
Polynomial Fixed-Parameter Algorithms: A Case
Study for Longest Path on Interval Graphs∗

Archontia C. Giannopoulou† 1, George B. Mertzios2, and
Rolf Niedermeier3

1 Institute of Informatics, University of Warsaw, Poland
archontia.giannopoulou@gmail.com

2 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

3 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Abstract
We study the design of fixed-parameter algorithms for problems already known to be solvable in
polynomial time. The main motivation is to get more efficient algorithms for problems with un-
attractive polynomial running times. Here, we focus on a fundamental graph problem: Longest
Path; it is NP-hard in general but known to be solvable in O(n4) time on n-vertex interval
graphs. We show how to solve Longest Path on Interval Graphs, parameterized by vertex
deletion number k to proper interval graphs, in O(k9n) time. Notably, Longest Path is trivially
solvable in linear time on proper interval graphs, and the parameter value k can be approximated
up to a factor of 4 in linear time. From a more general perspective, we believe that using paramet-
erized complexity analysis for polynomial-time solvable problems offers a very fertile ground for
future studies for all sorts of algorithmic problems. It may enable a refined understanding of ef-
ficiency aspects for polynomial-time solvable problems, similarly to what classical parameterized
complexity analysis does for NP-hard problems.

1998 ACM Subject Classification G.2.2 Graph algorithms, Path and circuit problems, F.2.2
Computations on discrete structures

Keywords and phrases fixed-parameter algorithm, preprocessing, data reduction, polynomial-
time algorithm, longest path problem, interval graphs, proper interval vertex deletion set.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Parameterized complexity analysis [16, 18, 30] is a flourishing field dealing with the exact
solvability of NP-hard problems. The key idea is to lift classical complexity analysis, rooted in
the P versus NP phenomenon, from a one-dimensional to a two- (or even multi-)dimensional
perspective, the key concept being “fixed-parameter tractability (FPT)”. But why should
this natural and successful approach be limited to intractable (i.e., NP-hard) problems? We
are convinced that appropriately parameterizing polynomially solvable problems sheds new
light on what makes a problem far from being solvable in linear time, in the same way as

∗Partially supported by the EPSRC Grant EP/K022660/1 and the Warsaw Center of Mathematics
and Computer Science.

†The main part of this paper was prepared while the author was affiliated at the School of Engineering
and Computing Sciences, Durham University, UK.

© Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Polynomial Fixed-Parameter Algorithms

classical FPT algorithms help in illuminating what makes an NP-hard problem far from
being solvable in polynomial time. In a nutshell, the credo and leitmotif of this paper is that
“FPT inside P” is a very interesting, but still too little explored, line of research.

The known results fitting under this leitmotif are somewhat scattered around in the
literature and do not systematically refer to or exploit the toolbox of parameterized algorithm
design. This should change and “FPT inside P” should be placed on a much wider footing,
using parameterized algorithm design techniques such as data reduction and kernelization.
As a simple illustrative example, consider the Maximum Matching problem. By following
a “Buss-like” kernelization (as is standard knowledge in parameterized algorithmics [16,30])
and then applying a known polynomial-time matching algorithm, it is not difficult to derive
an efficient algorithm that, given a graph G with n vertices, computes a matching of size at
least k in O(kn+ k3) time.

More formally, and somewhat more generally, we propose the following scenario. Given a
problem with instance size n for which there exists an O(nc)-time algorithm, our aim is to
identify appropriate parameters k and to derive algorithms with time complexity f(k) · nc′

such that c′ < c, where f(k) depends only on k. First we refine the class FPT by defining,
for every polynomially-bounded function p(n), the class FPT(p(n)) containing the problems
solvable in f(k) · p(n) time, where f(k) is an arbitrary (possibly exponential) function of k.
It is important to note that, in strong contrast to FPT algorithms for NP-hard problems, here
the function f(k) may also become polynomial in k. Motivated by this, we refine the class P by
introducing, for every polynomial p(n), the class P-FPT (p(n)) (Polynomial Fixed-Parameter
Tractable), containing the problems solvable in O(kt · p(n)) time for some constant t ≥ 1,
i.e., the dependency of the complexity on the parameter k is at most polynomial. In this
paper we focus our attention on the (practically perhaps most attractive) subclass PL-FPT
(Polynomial-Linear Fixed-Parameter Tractable), where PL-FPT = P-FPT(n). For example,
the algorithm we sketched above for Maximum Matching, parameterized by solution size k,
belongs to PL-FPT.

In an attempt to systematically follow the leitmotif “FPT inside P”, we put forward three
desirable algorithmic properties:
1. The running time should have a polynomial dependency on the parameter.
2. The running time should be as close to linear as possible if the parameter value is constant,

improving upon an existing “high-degree” polynomial-time (unparameterized) algorithm.
3. The parameter value, or a good approximation thereof, should be computable efficiently

(preferably in linear time) for arbitrary parameter values.
In addition, as this research direction is still only little explored, we suggest and follow a
focus first on problems for which the best known upper bounds of the time complexity are
polynomials of high degree, e.g., O(n4) or higher.

Related work.

Here we discuss previous work on graph problems that fits under the leitmotif “FPT inside P”;
however there exists further related work also in other topics such as string matching [6] or
Linear Program solving [28].

The complexity of some known polynomial-time algorithms can be easily “tuned” with
respect to specific parameters, thus immediately reducing the complexity whenever these
parameters are bounded. For instance, in n-vertex and m-edge graphs with nonnegative edge
weights, Dijkstra’s O(m+n logn)-time algorithm for computing shortest paths can be adapted
to an O(m + n log k)-time algorithm, where k is the number of distinct edge weights [27]
(also refer to [31]). In addition, motivated by the quest for explaining the efficiency of several

A.C. Giannopoulou, G. B. Mertzios, and R. Niedermeier 3

shortest path heuristics for road networks (where Dijkstra’s algorithm is too slow for routing
applications), the “highway dimension” was introduced [4] as a parameterization helping to
do rigorous proofs about the quality of the heuristics. Altogether, the work on shortest path
computations shows that even for quasi-linear-time algorithms adopting a parameterized
view may be of significant practical interest.

Maximum flow computations constitute another important application area for “FPT
inside P”. An O(k3n logn)-time maximum flow algorithm was presented [22] for graphs that
can be made planar by deleting k “crossing edges”; notably, here it is assumed that the
embedding and the k crossing edges are given along with the input. An O(g8n log2 n log2 C)-
time maximum flow algorithm was developed [12], where g is the genus of the graph and
C is the sum of all edge capacities; here it is also assumed that the embedding and the
parameter g are given in the input. Finally, we remark that multiterminal flow [21] and
Wiener index computations [10] have exploited the treewidth parameter, assuming that the
corresponding tree decomposition of the graph is given. However, in both publications [10,21]
the dependency on the parameter k is exponential.

Our contribution.

In this paper, for illustrating the potential algorithmic challenges posed by the “FPT inside P”
framework (which seem to go clearly beyond the known “FPT inside P” examples), we focus
on Longest Path on Interval Graphs, which is known to be solvable in O(n4) time [23],
and we derive an PL-FPT-algorithm (with the appropriate parameterization) that satisfies
all three desirable algorithmic properties described above.

On general graphs, the decision variant of Longest Path is NP-complete and many FPT
algorithms have been designed for it, e.g., [5, 13,26,35], contributing to the parameterized
algorithm design toolkit techniques such as color-coding [5] (and further randomized tech-
niques [13, 26]) as well as algebraic approaches [35]. Longest Path is known to be solvable
in polynomial time only on very few non-trivial graph classes [23, 29] (see also [33] for much
smaller graph classes). In particular, a few years ago it was shown that Longest Path on In-
terval Graphs can be solved in polynomial time, providing an algorithm that runs in O(n4)
time [23]. Notably, a longest path in a proper interval graph can be computed by a trivial
linear-time algorithm since every connected proper interval graph has a Hamiltonian path [7].
Consequently, as these two graph classes seem to behave quite differently, it is natural to
parameterize Longest Path on Interval Graphs by the size k of a minimum proper
interval (vertex) deletion set, i.e., by the minimum number of vertices that need to be deleted
to obtain a proper interval graph. That is, this parameterization exploits what is also known
as “distance from triviality” [17,20] in the sense that the parameter k measures how far a
given input instance is from a trivially solvable special case. As it turns out, one can compute
a 4-approximation of k in O(n+m) time for an interval graph with n vertices and m edges.
Based on this, we provide a polynomial fixed-parameter algorithm that runs in O(k9n) time,
thus proving that Longest Path on Interval Graphs is in the class PL-FPT when
parameterized by the size of a minimum proper interval deletion set.

To develop our algorithm, we first introduce in Section 2 two data reduction rules on
interval graphs. Each of these reductions shrinks the size of specific vertex subsets, called
reducible and weakly reducible sets, respectively. Then, given any proper interval deletion
set D of an interval graph G, in Section 3 we appropriately decompose the graph G \ D
into two collections S1 and S2 of reducible and weakly reducible sets, respectively, on which
we apply the reduction rules of Section 2. The resulting interval graph Ĝ is weighted (with
weights on its vertices) and has some special properties; we call Ĝ a special weighted interval

4 Polynomial Fixed-Parameter Algorithms

graph with parameter κ, where in this case κ = O(k3). Notably, although Ĝ has reduced size,
it still has O(n) vertices. Then, in Section 4 we present a fixed-parameter algorithm (with
parameter κ) computing in O(κ3n) time the maximum weight of a path in a special weighted
interval graph. We note here that such a maximum-weight path in a special weighted interval
graph can be directly mapped back to a longest path in the original interval graph. Thus,
our algorithm computes a longest path in the initial interval graph G in O(κ3n) = O(k9n)
time. In the concluding section, we give a brief outlook.

Notation.

We consider finite, simple, and undirected graphs. Given a graph G, we denote by V (G) and
E(G) the sets of its vertices and edges, respectively. A graph G is weighted if it is given
along with a weight function w : V (G)→ N on its vertices. An edge between two vertices
u and v of a graph G = (V,E) is denoted by uv, and in this case u and v are said to be
adjacent. The neighborhood of a vertex u ∈ V is the set N(u) = {v ∈ V : uv ∈ E} of its
adjacent vertices. Furthermore we denote by G[S] the subgraph of G induced by the vertex
set S and we define G \ S = G[V \ S]. A set S ⊆ V induces an independent set (resp. a
clique) in G if uv /∈ E (resp. if uv ∈ E) for every pair of vertices u, v ∈ S.

A graph G = (V,E) is an interval graph if each vertex v ∈ V can be bijectively assigned
to a closed interval Iv on the real line, such that uv ∈ E if and only if Iu ∩ Iv 6= ∅, and then
the collection of intervals I = {Iv : v ∈ V } is an interval representation of G. The graph G
is a proper interval graph if it admits an interval representation I such that Iu * Iv for
every u, v ∈ V , and then I is a proper interval representation. Given an interval graph G, a
subset D ⊆ V (G) is a proper interval deletion set of G if G \D is a proper interval graph.
The proper interval deletion number of G is the size of the smallest proper interval deletion
set. Finally, for any positive integer t, we denote [t] = {1, 2, . . . , t}.

2 Data reductions on interval graphs

In this section we present two data reductions on interval graphs. The first reduction
(cf. Reduction Rule 1) shrinks the size of a collection of vertex subsets of a certain kind, called
reducible sets, and it produces a weighted interval graph. The second reduction (cf. Reduction
Rule 2) is applied to an arbitrary weighted interval graph; it shrinks the size of a collection
of another kind of vertex subsets, called weakly reducible sets, and it produces a smaller
weighted interval graph. Both reductions retain as an invariant the maximum path weight.

In the remainder of the paper we assume that we are given an interval graph G with
n vertices and m edges as input, together with an interval representation I of G, where
the endpoints of the intervals are given sorted increasingly. Without loss of generality we
assume that the endpoints of all intervals are distinct. For every vertex v ∈ V (G) we
denote by Iv = [lv, rv] the interval of I that corresponds to v, i.e., lv and rv are the left
and the right endpoint of Iv, respectively. In particular, G is assumed to be given along
with the right-endpoint ordering σ of its vertices V (G), i.e., u <σ v if and only if ru < rv
in the interval representation I. Given a set S ⊆ V (G) we denote by I[S] the interval
representation induced from I on the intervals of the vertices of S. Finally we denote by
span(S) the interval [min{lv : v ∈ S},max{rv : v ∈ S}].

It is well-known that an interval graph G is a proper interval graph if and only if G is
K1,3-free, i.e., if G does not include the claw K1,3 with four vertices (cf. Figure 1) as an
induced subgraph [32]. It is worth noting here that it is unknown whether a minimum proper
interval deletion set of an interval graph G can be computed in polynomial time. However,

A.C. Giannopoulou, G. B. Mertzios, and R. Niedermeier 5

u

v1 v2 v3
(a)

rulu

lv2lv1 lv3rv1 rv2 rv3

Iu

Iv2Iv1 Iv3

(b)

Figure 1 (a) The forbidden induced subgraph (claw K1,3) for an interval graph to be a proper
interval graph and (b) an interval representation of the K1,3.

since there is a unique forbidden induced subgraph K1,3 on four vertices, we can apply Cai’s
generic algorithm [11] on an arbitrary given interval graph G with n vertices to compute
a proper interval deletion set of G with minimum size k in FPT time O(4k · poly(n)). As
we prove in the next theorem, a 4-approximation of the minimum proper interval deletion
number of an interval graph can be computed much more efficiently.

I Theorem 1. Let G = (V,E) be an interval graph, where |V | = n and |E| = m. Let k be
the size of the minimum proper interval deletion set of G. Then a proper interval deletion
set of size at most 4k can be computed in O(n+m) time.

Note that, whenever four vertices induce a claw K1,3 in an interval graph G, then in the
interval representation I of G at least one of these intervals is necessarily properly included
in another one (e.g., Iv2 ⊆ Iu in Figure 1b). However the converse is not always true, as there
may exist two vertices u, v in G such that Iv ⊆ Iu, although u and v do not participate in any
claw K1,3 in G. An interval representation I is called semi-proper if, whenever Iv ⊆ Iu in I,
then the vertices u and v participate in a claw K1,3 in G. Every interval representation I
of a graph G can be efficiently transformed into a semi-proper representation I ′ of G, as
we prove in the next theorem. In the remainder of the paper we always assume that this
preprocessing step has been already applied to I.

I Theorem 2 (preprocessing). Given an interval representation I, a semi-proper interval
representation I ′ can be computed in O(n+m) time.

All our results on interval graphs rely on the notion of a normal path [23] (also referred
to as a straight path in [15,25]). This notion has also been extended to the greater class of
cocomparability graphs [29]. Normal paths are useful in the analysis of our data reductions
in this section, as well as in our algorithm in Section 4, as they impose certain monotonicity
properties of the paths. Informally, the vertices in a normal path appear in a “left-to-right
fashion” in the right-endpoint ordering σ. It is known that, for every path P of an interval
graph G, there exists a normal path P ′ on the same vertices as P [23].

I Definition 3. Let G = (V,E) be an interval graph and σ be a right-endpoint ordering
of V . The path P = (v1, v2, . . . , vk) of G is normal if v1 is the leftmost vertex of V (P) in σ,
and if vi is the leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in σ, for every i = 2, . . . , k.

The first data reduction.

Before we present our Reduction Rule 1, first we introduce the notion of a reducible set of
vertices.

I Definition 4. Let G be a (weighted) interval graph and I be an interval representation
of G. A set S ⊆ V (G) is reducible if it satisfies the following:

6 Polynomial Fixed-Parameter Algorithms

1. I[S] induces a connected proper interval representation of G[S] and
2. for every v ∈ V (G) such that Iv ⊆ span(S) it holds v ∈ S.

The intuition behind reducible sets is as follows. For every reducible set S, a longest
path P contains either all vertices of S or none of them. Furthermore, in a longest path P
which is normal and contains the whole set S, the vertices of S appear consecutively in P .
Thus we can reduce the number of vertices in a longest normal path P (without changing its
total weight) by replacing all vertices of S with a single vertex having weight |S|. Now we
reduce the interval graph G to the weighted interval graph G# with fewer vertices.
I Reduction Rule 1 (first data reduction). Let G = (V,E) be an interval graph, I be an
interval representation of G, and D be a proper interval deletion set of G. Let S be a set
of vertex disjoint reducible sets of G, where S ∩ D = ∅, for every S ∈ S. The weighted
interval graph G# = (V #, E#) is induced by the weighted interval representation I#, which
is derived from I as follows:

for every S ∈ S, replace in I the intervals {Iv : v ∈ S} with the single interval IS =
span(S) which has weight |S|; all other intervals receive weight 1.

In the next theorem we state the correctness of Reduction Rule 1.

I Theorem 5. Let ` be a positive integer. Then the longest path in G has ` vertices if and
only if the maximum weight of a path in G# is `.

The second data reduction.

Before we present our Reduction Rule 2, we introduce the notion of a weakly reducible set.

I Definition 6. Let G be a (weighted) interval graph and I be an interval representation
of G. A set S ⊆ V (G) is weakly reducible if it satisfies the following:
1. I[S] induces a connected proper interval representation of G[S] and
2. for every v ∈ V (G) and every u ∈ S, if Iv ⊆ Iu, then S ⊆ N(v).

The intuition behind weakly reducible sets is as follows. For every weakly reducible set S,
a longest path P contains either all vertices of S or none of them. Furthermore, in a longest
path P which is normal and contains the whole set S, the appearance of the vertices of S
in P is interrupted at most |D| + 3 times by vertices outside S. That is, such a path P

has at most min{|S|, |D|+ 4} vertex-maximal subpaths with vertices from S. Thus we can
reduce the number of vertices in a maximum-weight normal path P (without changing its
total weight) by replacing all vertices of S with min{|S|, |D|+ 4} vertices; each of these new
vertices has the same weight and their total weight sums up to |S|. Now we reduce the
weighted interval graph G to the weighted interval graph Ĝ with fewer vertices.
I Reduction Rule 2 (second data reduction). Let G be a weighted interval graph with weight
function w : V (G)→ N and I be an interval representation of G. Let D be a proper
interval deletion set of G. Finally, let S = {S1, S2, . . . , S|S|} be a family of pairwise disjoint
weakly reducible sets, where Si ∩D = ∅ for every i ∈ [|S|]. We recursively define the graphs
G0, G1, . . . , G|S| with the interval representations I0, I1, . . . , I|S| as follows:

G0 = G and I0 = I,
for 1 ≤ i ≤ |S|, Ii is obtained by replacing in Ii−1 the intervals {Iv : v ∈ Si} with
min{|Si|, |D|+ 4} copies of the interval ISi

= span(Si), each of them having equal weight
1

min{|Si|,|D|+4}
∑
u∈Si

w(u); all other intervals remain unchanged, and
finally Ĝ = G|S| and Î = I|S|.

A.C. Giannopoulou, G. B. Mertzios, and R. Niedermeier 7

Note that in the construction of the interval representation Ii by Reduction Rule 2, where
i ∈ [|S|], we can always slightly perturb the endpoints of the min{|Si|, |D|+ 4} copies of the
interval ISi

= span(Si) such that all endpoints remain distinct in Ii, and such that these
min{|Si|, |D|+ 4} newly introduced intervals induce a proper interval representation in Ii.
We are now ready to prove the correctness of Reduction Rule 2.
I Theorem 7. Let ` be a positive integer. Then the maximum weight of a path in G is ` if
and only if the maximum weight of a path in Ĝ is `.

3 Special weighted interval graphs

In this section we sequentially apply the two data reductions of Section 2 to a given interval
graph G with a proper interval deletion set D. To do so, first we appropriately define a
specific family S1 of reducible sets in G \D and we apply Reduction Rule 1 to G with respect
to the family S1, resulting in the weighted interval graph G#. After this operation, D remains
a proper interval deletion set of the graph G#. Then we appropriately define a family S2 of
weakly reducible sets in G# \D and we apply Reduction Rule 2 to G# with respect to the
family S2, resulting to the weighted interval graph Ĝ. As it turns out, the vertex sets of the
union S1 ∪ S2 of these two families are a partition of the initial graph G \D. Furthermore,
Theorems 5 and 7 imply that the longest path in the initial graph G has ` vertices if and only
if the maximum weight of a path in the final weighted graph Ĝ is `. The graph Ĝ is then
given as input to our parameterized algorithm of Section 4. Now we introduce the crucial
notion of a special weighted interval graph with parameter κ.
I Definition 8 (special weighted interval graph with parameter κ). Let G = (V,E) be a
weighted interval graph, I be an interval representation of G, and κ ∈ N, where V can be
partitioned into two sets A and B such that:
1. A is an independent set in G,
2. for every v ∈ A and every u ∈ V \ {v}, we have Iu * Iv in I, and
3. |B| ≤ κ.

Then G (resp. I) is a special weighted interval graph (resp. representation) with para-
meter κ. The partition V = A ∪B is a special vertex partition of G.

As we prove in the next theorem, the graph Ĝ is a special weighted interval graph and it
can be computed efficiently.
I Theorem 9. Let G = (V,E) be an interval graph, where |V | = n. Let D be a proper
interval deletion set of G, where |D| = k. Then the graph Ĝ = (V̂ , Ê) is a special weighted
interval graph with parameter κ = O(k3). Furthermore, Ĝ and a special vertex partition
V̂ = A ∪B of Ĝ can be computed in O(k2n) time.

Note that, although Ĝ is a special weighted interval graph with a parameter κ that
depends only on the size of D, it may still have O(n) vertices, as the independent set A in
the special vertex partition may be arbitrarily large.

4 Parameterized Longest Path on Interval Graphs

In this section, we first present Algorithm 1 which computes in O(κ3n) time the maximum
weight of a path in a special weighted interval graph with parameter κ. Then, using
Algorithm 1 and the results of Sections 2 and 3, we conclude with our fixed-parameter
algorithm for Longest Path on Interval Graphs, where the parameter k is the size of a
minimum proper interval deletion set D.

8 Polynomial Fixed-Parameter Algorithms

The algorithm for special weighted interval graphs.

Consider a special weighted interval graph G = (V,E) with parameter κ ∈ N and |V | = n,
which is given along with a special interval representation I and a special vertex partition
V = A ∪ B. Recall from Definition 8 that A is an independent set and that |B| ≤ κ. Let
w : V → N be the vertex weight function of G. For simplicity, we add to the set B an isolated
dummy vertex v0 such that v0 <σ v1 and w(v0) = 0 (cf. the first line of Algorithm 1). For
every vertex v ∈ B, we define:

ξv =
{
lu if lv ∈ Iu for some u ∈ A,
lv otherwise.

(1)

Since A is an independent set by assumption, for every v ∈ B there exists at most one u ∈ A
such that lv ∈ Iu. Thus ξv is well-defined. Now we define the set Ξ = {ξv, lv : v ∈ B}. Note
that |Ξ| = O(κ). Furthermore, for every u, v ∈ V , where u ∈ N(v) and u <σ v, we define
the vertex πu,v = maxσ{{u} ∪ {w ∈ B ∩N(u) : u <σ w <σ v}}. Note that, by definition,
if πu,v 6= u then πu,v ∈ B. Furthermore, due to the condition that u ∈ N(v) in the definition
of πu,v, it follows that u ∈ B or v ∈ B, since A is an independent set. That is, vertex πu,v is
defined for at most O(κn) pairs of vertices u, v. Now we provide the crucial definition of the
subgraphs Gξ(vi) of G, for every ξ ∈ Ξ and i ∈ [n] such that ξ < rvi

.

I Definition 10. Let ξ ∈ Ξ and i ∈ [n] such that ξ < rvi
. We define the induced subgraph

Gξ(vi) = G[{v ∈ V : ξ ≤ lv < rv ≤ rvi}] of G which contains all vertices whose intervals are
entirely contained between the points ξ and rvi

.

I Notation 1. Let ξ ∈ Ξ and i ∈ [n] such that ξ < rvi
. Furthermore let y ∈ V (Gξ(vi)) such

that y ∈ N(vi). We denote by Pξ(vi, y) a maximum-weight normal path of Gξ(vi), among
those normal paths whose last vertex is y. For every path Pξ(vi, y), we denote its weight
w(Pξ(vi, y)) by Wξ(vi, y).

Note that, by Definition 10, if lvi
< ξ then the vertex vi does not belong to the sub-

graph Gξ(vi). Now we state three lemmas that are crucial for the correctness of Algorithm 1.

I Lemma 11. Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi , and let y ∈ V (Gξ(vi)) and y ∈ N(vi).
If ly < lvi

or vi /∈ V (Gξ(vi)), then Wξ(vi, y) = Wξ(πy,vi
, y).

I Lemma 12. Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi
, and let vi ∈ V (Gξ(vi)). Then

Pξ(vi, vi) = (P1, vi), where w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < rvi}.

I Lemma 13. Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi
, and let vi, y ∈ V (Gξ(vi)) and y ∈ N(vi).

Let Pξ(vi, y) = (P1, vi, P2). If P2 6= (y) then there exists some ζ ∈ Ξ, where lvi
< ζ ≤ ly,

such that

w(P1) = max{Wξ(πx,vi
, x) : x ∈ V (Gξ(vi)), lvi

< rx < ζ}, (2)
w(P2) = Wζ(πy,vi

, y). (3)

Otherwise, if P2 = (y) then lvi
< ly and

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ly}. (4)

We are now ready to present Algorithm 1, which computes the maximum weight of a
path in a given special weighted interval graph G. It is easy to check that Algorithm 1 can
be slightly modified such that it returns the actual path P instead of its weight only.

A.C. Giannopoulou, G. B. Mertzios, and R. Niedermeier 9

Algorithm 1 Computing a maximum-weight path of a special interval graph
Input: A special weighted interval graph G = (V,E) with parameter κ ∈ N, along with

the special interval representation I of G and the partition V = A ∪ B, where σ =
(v1, v2, . . . , vn) is a right-endpoint ordering of V .

Output: The maximum weight of a path in G

1: Add an isolated dummy vertex v0 with w(v0) = 0 to set B, where v0 <σ v1

2: for i = 0 to n do
3: for every ξ ∈ Ξ where ξ < rvi do

4: if vi ∈ V (Gξ(vi)) then Wξ(vi, vi)← w(vi) {initialization}
5: for every y ∈ V (Gξ(vi)) where y ∈ N(vi) do
6: Wξ(vi, y)←Wξ(πy,vi

, y) {initialization}

7: if vi ∈ V (Gξ(vi)) then
8: W1 ← max{Wξ(πx,vi

, x) : x ∈ V (Gξ(vi)), lvi
< rx < rvi

}
9: Wξ(vi, vi)← max{Wξ(vi, vi),W1 + w(vi)}

10: for every y ∈ V (Gξ(vi)) where y ∈ N(vi) do
11: if ly < lvi

or vi /∈ V (Gξ(vi)) then
12: Wξ(vi, y)←Wξ(πy,vi

, y)
13: else
14: W ′1 ← max{Wξ(πx,vi

, x) : x ∈ V (Gξ(vi)), lvi
< rx < ly}

15: for every ζ ∈ Ξ with lvi < ζ ≤ ly do
16: W1 ← max{Wξ(πx,vi

, x) : x ∈ V (Gξ(vi)), lvi
< rx < ζ}

17: Wξ(vi, y)← max{Wξ(vi, y),W1 + w(vi) +Wζ(πy,vi , y)}
18: Wξ(vi, y)← max{Wξ(vi, y),W ′1 + w(vi) + w(y)}

19: return max{Wlv0
(vi, vi),Wlv0

(vi, y) : 1 ≤ i ≤ n, y <σ vi, y ∈ N(vi)}

First we give a brief overview of the algorithm. Using dynamic programming, it computes
a 3-dimensional table. In this table, for every point ξ ∈ Ξ, every index i ∈ [n], and
every vertex y ∈ V (Gξ(vi)), where ξ < rvi

and y ∈ N(vi), the entry Wξ(vi, y) (resp. the
entry Wξ(vi, vi)) keeps the weight of a normal path in the subgraph Gξ(vi) which is the
largest among those normal paths whose last vertex is y (resp. vi). Thus, since w(v0) = 0
for the dummy isolated vertex v0 (cf. line 1 of the algorithm), the maximum weight of a
path in G will be eventually stored in one of the entries

{
Wlv0

(vi, vi) : 1 ≤ i ≤ n
}
or in one

of the entries
{
Wlv0

(vi, y) : 1 ≤ i ≤ n, y <σ vi, y ∈ N(vi)
}
, depending on whether the last

vertex y of the desired maximum-weight path coincides with the rightmost vertex vi of this
path in the ordering σ (cf. line 19 of the algorithm).

Note that for every computed entry Wξ(vi, y) the vertices vi and y are adjacent, and
thus vi ∈ B or y ∈ B, since A is an independent set. Thus, since |B| = O(κ), there are
at most O(κn) such eligible pairs of vertices vi, y. Furthermore, since also |Ξ| = O(κ), the
computed 3-dimensional table stores at most O(κ2n) entries Wξ(vi, vi) and Wξ(vi, y). From
the for-loops of lines 2-3 of the algorithm and from the obvious inductive hypothesis we may
assume that during the {i, ξ}th iteration all previous values Wξ′(vi′ , vi′) and Wξ′(vi′ , y′),
where i′ < i or ξ′ < ξ, have been correctly computed at a previous iteration.

In the initialization phase for a particular pair {i, ξ} (cf. lines 4-6) the algorithm computes
some initial values for Wξ(vi, vi) and Wξ(vi, y). For a path with vi as its last vertex, we are

10 Polynomial Fixed-Parameter Algorithms

only interested in the case where vi ∈ V (Gξ(vi)); in this case we initialize Wξ(vi, vi) = w(vi),
cf. line 4. For a path with y 6= vi as its last vertex (cf. lines 5-6), we initialize Wξ(vi, y) =
Wξ(πy,vi

, y), since the path Pξ(πy,vi
, y) is indeed a normal path of the graph Gξ(πy,vi

), which
is an induced subgraph of Gξ(vi).

For the induction step phase (cf. lines 7-18) the algorithm updates the initialized entries
Wξ(vi, vi) and Wξ(vi, y) according to Lemmas 11-13. To update the value Wξ(vi, vi) we only
need to consider the case where vi ∈ V (Gξ(vi)); in this case Wξ(vi, vi) is updated in lines 7-9
according to Lemma 12. The values of Wξ(vi, y), where y 6= vi, are updated in lines 10-18. In
particular, in the case where ly < lvi

or vi /∈ V (Gξ(vi)), the value of Wξ(vi, y) is updated in
lines 11-12 according to Lemma 11. Otherwise, Wξ(vi, y) is updated in lines 14-18 according
to Lemma 13.

I Theorem 14. Let G = (V,E) be a special weighted interval graph with n vertices and
parameter κ. Then Algorithm 1 computes the maximum weight of a path P in G in O(κ3n)
time.

The general algorithm.

Here we present our parameterized linear-time algorithm for Longest Path on Interval
Graphs, whose running time has a polynomial dependency on k.

I Theorem 15. Let G = (V,E) be an interval graph, where |V | = n and |E| = m, and let k
be the minimum size of a proper interval deletion set of G. Let I be an interval representation
of G whose endpoints are sorted increasingly. Then:
1. a proper interval deletion set D, where |D| ≤ 4k, can be computed in O(n+m) time,
2. a semi-proper interval representation I ′ can be constructed in O(n+m) time,
3. given D and I ′, a longest path of G can be computed in O(k9n) time.

5 Outlook

Our work heads at stimulating a general research program which systematically exploits
the concept of fixed-parameter tractability for polynomially solvable problems. For several
fundamental and widely known problems, the time complexity of the currently fastest
algorithms are upper-bounded by polynomials of large degrees. One of the most prominent
examples is arguably the celebrated polynomial-time recognition algorithm for perfect graphs,
whose time complexity still remains O(n9) [14]. Apart from trying to improve the worst-case
time complexity for such problems, which may be a very difficult (if not impossible) task,
the complementary approach that we propose here is to try to detect the parameter that
causes these high-degree polynomial-time algorithms and to separate the dependency of the
time complexity from this parameter such that the dependency on the input size becomes as
close to linear as possible. We believe that the “FPT inside P” field is very rich and offers
plenty of research possibilities.

We conclude with two related topics that may lead to further interactions. First, we
remark that in classical parameterized complexity analysis there is a growing awareness
concerning the polynomial-time factors that often have been neglected [34]. Notably, there
are some prominent fixed-parameter tractability results giving linear-time factors in the input
size (but quite large exponential factors in the parameter); these include Bodlaender’s famous
algorithm for computing treewidth [8] and the more recent algorithm for computing the
crossing number of a graph [24]. Interestingly, these papers emphasize “linear time” in their
titles, instead of “fixed-parameter tractability”. In this spirit, our result for Longest Path

A.C. Giannopoulou, G. B. Mertzios, and R. Niedermeier 11

in Interval graphs is a “linear-time” algorithm where the dependency on the parameter
is not exponential [8, 24] but polynomial.

Second, polynomial-time solvability and the corresponding lower bounds have been of
long-standing interest, e.g., it is believed that the famous 3SUM problem is only solvable in
quadratic time and this conjecture has been employed for proving relative lower bounds for
other problems [19]. Very recently, there was a significant push for this research direction
with many new relative lower bounds [1, 2, 9]. The “FPT inside P” approach might help in
“breaking” this nonlinear relative lower bounds by introducing useful parameterizations and
striving for PL-FPT results, whenever possible; some very recent results in this direction
concern the problems of computing the diameter and the radius in a graph [3].

References
1 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equival-

ences between graph centrality problems, APSP and diameter. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1681–1697, 2015.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proceedings of the 55th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 434–443, 2014.

3 Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed
parameter subquadratic algorithms for radius and diameter. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2016. To appear.

4 Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 782–793, 2010.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. of ACM, 42(4):844–856, 1995.
6 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching

with k mismatches. Journal of Algorithms, 50(2):257–275, 2004.
7 Alan A. Bertossi. Finding Hamiltonian circuits in proper interval graphs. Information

Processing Letters, 17(2):97–101, 1983.
8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. on Comp., 25(6):1305–1317, 1996.
9 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly

subquadratic algorithms unless SETH fails. In Proceedings of the 55th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 661–670, 2014.

10 Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via
orthogonal range searching. Computational Geometry, 42(9):815–824, 2009.

11 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

12 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts.
SIAM J. on Comput., 41(6):1605–1634, 2012.

13 Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for path,
matching, and packing problems. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 298–307, 2007.

14 Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu, Paul Seymour, and Kristina Vušković.
Recognizing Berge graphs. Combinatorica, 25(2):143–186, 2005.

15 Peter Damaschke. Paths in interval graphs and circular arc graphs. Discrete Mathematics,
112(1-3):49–64, 1993.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

12 Polynomial Fixed-Parameter Algorithms

17 Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivari-
ate algorithmics: Parameter ecology and the deconstruction of computational complexity.
European Journal of Combinatorics, 34(3):541–566, 2013.

18 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
19 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational

geometry. Computational Geometry, 5:165–185, 1995.
20 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing

problems: Distance from triviality. In Proceedings of the 1st International Workshop on
Parameterized and Exact Computation (IWPEC), pages 162–173, 2004.

21 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Charac-
terizing multiterminal flow networks and computing flows in networks of small treewidth.
Journal of Computer and System Sciences, 57(3):366–375, 1998.

22 Jan M. Hochstein and Karsten Weihe. Maximum s-t-flow with k crossings in O(k3n logn)
time. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
843–847, 2007.

23 K. Ioannidou, George B. Mertzios, and Stavros D. Nikolopoulos. The longest path problem
has a polynomial solution on interval graphs. Algorithmica, 61(2):320–341, 2011.

24 Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time.
In Proceedings of the 39th ACM Symp. on Th. of Comp. (STOC), pages 382–390, 2007.

25 J. M. Keil. Finding Hamiltonian circuits in interval graphs. Information Processing Letters,
20:201–206, 1985.

26 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-and-color. In
Proceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), pages 58–67, 2006.

27 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m logn time solver for SDD
linear systems. In Proceedings of the IEEE 52nd Symposium on Foundations of Computer
Science (FOCS), pages 590–598, 2011.

28 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of the ACM, 31(1):114–127, 1984.

29 George B. Mertzios and Derek G. Corneil. A simple polynomial algorithm for the longest
path problem on cocomparability graphs. SIAM J. on Discr. Math., 26(3):940–963, 2012.

30 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, 2006.

31 James B. Orlin, Kamesh Madduri, K. Subramani, and Matthew D. Williamson. A faster
algorithm for the single source shortest path problem with few distinct positive lengths.
Journal of Discrete Algorithms, 8(2):189–198, 2010.

32 F. S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph Theory,
pages 139–146. Academic Press, New York, 1969.

33 R. Uehara and Y. Uno. On computing longest paths in small graph classes. International
Journal of Foundations of Computer Science, 18(5):911–930, 2007.

34 René van Bevern. Fixed-Parameter Linear-Time Algorithms for NP-hard Graph and Hyper-
graph Problems Arising in Industrial Applications. PhD thesis, Institut für Softwaretechnik
und Theoretische Informatik, TU Berlin, Germany, 2014.

35 Ryan Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,
109(6):315–318, 2009.

	Introduction
	Data reductions on interval graphs
	Special weighted interval graphs
	Parameterized Longest Path on Interval Graphs
	Outlook

