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Abstract. The 3-coloring problem is well known to be NP-complete.
It is also well known that it remains NP-complete when the input is
restricted to graphs with diameter 4. Moreover, assuming the Expo-
nential Time Hypothesis (ETH), 3-coloring can not be solved in time
2o(n) on graphs with n vertices and diameter at most 4. In spite of the
extensive studies of the 3-coloring problem with respect to several ba-
sic parameters, the complexity status of this problem on graphs with
small diameter, i.e. with diameter at most 2, or at most 3, has been
a longstanding and challenging open question. In this paper we investi-
gate graphs with small diameter. For graphs with diameter at most 2, we
provide the first subexponential algorithm for 3-coloring, with complexity
2O(

√
n log n). Furthermore we present a subclass of graphs with diameter 2

that admits a polynomial algorithm for 3-coloring. For graphs with di-
ameter at most 3, we establish the complexity of 3-coloring, even for the
case of triangle-free graphs. Namely we prove that for every ε ∈ [0, 1), 3-
coloring is NP-complete on triangle-free graphs of diameter 3 and radius
2 with n vertices and minimum degree δ = Θ(nε). Moreover, assum-
ing ETH, we use three different amplification techniques of our hardness
results, in order to obtain for every ε ∈ [0, 1) subexponential asymptotic
lower bounds for the complexity of 3-coloring on triangle-free graphs
with diameter 3 and minimum degree δ = Θ(nε). Finally, we provide
a 3-coloring algorithm with running time 2O(min{δΔ, n

δ
log δ}) for arbitrary

graphs with diameter 3, where n is the number of vertices and δ (resp. Δ)
is the minimum (resp. maximum) degree of the input graph. To the best
of our knowledge, this algorithm is the first subexponential algorithm for
graphs with δ = ω(1) and for graphs with δ = O(1) and Δ = o(n). Due
to the above lower bounds of the complexity of 3-coloring, the running
time of this algorithm is asymptotically almost tight when the minimum
degree of the input graph is δ = Θ(nε), where ε ∈ [ 1

2
, 1).

Keywords: 3-coloring, graph diameter, graph radius, subexponential
algorithm, NP-complete, exponential time hypothesis.

� Partially supported by EPSRC Grant EP/G043434/1.
�� Partially supported by the ERC EU Project RIMACO and by the EU IP FET

Project MULTIPLEX.

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 332–343, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Algorithms and Almost Tight Results for 3-Colorability 333

1 Introduction

A proper k-coloring (or k-coloring) of a graph G is an assignment of k different
colors to the vertices of G, such that no two adjacent vertices receive the same
color. That is, a k-coloring is a partition of the vertices of G into k independent
sets. The corresponding k-coloring problem is the problem of deciding whether
a given graph G admits a k-coloring of its vertices, and to compute one if it
exists. Furthermore, the minimum number k of colors for which there exists
a k-coloring is denoted by χ(G) and is termed the chromatic number of G. The
minimum coloring problem is to compute the chromatic number of a given graph
G, and to compute a χ(G)-coloring of G if one exists.

One of the most well known complexity results is that the k-coloring problem
is NP-complete for every k ≥ 3, while it can be solved in polynomial time for
k = 2 [10]. Therefore, since graph coloring has numerous applications besides
its theoretical interest, there has been considerable interest in studying how
several graph parameters affect the tractability of the k-coloring problem, where
k ≥ 3. In view of this, the complexity status of the coloring problem has been
established for many graph classes. It has been proved that 3-coloring remains
NP-complete even when the input graph is a line graph [13], a triangle-free graph
with maximum degree 4 [18], or a planar graph with maximum degree 4 [10].

On the positive side, one of the most famous result in this context has been
that the minimum coloring problem can be solved in polynomial time for perfect
graphs using the ellipsoid method [11]. Furthermore, polynomial algorithms for
3-coloring have been also presented for classes of non-perfect graphs, such as AT-
free graphs [23] and P6-free graphs [22] (i.e. graphs that do not contain any path
on 6 vertices as an induced subgraph). Furthermore, although the minimum
coloring problem is NP-complete on P5-free graphs, the k-coloring problem is
polynomial on these graphs for every fixed k [12]. Courcelle’s celebrated theorem
states that every problem definable in Monadic Second-Order logic (MSO) can
be solved in linear time on graphs with bounded treewidth [8], and thus also the
coloring problem can be solved in linear time on such graphs.

For the cases where 3-coloring is NP-complete, considerable attention has been
given to devise exact algorithms that are faster than the brute-force algorithm
(see e.g. the recent book [9]). In this context, asymptotic lower bounds of the
time complexity have been provided for the main NP-complete problems, based
on the Exponential Time Hypothesis (ETH) [14,15]. ETH states that there exists
no deterministic algorithm that solves the 3SAT problem in time 2o(n), given a
boolean formula with n variables. In particular, assuming ETH, 3-coloring can
not be solved in time 2o(n) on graphs with n vertices, even when the input is
restricted to graphs with diameter 4 and radius 2 (see [17,21]). Therefore, since
it is assumed that no subexponential 2o(n) time algorithms exist for 3-coloring,
most attention has been given to decrease the multiplicative factor of n in the
exponent of the running time of exact exponential algorithms, see e.g. [4, 9, 20].

One of the most central notions in a graph is the distance between two vertices,
which is the basis of the definition of other important parameters, such as the
diameter, the eccentricity, and the radius of a graph. For these graph parameters,
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it is known that 3-coloring is NP-complete on graphs with diameter at most 4
(see e.g. the standard proof of [21]). Furthermore, it is straightforward to check
that k-coloring is NP-complete for graphs with diameter at most 2, for every
k ≥ 4: we can reduce 3-coloring on arbitrary graphs to 4-coloring on graphs
with diameter 2, just by introducing to an arbitrary graph a new vertex that is
adjacent to all others.

In contrast, in spite of the extensive studies of the 3-coloring problem with
respect to several basic parameters, the complexity status of this problem on
graphs with small diameter, i.e. with diameter at most 2 or at most 3, has been
a longstanding and challenging open question, see e.g. [5,7,16]. The complexity
status of 3-coloring is open also for triangle-free graphs of diameter 2 and of
diameter 3. It is worth mentioning here that a graph is triangle-free and of
diameter 2 if and only if it is a maximal triangle free graph. Moreover, it is
known that 3-coloring is NP-complete for triangle-free graphs [18], however it
is not known whether this reduction can be extended to maximal triangle free
graphs. Another interesting result is that almost all graphs have diameter 2 [6];
however, this result can not be used in order to establish the complexity of
3-coloring for graphs with diameter 2.

Our Contribution. In this paper we provide subexponential algorithms and
hardness results for the 3-coloring problem on graphs with low diameter, i.e. with
diameter 2 and 3. As a preprocessing step, we first present two reduction rules
that we apply to an arbitrary graph G, such that the resulting graph G′ is 3-
colorable if and only G is 3-colorable. We call the resulting graph irreducible
with respect to these two reduction rules. We use these reduction rules to reduce
the size of the given graph and to simplify the algorithms that we present.

For graphs with diameter at most 2, we first provide a subexponential algo-
rithm for 3-coloring with running time 2O(min{δ,nδ log δ}), where n is the number
of vertices and δ is the minimum degree of the input graph. This algorithm is
simple and has worst-case running time 2O(

√
n logn), which is asymptotically the

same as the currently best known time complexity of the graph isomorphism
problem [3]. To the best of our knowledge, this algorithm is the first subexpo-
nential algorithm for graphs with diameter 2. We demonstrate that this is indeed
the worst-case of our algorithm by providing, for every n ≥ 1, a 3-colorable graph
Gn = (Vn, En) with Θ(n) vertices, such that Gn has diameter 2 and both its
minimum degree and the size of a minimum dominating set is Θ(

√
n). In ad-

dition, this graph is triangle-free and irreducible with respect to the above two
reduction rules. Finally, we present a subclass of graphs with diameter 2, called
locally decomposable graphs, which admits a polynomial algorithm for 3-coloring.
In particular, we prove that whenever an irreducible graph G with diameter 2
has at least one vertex v such that G−N(v)−{v} is disconnected, then 3-coloring
on G can be decided in polynomial time.

For graphs with diameter at most 3, we establish the complexity of decid-
ing 3-coloring, even for the case of triangle-free graphs. Namely we prove that
3-coloring is NP-complete on irreducible and triangle-free graphs with diame-
ter 3 and radius 2, by providing a reduction from 3SAT. In addition, we provide
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a 3-coloring algorithm with running time 2O(min{δΔ, n
δ log δ}) for arbitrary graphs

with diameter 3, where n is the number of vertices and δ (resp. Δ) is the mini-
mum (resp. maximum) degree of the input graph. To the best of our knowledge,
this algorithm is the first subexponential algorithm for graphs with δ = ω(1)
and for graphs with δ = O(1) and Δ = o(n). Table 1 summarizes the current
state of the art of the complexity of k-coloring, as well as our algorithmic and
NP-completeness results.

Table 1. Current state of the art and our algorithmic and NP-completeness results for
k-coloring on graphs with diameter diam(G). Our results are indicated by an asterisk.

k \ diam(G) 2 3 ≥ 4

3 (∗) 2O(min{δ, n
δ

log δ}) 1
1
1

(∗) NP-complete for bla
3 time algorithm min. degree δ = Θ(nε), bla
3 (∗) polynomial alg. for every ε ∈ [0, 1), NP-complete [21],

3 for locally decompo- even if rad(G) = 2 no 2o(n) algorithm
3 sable graphs and G is triangle-free

3 (∗) 2O(min{δΔ, n
δ

log δ})
1
1
1
1

bla
3 time algorithm bla

≥ 4 NP-complete NP-complete NP-complete

Furthermore, we provide three different amplification techniques that extend
our hardness results for graphs with diameter 3. In particular, we first show that
3-coloring is NP-complete on irreducible and triangle-free graphs G of diame-
ter 3 and radius 2 with n vertices and minimum degree δ(G) = Θ(nε), for every
ε ∈ [ 12 , 1) and that, for such graphs, there exists no algorithm for 3-coloring

with running time 2o(
n
δ ) = 2o(n

1−ε), assuming ETH. This lower bound is asymp-
totically almost tight, due to our above algorithm with running time 2O(n

δ log δ),
which is subexponential when δ(G) = Θ(nε) for some ε ∈ [ 12 , 1). With our second
amplification technique, we show that 3-coloring remains NP-complete also on
irreducible and triangle-free graphs G of diameter 3 and radius 2 with n vertices
and minimum degree δ(G) = Θ(nε), for every ε ∈ [0, 1

2 ). Moreover, we prove
that for such graphs, when ε ∈ [0, 13 ), there exists no algorithm for 3-coloring

with running time 2o(
√

n
δ ) = 2o(n

(
1−ε
2

)), assuming ETH. Finally, with our third
amplification technique, we prove that for such graphs, when ε ∈ [ 13 ,

1
2 ), there

exists no algorithm for 3-coloring with running time 2o(δ) = 2o(n
ε), assuming

ETH. Table 2 summarizes our lower time complexity bounds for 3-coloring on
irreducible and triangle-free graphs with diameter 3 and radius 2, parameterized
by their minimum degree δ.

Organization of the Paper. We provide in Section 2 the necessary nota-
tion and terminology, as well as our two reduction rules and the notion of an
irreducible graph. In Sections 3 and 4 we present our results for graphs with
diameter 2 and 3, respectively. Detailed proofs have been omitted due to space
limitations; a full version can be found in [19].
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Table 2. Our lower time complexity bounds for deciding 3-coloring on irreducible
and triangle-free graphs G with n vertices, diameter 3, radius 2, and minimum de-
gree δ(G) = Θ(nε), where ε ∈ [0, 1), assuming ETH. The lower bound for ε ∈ [ 1

2
, 1)

is asymptotically almost tight, as there exists an algorithm for arbitrary graphs with

diameter 3 with running time 2O(n
δ

log δ) = 2O(n1−ε log n) by Theorem 4.

δ(G) = Θ(nε): 0 ≤ ε < 1
3

1
3
≤ ε < 1

2
1
2
≤ ε < 1

Lower time
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2
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.
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.

.
no 2o(n

1−ε)

.

.

.

.

.

complexity bound: time algorithm time algorithm time algorithm

2 Preliminaries and Notation

In this section we provide some notation and terminology, as well as two reduc-
tion (or “cleaning”) rules that can be applied to an arbitrary graph G. Through-
out the article, we assume that any given graph G of low diameter is irreducible
with respect to these two reduction rules, i.e. that these reduction rules have
been iteratively applied to G until they can not be applied any more. Note that
the iterative application of these reduction rules on a graph with n vertices can
be done in time polynomial in n.

Notation. We consider in this article simple undirected graphs with no
loops or multiple edges. In a graph G, the edge between vertices u and v
is denoted by uv. Given a graph G = (V,E) and a vertex u ∈ V , denote by
N(u) = {v ∈ V : uv ∈ E} the set of neighbors (or the open neighborhood) of u
and by N [u] = N(u) ∪ {u} the closed neighborhood of u. Whenever the graph G
is not clear from the context, we will write NG(u) and NG[u], respectively. De-
note by deg(u) = |N(u)| the degree of u in G and by δ(G) = min{deg(u) : u ∈ V }
the minimum degree of G. Let u and v be two non-adjacent vertices of G. Then,
u and v are called (false) twins if they have the same set of neighbors, i.e. if
N(u) = N(v). Furthermore, we call the vertices u and v siblings if N(u) ⊆ N(v)
or N(v) ⊆ N(u); note that two twins are always siblings.

Given a graph G = (V,E) and two vertices u, v ∈ V , we denote by d(u, v)
the distance of u and v, i.e. the length of a shortest path between u and v in
G. Furthermore, we denote by diam(G) = max{d(u, v) : u, v ∈ V } the diameter
of G and by rad(G) = minu∈V {max{d(u, v) : v ∈ V }} the radius of G. Given
a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S. We
denote for simplicity by G− S the induced subgraph G[V \S] of G. A complete
graph (i.e. clique) with t vertices is denoted by Kt. A graph G that contains
no Kt as an induced subgraph is called Kt-free. Furthermore, a subset D ⊆ V
is a dominating set of G if every vertex of V \D has at least one neighbor in D.
For simplicity, we refer in the remainder of the article to a proper k-coloring of
a graph G just as a k-coloring of G. Throughout the article we perform several
times the merging operation of two (or more) independent vertices, which is
defined as follows: we merge the independent vertices u1, u2, . . . , ut when we
replace them by a new vertex u0 with N(u0) = ∪k

i=1N(ui).
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Observe that, whenever a graph G contains a clique K4 with four vertices as
an induced subgraph, then G is not 3-colorable. Furthermore, we can check eas-
ily in polynomial time (e.g. with brute-force) whether a given graph G contains
aK4. Therefore we assume in the following that all given graphs areK4-free. Fur-
thermore, since a graph is 3-colorable if and only if all its connected components
are 3-colorable, we assume in the following that all given graphs are connected.
In order to present our two reduction rules of an arbitrary K4-free graph G,
recall first that the diamond graph is a graph with 4 vertices and 5 edges, i.e. it
consists of a K4 without one edge. Suppose that four vertices u1, u2, u3, u4 of
a given graph G = (V,E) induce a diamond graph, and assume without loss
of generality that u1u2 /∈ E. Then, it is easy to see that in any 3-coloring of G
(if such exists), u1 and u2 obtain necessarily the same color. Therefore we can
merge u1 and u2 into one vertex, as the next reduction rule states, and the
resulting graph is 3-colorable if and only if G is 3-colorable.

Reduction Rule 1 (diamond elimination). Let G = (V,E) be a K4-free
graph. If the quadruple {u1, u2, u3, u4} of vertices in G induces a diamond graph,
where u1u2 /∈ E, then merge vertices u1 and u2.

Note that, after performing a diamond elimination in a K4-free graph G, we may
introduce a new K4 in the resulting graph. Suppose now that a graph G has a
pair of siblings u and v and assume without loss of generality that N(u) ⊆ N(v).
Then, we can extend any proper 3-coloring of G − {u} (if such exists) to
a proper 3-coloring of G by assigning to u the same color as v. Therefore, we
can remove vertex u from G, as the next reduction rule states, and the resulting
graph G− {u} is 3-colorable if and only if G is 3-colorable.

Reduction Rule 2 (siblings elimination). Let G = (V,E) be aK4-free graph
and u, v ∈ V , such that N(u) ⊆ N(v). Then remove u from G.

Definition 1. Let G = (V,E) be a K4-free graph. If neither Reduction Rule 1
nor Reduction Rule 2 can be applied to G, then G is irreducible.

Due to Definition 1, a K4-free graph is irreducible if and only if it is diamond-
free and siblings-free. Given a K4-free graph G with n vertices, clearly we can
iteratively execute Reduction Rules 1 and 2 in time polynomial on n, until we
either find a K4 or none of the Reduction Rules 1 and 2 can be further applied.
If we find a K4, then clearly the initial graph G is not 3-colorable. Otherwise,
we transform G in polynomial time into an irreducible (K4-free) graph G′ of
smaller or equal size, such that G′ is 3-colorable if and only if G is 3-colorable.

Observation 1. Let G = (V,E) be a connected K4-free graph and G′ = (V ′, E′)
be the irreducible graph obtained from G. If G′ has more than two vertices, then
δ(G′) ≥ 2, diam(G′) ≤ diam(G), rad(G′) ≤ rad(G), and G′ is 3-colorable if and
only if G is 3-colorable. Moreover, for every u ∈ V ′, NG′(u) induces in G′ a graph
with maximum degree 1.
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3 Algorithms for 3-Coloring on Graphs with Diameter 2

In this section we present our results on graphs with diameter 2. In particular,
we provide in Section 3.1 our subexponential algorithm for 3-coloring on such
graphs. We then provide, for every n, an example of an irreducible and triangle-
free graph Gn with Θ(n) vertices and diameter 2, which is 3-colorable, has mini-
mum dominating set of size Θ(

√
n), and its minimum degree is δ(Gn) = Θ(

√
n).

Furthermore, we provide in Section 3.2 our polynomial algorithm for irreducible
graphs G with diameter 2, which have at least one vertex v, such that G−N [v]
is disconnected.

3.1 An 2O(
√

n logn)-Time Algorithm for Any Graph with Diameter 2

We first provide in the next lemma a well known algorithm that decides the
3-coloring problem on an arbitrary graph G, using a dominating set (DS) of G.

Lemma 1 (the DS-approach). Let G = (V,E) be a graph and D ⊆ V be a
dominating set of G. Then, the 3-coloring problem can be decided in O∗(3|D|)
time on G.

In an arbitrary graph G with n vertices and minimum degree δ, it is well known
how to construct in polynomial time a dominating set D with cardinality |D| ≤
n 1+ln(δ+1)

δ+1 [2] (see also [1]). On the other hand, in a graph with diameter 2, the
neighborhood of every vertex is a dominating set. Thus we can use Lemma 1
to provide in the next theorem an improved 3-coloring algorithm for the case of
graphs with diameter 2.

Theorem 1. Let G = (V,E) be an irreducible graph with n vertices. Let diam(G)
= 2 and δ be the minimum degree of G. Then, the 3-coloring problem can be de-
cided in 2O(min{δ,nδ log δ}) time on G.

Corollary 1. Let G = (V,E) be an irreducible graph with n vertices and let

diam(G) = 2. Then, the 3-coloring problem can be decided in 2O(
√
n logn) time

on G.

Given the statements of Lemma 1 and Theorem 1, a question that arises nat-
urally is whether the worst case complexity of the algorithm of Theorem 1 is
indeed 2O(

√
n logn) (as given in Corollary 1). That is, do there exist 3-colorable

irreducible graphs G with n vertices and diam(G) = 2, such that both δ(G)
and the size of the minimum dominating set of G are Θ(

√
n logn), or close to

this value? We answer this question to the affirmative, thus proving that, in the
case of 3-coloring of graphs with diameter 2, our analysis of the DS-approach
(cf. Lemma 1 and Theorem 1) is asymptotically almost tight. In particular, we
provide in the next theorem for every n an example of an irreducible 3-colorable
graph Gn with Θ(n) vertices and diam(Gn) = 2, such that both δ(Gn) and
the size of the minimum dominating set of G are Θ(

√
n). In addition, each of

these graphs Gn is triangle-free, as the next theorem states. The construction of
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the graphs Gn is based on a suitable and interesting matrix arrangement of the
vertices of Gn.

Theorem 2. Let n ≥ 1. Then there exists an irreducible and triangle-free 3-
colorable graph Gn = (Vn, En) with Θ(n) vertices, where diam(Gn) = 2 and
δ(Gn) = Θ(

√
n). Furthermore, the size of the minimum dominating set of Gn

is Θ(
√
n).

3.2 A Tractable Subclass of Graphs with Diameter 2

In this section we present a subclass of graphs with diameter 2, which admits
an efficient algorithm for 3-coloring. We first introduce the definition of locally
decomposable graphs.

Definition 2. Let G = (V,E) be a graph. If there exists a vertex v0 ∈ V such
that G−N [v0] is disconnected, then G is a locally decomposable graph.

We prove in Theorem 3 that, given an irreducible and locally decomposable
graph G with diam(G) = 2, we can decide 3-coloring on G in polynomial time.
Note here that there exist instances of K4-free graphs G with diameter 2, for
which G−N [v] is connected for every vertex v of G, but in the irreducible
graph G′ obtained by G (by iteratively applying the Reduction Rules 1 and 2),
G′ −NG′[v0] becomes disconnected for some vertex v0 of G′. That is, G′ may be
locally decomposable, although G is not. Therefore, if we provide as input to the
algorithm of Theorem 3 the irreducible graph G′ instead of G, this algorithm
decides in polynomial time the 3-coloring problem on G′ (and thus also on G).
The crucial idea of this algorithm is that, since G is irreducible and locally
decomposable, we can prove in Theorem 3 that every connected component of
G − N [v0] is bipartite, and that in every proper 3-coloring of G, all connected
components of G−N [v0] are colored using only two colors.

Theorem 3. Let G = (V,E) be an irreducible graph with n vertices and diam(G)
= 2. If G is a locally decomposable graph, then we can decide 3-coloring on G in
time polynomial on n.

A question that arises now naturally by Theorem 3 is whether there exist any
irreducible 3-colorable graph G = (V,E) with diam(G) = 2, for which G−N [v]
is connected for every v ∈ V . A negative answer to this question would imply
that we can decide the 3-coloring problem on any graph with diameter 2 in
polynomial time using the algorithm of Theorem 3. However, the answer to that
question is positive: for every n ≥ 1, the graph Gn = (Vn, En) that has been
presented in Theorem 2 is irreducible, 3-colorable, has diameter 2, and Gn−N [v]
is connected for every v ∈ Vn. Therefore, the algorithm of Theorem 3 can not
be used in a trivial way to decide in polynomial time the 3-coloring problem
for an arbitrary graph of diameter 2. We leave the tractability of the 3-coloring
problem of arbitrary diameter-2 graphs as an open problem.
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4 Almost Tight Results for Graphs with Diameter 3

4.1 An 2O(min{δΔ, n
δ log δ})-Time Algorithm for Any Graph with

Diameter 3

In the next theorem we use the DS-approach of Lemma 1 to provide an improved
3-coloring algorithm for the case of graphs with diameter 3.

Theorem 4. Let G = (V,E) be an irreducible graph with n vertices and diam(G)
= 3. Let δ and Δ be the minimum and the maximum degree of G, respectively.
Then, the 3-coloring problem can be decided in 2O(min{δΔ, n

δ log δ}) time on G.

To the best of our knowledge, the algorithm of Theorem 4 is the first subex-
ponential algorithm for graphs with diameter 3, whenever δ = ω(1), as well as
whenever δ = O(1) and Δ = o(n). As we will later prove in Section 4.3, the
running time provided in Theorem 4 is asymptotically almost tight whenever
δ = Θ(nε), for any ε ∈ [ 12 , 1).

4.2 The 3-Coloring Problem Is NP-Complete on Graphs with
Diameter 3 and Radius 2

In this section we provide a reduction from the 3SAT problem to the 3-coloring
problem of triangle-free graphs with diameter 3 and radius 2. Let φ be a 3-CNF
formula with n variables x1, x2, . . . , xn and m clauses α1, α2, . . . , αm. We can
assume in the following without loss of generality that each clause has three
distinct literals. We now construct an irreducible and triangle-free graph Hφ =
(Vφ, Eφ) with diameter 3 and radius 2, such that φ is satisfiable if and only if
Hφ is 3-colorable. Before we construct Hφ, we first construct an auxiliary graph
Gn,m that depends only on the number n of the variables and the number m of
the clauses in φ, rather than on φ itself.

We construct the graph Gn,m = (Vn,m, En,m) as follows. Let v0 be a vertex
with 8m neighbors v1, v2, . . . , v8m, which induce an independent set. Consider
also the sets U = {ui,j : 1 ≤ i ≤ n+ 5m, 1 ≤ j ≤ 8m} and W = {wi,j : 1 ≤ i ≤
n+5m, 1 ≤ j ≤ 8m} of vertices. Each of these sets has (n+ 5m)8m vertices. The
set Vn,m of vertices of Gn,m is defined as Vn,m = U ∪W ∪ {v0, v1, v2, . . . , v8m}.
That is,|Vn,m| = 2 · (n+ 5m)8m+ 8m+ 1, and thus |Vn,m| = Θ(m2), since
m = Ω(n).

The set En,m of the edges of Gn,m is defined as follows. Define first for ev-
ery j ∈ {1, 2, . . . , 8m} the subsets Uj = {u1,j, u2,j , . . . , un+5m,j} and Wj =
{w1,j , w2,j , . . . , wn+5m,j} of U and W , respectively. Then define N(vj) = {v0}∪
Uj ∪Wj for every j ∈ {1, 2, . . . , 8m}, where N(vj) denotes the set of neighbors
of vertex vj in Gn,m. For simplicity of the presentation, we arrange the vertices
of U ∪W on a rectangle matrix of size 2(n+ 5m)× 8m, cf. Figure 1(a). In this
matrix arrangement, the (i, j)th element is vertex ui,j if i ≤ n+ 5m, and vertex
wi−n−5m,j if i ≥ n+ 5m+ 1. In particular, for every j ∈ {1, 2, . . . , 8m}, the jth
column of this matrix contains exactly the vertices of Uj ∪Wj , cf. Figure 1(a).
Note that, for every j ∈ {1, 2, . . . , 8m}, vertex vj is adjacent to all vertices



Algorithms and Almost Tight Results for 3-Colorability 341

of the jth column of this matrix. Denote now by �i = {ui,1, ui,2, . . . , ui,8m}
(resp. �′i = {wi,1, wi,2, . . . , wi,8m}) the ith (resp. the (n+ 5m + i)th) row of
this matrix, cf. Figure 1(a). For every i ∈ {1, 2, . . . , n+ 5m}, the vertices of �i
and of �′i induce two independent sets in Gn,m. We then add between the ver-
tices of �i and the vertices of �′i all possible edges, except those of {ui,jwi,j :
1 ≤ j ≤ 8m}. That is, we add all possible (8m)2 − 8m edges between the ver-
tices of �i and of �′i, such that they induce a complete bipartite graph without
a perfect matching between the vertices of �i and of �′i, cf. Figure 1(b). Note
by the construction of Gn,m that both U and W are independent sets in Gn,m.
Furthermore note that the minimum degree in Gn,m is δ(Gn,m) = Θ(m) and the
maximum degree is Δ(Gn,m) = Θ(n+m). Thus, since m = Ω(n), we have that
δ(Gn,m) = Δ(Gn,m) = Θ(m). The construction of the graph Gn,m is illustrated
in Figure 1. Moreover, we can prove that Gn,m has diameter 3 and radius 2, and
furthermore that it is irreducible and triangle-free.

v0

v1 v2 . . .

U

W

u1,1
u2,1

w1,1
w2,1

�i

�′i

Uj

Wj

jth column

ui,j

wi,j

8m

v8m

n+ 5m

n+ 5m

un+5m,1

wn+5m,1

un+5m,8m

wn+5m,8m

w2,8m

w1,8m

u1,8m
u2,8m

�i

�′i
wi,1 wi,2 wi,8m

ui,1 ui,2 ui,8m

(a)

(b)

gk,4 gk,3

gk,6

gk,7gk,2

gk,5

gk,8

gk,1

(c)

Fig. 1. (a) The 2(n + 5m) × 8m-matrix arrangement of the vertices U ∪ W of Gn,m

and their connections with the vertices {v0, v1, v2, . . . , v8m}, (b) the edges between the
vertices of the ith row �i and the (n + 5m + i)th row �′i in this matrix, and (c) the
gadget with 8 vertices and 10 edges that we associate in Hφ to the clause αk of φ,
where 1 ≤ k ≤ m.

We now construct the graph Hφ = (Vφ, Eφ) from φ by adding 10m edges to
Gn,m as follows. Let k ∈ {1, 2, . . . ,m} and consider the clause αk = (lk,1 ∨ lk,2 ∨
lk,3), where lk,p ∈ {xik,p

, xik,p
} for p ∈ {1, 2, 3} and ik,1, ik,2, ik,3 ∈ {1, 2, . . . , n}.

For this clause αk, we add on the vertices of Gn,m an isomorphic copy of the
gadget in Figure 1(c), which has 8 vertices and 10 edges, as follows. Let p ∈
{1, 2, 3}. The literal lk,p corresponds to vertex gk,p of this gadget. If lk,p = xik,p

,
we set gk,p = uik,p,8k+1−p. Otherwise, if lk,p = xik,p

, we set gp = wik,p,8k+1−p.
Furthermore, for p ∈ {4, . . . , 8}, we set gk,p = un+5k+4−p,8k+1−p.
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Note that, by construction, the graphs Hφ and Gn,m have the same vertex set,
i.e. Vφ = Vn,m, and that En,m ⊂ Eφ. Therefore diam(Hφ) = 3 and rad(Hφ) = 2,
since diam(Gn,m) = 3 and rad(Gn,m) = 2. Observe now that every positive
literal of φ is associated to a vertex of U , while every negative literal of φ is
associated to a vertex ofW . In particular, each of the 3m literals of φ corresponds
by this construction to a different column in the matrix arrangement of the
vertices of U ∪W . If a literal of φ is the variable xi (resp. the negated variable
xi), where 1 ≤ i ≤ n, then the vertex of U (resp. W ) that is associated to
this literal lies in the ith row �i (resp. in the (n + 5m + i)th row �′i) of the
matrix. Moreover, note by the above construction that each of the 8m vertices
{qk,1, qk,2, . . . , qk,8}mk=1 corresponds to a different column in the matrix of the
vertices of U ∪W . Finally, each of the 5m vertices {qk,4, qk,5, qk,6, qk,7, qk,8}mk=1

corresponds to a different row in the matrix of the vertices of U .

Observation 2. The gadget of Figure 1(c) has no proper 2-coloring, as it con-
tains an induced cycle of length 5.

Observation 3. Consider the gadget of Figure 1(c). If we assign to vertices
gk,1, gk,2, gk,3 the same color, we can not extend this coloring to a proper 3-
coloring of the gadget. Furthermore, if we assign to vertices gk,1, gk,2, gk,3 in
total two or three colors, then we can extend this coloring to a proper 3-coloring
of the gadget.

Observation 4. For every i ∈ {1, 2, . . . , n+5m}, there exists no pair of adjacent
vertices in the same row �i or �′i in Hφ.

Theorem 5. The formula φ is satisfiable if and only if Hφ is 3-colorable.

Moreover we can prove that Hφ is irreducible and triangle-free, and thus we
conclude the main theorem of this section.

Theorem 6. The 3-coloring problem is NP-complete on irreducible and triangle-
free graphs with diameter 3 and radius 2.

4.3 Lower Time Complexity Bounds and General NP-Completeness
Results

In this section we present our three different amplification techniques of the re-
duction of Theorem 5. In particular, using these three amplifications we extend
for every ε ∈ [0, 1) the result of Theorem 6 (by providing both NP-completeness
and lower time complexity bounds) to irreducible triangle-free graphs with di-
ameter 3 and radius 2 and minimum degree δ = Θ(nε). Our extended NP-
completeness results, as well as our lower time complexity bounds are given
in Tables 1 and 2. A detailed presentation of the results in this section can be
found in [19].
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