, we add six vertices, which we refer to as the extension
of the core of the clause gadget of clause ci. Let these ver-
tices be called v(1,1)

ci , v(1,2)
ci , v(2,1)

ci , v(2,2)
ci , v(3,1)

ci , and v(3,2)
ci .

We connect v(j,1)
ci and v(j,2)

ci for all 1 ≤ j ≤ 3 in every snap-
shot, that is, {v(j,1)

ci , v
(j,2)
ci } ∈ Et for all 1 ≤ j ≤ 3 and

for all 1 ≤ t ≤ 3. In the second snapshot, we connect the
extension and the core in the following way.
• Edge {v(1,1)

ci , v
(1,2)
ci } forms a C4 with edge {v(2)

ci , v
(1)
ci },

that is, {v(2)
ci , v

(1,2)
ci } ∈ E2 and {v(1)

ci , v
(1,1)
ci } ∈ E2.

• Edge {v(2,1)
ci , v

(2,2)
ci } forms a C4 with edge {v(2)

ci , v
(3)
ci },

that is, {v(2)
ci , v

(2,1)
ci } ∈ E2 and {v(3)

ci , v
(2,2)
ci } ∈ E2.

• Edge {v(3,1)
ci , v

(3,2)
ci } forms a C4 with edge {v(1)

ci , v
(3)
ci },

that is, {v(1)
ci , v

(3,2)
ci } ∈ E2 and {v(3)

ci , v
(3,1)
ci } ∈ E2.

Lastly, we introduce nine auxiliary vertices that help to con-
nect clause gadgets and variable gadgets. Let these vertices
be called v

(j,1,1)
ci , v(j,1,2)

ci , and v
(j,2,1)
ci for all 1 ≤ j ≤

3. In the third snapshot, we connect the extension of the
core and these auxiliary vertices in the following way. For
all 1 ≤ j ≤ 3 we have that {v(j,1,1)

ci , v
(j,1,2)
ci } ∈ E3,

{v(j,1,2)
ci , v

(j,1)
ci } ∈ E3, and {v(j,2,1)

ci , v
(j,2)
ci } ∈ E3.

Connection of variable and clause gadgets: The clause
gadgets and variable gadgets are connected in the third snap-
shot. Let clause ci = (`i,1∨`i,2∨`i,3) with 1 ≤ i ≤ m have
literals `i,1, `i,2, and `i,3. Let xi,j with 1 ≤ i ≤ m and
1 ≤ j ≤ 3 be the variable of the jth literal in clause ci. If
`i,j = xi,j , then {v(2)

xi,j , v
(j,1,1)
ci } ∈ E3 and {v(3)

xi,j , v
(j,2,1)
ci } ∈

E3. If `i,j = ¬xi,j , then {v(1)
xi,j , v

(j,1,1)
ci } ∈ E3

and {v(2)
xi,j , v

(j,2,1)
ci } ∈ E3.

This completes the construction. Recall that ∆ = 2 and
k = 2. It is easy to check that the reduction can be computed
in polynomial time. It remains to show that (G,λ) admits a
proper sliding 2-window temporal 2-coloring if and only if
φ is satisfiable.

(⇒): Assume that we are given a satisfying assignment
for φ. Then we construct a proper sliding 2-window tempo-
ral 2-coloring for G as follows. We start coloring the second
snapshot and then show that we can color snapshots one and
three in a way such that the complete coloring is a proper
sliding 2-window temporal 2-coloring. If a variable xi with
1 ≤ i ≤ n is set to true in the satisfying assignment, then
we color the triangle of the corresponding variable gadget
in a way that leaves only edge {v(1)

xi , v
(2)
xi } monochromatic.

To be specific, assume (for the remainder of this paragraph)
we have colors yellow and blue, we color vertices v(1)

xi and
v

(2)
xi in yellow and vertices v(3)

xi , v(4)
xi , and v

(5)
xi in blue. If

variable xi is set to false in the satisfying assignment, then
we color the triangle of the corresponding variable gadget
in a way that leaves edge {v(2)

xi , v
(3)
xi } monochromatic. To

be specific, we color vertices v(2)
xi and v

(3)
xi in yellow and

vertices v(1)
xi , v(4)

xi , and v(5)
xi in blue. For each clause ci with

1 ≤ i ≤ m we choose one of its literals that satisfies the
clause. Let the jth literal with 1 ≤ j ≤ 3 be a satisfying lit-
eral of clause ci for the given assignment. Then we color the
core of the corresponding clause gadget in a way that leaves
edge {v(j)

ci , v
(j mod 3+1)
ci }monochromatic. Note coloring the

core uniquely determines how we have to color the extension
of the core since the connecting edges are only present in the
second snapshot and hence have to be properly colored. The
auxiliary vertices can be colored arbitrarily.

Now we show how to color snapshot one. For each vari-
able xi with 1 ≤ i ≤ n, we color v(2)

xi in yellow and the re-
maining vertices of the corresponding gadget in blue. Note
that this ensures that the edge which remains monochro-
matic in the second snapshot is properly colored in the first
snapshot. For each clause ci with 1 ≤ i ≤ m we color
the core in a way that ensures that the edge which remains
monochromatic in the second snapshot is properly colored
in the first snapshot. We properly color all edges of the ex-
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(a) Snapshot one. (b) Snapshot two. (c) Snapshot three.

Figure 1: Illustration of the reduction from EXACT (3,4)-SAT to 2-SW TEMP. 2-COLORING of the proof of Theorem 4.2.
Vertices and edges in the yellow shaded areas (right) correspond to a clause gadget for clause (x1∨x2∨x3). Vertices and edges
in the blue shaded areas (left) correspond to the variable gadgets for x1, x2, and x3. Thick edges appear in every snapshot while
thin edges only appear in one snapshot. In the first snapshot (a), the superscripts of the vertices used in the proof of Theorem 4.2
are shown. To keep the figure clean, those are omitted in the illustrations for snapshots two (b) and three (c).

tension and the auxiliary vertices arbitrarily. It is not hard to
see that now the first ∆-window is properly colored.

Lastly, we show how to color the third snapshot. Note that
for the variable gadgets, the coloring in snapshot two deter-
mines (up to switching the colors) how to color the variable
gadgets in the third snapshot. This also determines how to
color the auxiliary vertices and the extension of the core in
the third snapshot. This potentially leaves edges of the ex-
tension monochromatic. Note that in the second snapshot, all
extension edges are properly colored except the one which,
in the third snapshot, is connected to a variable that, in the
given assignment, satisfies the clause. It is straightforward to
check that in this case, this particular extension edge is prop-
erly colored in the third snapshot. Lastly, the core is colored
in a way that ensures that the edge that is colored monochro-
matic in the second snapshot is colored properly in the third
snapshot. It is easy to check that now the second ∆-window
is also properly colored.

(⇐): Assume we are given a proper sliding 2-window
temporal 2-coloring for (G,λ). Then we construct a sat-
isfying assignment for φ in the following way: Note that
in the second snapshot each variable gadget contains a
triangle with exactly one monochromatic edge. The edge
{v(1)

xi , v
(3)
xi } only exists in the second snapshot and hence

is colored properly by any proper sliding 2-window tempo-
ral 2-coloring. This means that either edge {v(1)

xi , v
(2)
xi } or

edge {v(2)
xi , v

(3)
xi } is colored monochromatic. If {v(1)

xi , v
(2)
xi }

is colored monochromatic then we set xi to true, otherwise
we set xi to false. We claim that this yields a satisfying as-
signment for φ. Assume for contradiction that it is not. Then
there is a clause cj that is not satisfied. Without loss of gener-
ality, let x1, x2, and x3 be the variables appearing in cj . Then
in the third snapshot, the clause gadget of cj is connected to
the variable gadgets of x1, x2, and x3. It is easy to check
that in any proper sliding 2-window temporal 2-coloring,
exactly one edge of the extension of any clause gadget is
colored monochromatic in the second snapshot, hence this
is also the case in the clause gadget of cj . Without loss of

generality, let the monochromatically colored (in the second
snapshot) extension edge of the clause gadget of cj be con-
nected to the variable gadget of x1 in the third snapshot. It
is easy to check that for the sliding 2-window temporal 2-
coloring to be proper, the edge of the variable gadget of x1

that is connected to the clause gadget of cj in the third snap-
shot needs to be colored properly in the second snapshot. By
construction of (G,λ) this is a contradiction to cj not being
satisfied by the constructed assignment.

With small modifications to the reduction we get that SW-
TEMP. COLORING remains hard under the following restric-
tions on the snapshots.

Corollary 4.3. SW-TEMP. COLORING is NP-hard for all
k ≥ 2, ∆ ≥ c, and T ≥ ∆ + 1 for some constant c even if
• every snapshot is a cluster graph, or
• every snapshot has a dominating set of size one.

The reduction presented in the proof of Theorem 4.2 also
yields a running time lower bound assuming the Exponen-
tial Time Hypothesis (ETH) (Impagliazzo and Paturi 2001;
Impagliazzo, Paturi, and Zane 2001).

Corollary 4.4. SW-TEMP. COLORING does not admit a
ko(n)·f(T+k)-time algorithm for any computable function f
unless ETH fails.

Proof. First, note that any 3SAT formula withm clauses can
be transformed into an equisatisfiable EXACT (3,4)-SAT
formula with O(m) clauses (Tovey 1984). The reduction
presented in the proof of Theorem 4.2 produces an instance
of SW-TEMP. COLORING with n = O(m) vertices, k = 2,
and T = 3. Hence an algorithm for SW-TEMP. COLORING
with running time ko(n)·f(T+k) for some computable func-
tion f would imply the existence of an 2o(m)-time algorithm
for 3SAT. This is a contradiction to ETH.

Optimal Exponential-Time Algorithm Assuming ETH.
In the following we give an exponential-time algorithm for
∆-SW-TEMP. COLORING that asymptotically matches the
running time lower bound given in Corollary 4.4 assuming



the ETH. The main idea is to enumerate all partial proper
sliding ∆-window temporal colorings for time windows of
size 2∆ and then check whether we can combine them to
a proper sliding ∆-window temporal coloring for the whole
temporal graph.

Theorem 4.5. SW-TEMP. COLORING can be solved in
O(k4∆·n · T ) time.

Proof. For the sake of simplicity, we assume that T is divis-
ible by ∆. The general case can be proven alike. We give the
following algorithm for the problem:
1. For 2∆-windows Wi = [i∆ + 1, (i + 2)∆] for i ∈
{0, 1, . . . , T/∆ − 2}, enumerate all partial proper slid-
ing ∆-window temporal colorings φWi

, where each trivial
snapshot is colored in some fixed but arbitrary way1.

2. Create a directed acyclic graph (DAG) with φWi
as ver-

tices and connect φWi
and φWi+1

with a directed arc if
the two proper ∆-temporal colorings agree on the over-
lapping part.

3. Create a source vertex s and connect it to all φW1 with
a directed arc and we create a sink vertex t and add a
directed arc from all φWT/∆−2

to it.
4. If there is a path from s to t, answer YES, otherwise NO.
The running time is dominated by checking whether s and t
are connected in the last step of the algorithm. This can be
done e.g. by a BFS on the constructed DAG. The DAG has
at most k2∆·n · T vertices and at most k4∆·n · T edges.

Fixed-Parameter Tractability. Next, we show how to ex-
tend the algorithm presented in Theorem 4.5 to achieve lin-
ear time fixed-parameter tractability with respect to the num-
ber n of vertices. The main idea is to reduce the number of
non-trivial snapshots in each ∆-window.

Theorem 4.6. SW-TEMP. COLORING can be solved in
O(T ) time if n is a constant.

Proof. We present a preprocessing step to reduce the num-
ber of non-trivial snapshots in any ∆-window and then use
the algorithm of Theorem 4.5 to solve the problem.

The reduction rule is based on the observation that if some
snapshot appears at least n2 times in a ∆-window, then the
edges of this snapshot can be properly colored with 2 col-
ors within the ∆-window. In other words, all but n2 copies
of the snapshot in the ∆-window are redundant for optimal
coloring and each of them could be replaced by the trivial
snapshot. When implementing this idea one should take care
to guarantee that replacing a snapshot by the trivial one does
not reduce the number of copies of the snapshot in other ∆-
windows which contain at most n2 copies of the snapshot.

Formally the reduction rule is as follows. Since the num-
ber of different snapshots is at most 2(n

2) ≤ 2n
2

, by the pi-
geonhole principle if ∆ > 2 · 2n2 · n2, then in every ∆-
window there exists a snapshot that appears more than 2n2

times in that ∆-window. For every such a snapshot that con-
tains at least one edge, we replace by the trivial snapshot
one of its ”middle” copies, that is, one that has at least n2

1This is an important trick that allows us to use this algorithm
for the FPT result in Theorem 4.6.

copies appearing earlier and n2 copies that appear later in
the ∆-window. This reduction rule guarantees that every ∆-
window that contains the modified snapshot also contains
at least n2 copies of the original snapshot appearing either
earlier or later in the ∆-window.

The reduction rule can be applied exhaustively by linearly
sweeping over all ∆-windows once in the following way.
For each different graph (snapshot) we store a list of occur-
rences and update these lists every time we move the ∆-
window by one. Having these lists, it is straightforward to
count the occurrences and replace the middle ones by triv-
ial snapshots. When we move the ∆-window, we just have
to update two lists: the one of the graph that enters the ∆-
window and the one of the graph that leaves. This requires
a lookup table of size 2(n

2) ≤ 2n
2

but takes only linear time
in T . Note that after this procedure, every ∆-window con-
tains at most 2 · 2n2 · n2 non-trivial snapshots.

Now we apply the algorithm of Theorem 4.5. Note that
after the reduction step the number of non-trivial snapshots
in every ∆-window depends only on n. Furthermore, since
we can assume that k ≤ n, the number of colorings that
are enumerated in Step 1 of the algorithm in Theorem 4.5 is
bounded by a function of n. This completes the proof.

The FPT result of Theorem 4.6 is complemented by the
following theorem, in which we exclude the possibility of
a polynomial-sized kernel for SW-TEMP. COLORING with
respect to the number n of vertices. This comes in contrast
to the existence of a polynomial-sized kernel for TEMPORAL
COLORING with respect to n (cf. Theorem 3.3).
Proposition 4.7. SW-TEMP. COLORING does not admit a
polynomial-sized kernel with respect to the number n of ver-
tices for all ∆ ≥ 2 and k ≥ 2 unless NP ⊆ coNP/poly.

Structural Graph Parameters and Approximation. Fi-
nally, we investigate the possibility to structurally improve
the fixed-parameter tractability result by replacing the pa-
rameter n with a smaller parameter. We answer this nega-
tively by showing that ∆-SW-TEMP. k-COLORING remains
NP-hard even if the underlying graph has a constant-size
vertex cover, which is a fairly large structural parameter.
Theorem 4.8. Let k ≥ 2. Then 2-SW-TEMP. k-COLORING
is NP-hard, even if the vertex cover number of the underlying
graph is at most 2k + 13.

Next, we consider a canonical optimization version of
SW-TEMP. COLORING, which we call MINIMUM SW-
TEMP. COLORING, where the goal is to minimize the num-
ber of colors k. Using Theorem 4.6, we provide an FPT-
approximation algorithm with an additive error of one where
the parameter is the vertex cover number of the underlying
graph. Considering that we cannot hope for an exact FPT
algorithm for parameter “vertex cover number of the under-
lying graph” unless P = NP (cf. Theorem 4.8), this is the
best we can get from a classification standpoint.
Theorem 4.9. MINIMUM SW-TEMP. COLORING admits a
linear time FPT-approximation algorithm with an additive
error of one when parameterized by the vertex cover number
of the underlying graph.
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