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motivation
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• given a transport network 


• nodes are places


• edges are connections


• source — starting point


• destination — ending 
point


• find a short path between 
source and destination



motivation

3

• additional requirements


• point of interests 
3 - historical places 
1 - cultural place  
1 - garden / park 
2 - buildings (restaurants)


• minimum time to spend at 
each POI


• transportation links exist at 
discrete timestamps


• find a travel itinerary
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temporal graph
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a temporal graph  is a tuple , where  is a set of vertices and 

 is set of edges.


a temporal edge is a tuple , where  and 

G (V, E) V
E ⊆ V × V × [t]

(u, v, i) u, v ∈ V i ∈ [t]



temporal walk
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time-respecting (temporal) walk

A B C D E

1 2 4 6
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given a temporal graph , a temporal walk 


 


is an alternating sequence of vertices and edges, such that the 
timestamps of consecutive edges are (strictly) increasing

G = (V, E, τ)

W = uA eAB,1 uB eBC,2 uC eCD,4 uD eDE,6 uE eEC,7 uC



temporal path
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A B C D E

1 2 4 6

time-respecting (temporal) path

given a temporal graph , a temporal path


 


is an alternating sequence of vertices and edges, such that the timestamps 
on consecutive edges are (strictly) increasing and vertices are not repeated

G = (V, E, τ)

P = uA eAB,1 uB eBC,2 uC eCD,4 uD eDE,6 uE

* temporal path and walk variants with non-decreasing timestamps are also studied 



strict and non-strict temporal walks
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non-strict temporal walks

A B D E C

1 4 4 6

7

strict temporal walks

A B D E C

1 4 5 6
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• strict walks have increasing 
timestamps on consecutive 
edges


• non-strict temporal walks have 
non-increasing timestamps on 
consecutive edges


• generalises to paths as well


• our technique works for both 
settings



temporal path problems
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path problem in temporal graphsk−

input: given a temporal graph , and an integer  

question: is there a temporal path of length ?

G = (V, E, τ) k ≤ |V |
k − 1
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problem is NP-hard, hardness follows from -path problem in static graphsk



path motif problem in temporal graphs

      input: a temporal graph ,  

                a colouring function , and  

                a multiset   of colours,  

question: is there a temporal path  such that  

                the vertex colours of  agree with ?

G = (V, E)
c : V → [q]

M ⊆ [q] |M | = k
P

P M
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rainbow path problem in temporal graphs
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input: a temporal graph ,  

          a colouring function  

question: is there a temporal path of length  such that  
                the vertex colours are different?

G = (V, E, τ)
c : V → [q]

k − 1



motivation
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• additional requirements


• point of interests 
3 - historical places  
1 - cultural place 
1 - garden 
2 - buildings (restaurants)


• motif 


• find a path agreeing 

colours in 

M

M



algorithm
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preliminaries

• let  be a polynomial where each monomial  is of the form 


•  is multilinear if , i.e, no variable is repeated


• for example: 

-  is a polynomial,  

- monomials are ,  and 


• multilinear monomial:  


• not a multilinear monomial: ,  

' M x f1
1

x f2
2

… x fn
n

M f1, f2, …, fn ∈ {0,1}

' = x1 x2
2 x10

n−1 x5
n + x3 x5 xn−2 xn + x4 x5 x2

6 x10

x1 x2
2 x10

n−1 x5
n x3 x5 xn−2 xn x4 x5 x2

6 x10

x3 x5 xn−2 xn

x4 x5 x2
6 x10 x1 x2

2 x10
n−1 x5

n
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algebraic fingerprinting
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A

xA

yAB

xB xD xE xC

B D E C

yBD yDE yEC

• represent vertices and edges 
using variables


• encode a path/walk as a 
monomial


• assign values to variables at 

random — Galois field 


• evaluate the monomial  
(field multiplication)


• If variables are not repeated — 
evaluates to a non-zero term

2b

xA yAB xB xD xE xCyBD yDE yEC

A

xA

yAB

xB xE

B

D

E C

yDB yED

yEC

yBE

yBE

xA yAB xB yBE xE yED xD yDB xB yBE xE yEC xC



algebraic fingerprinting
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• evaluates to zero term — if at least 
one variable is repeated


• encode all walks in the graph as a 
polynomial


• repeat evaluation with  random 
assignments


•
false-negative probability is 


• no false-positives 

2ℓ

2ℓ − 1

2b

A

xA

yAB

xB xE

B

D

E C

yDB yED

yEC

yBE

yBE

0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1

1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1

0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0

1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1

1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0

1 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

xA

yAB

xB

xE

yBE

yED

xD

yDB

xB

xE

xC

yBE

yEC

xA yAB xB yBE xE yED xD yDB xB yBE xE yEC xC

*  is number of vertices in path/walkℓ



algorithm overview

• given a problem instance (say a graph) and a pattern to find (say a path)


• encode the problem as a polynomial such that there exists  
a multilinear monomial if and only if the desired pattern is present


• evaluate the polynomial using random substitutions


• if one of the substitutions evaluate to a non-zero term,  
then the desired pattern is present in the graph


• repeat the random substitution for  iterations2ℓ
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algebraic fingerprinting

• represent paths and walks as 
monomials


• detect if a monomial has a repeated 
variable


• theoretically best-known results for 
graphs problems such as 
Hamiltonian path,  
k-path,  
graph motifs, …


• theoretically best-known results for 
temporal graph problems such as 
colourful path, 
path motifs,  
restless path, …  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algorithm

• generate all walks of length  using a polynomial encoding 


• check if there exists a multilinear monomial of size  in 


• evaluate  with random substitution for the variables 


• there exists a path if and only if there exists a multilinear monomial

k − 1 P

2k − 1 P

P
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A

xA

yAB

xB xD xE xC

B D E C

yBD yDE yEC
xA yAB xB xD xE xCyBD yDE yEC

path-length : k − 1 (4)

monomial-size :  2k − 1 (9)



generating temporal walks

•  encoding of all walks 

ending at vertex , 

length , and 

at latest time 


•  are neighbours of  at time 


• only walk to  if we have reached  

at latest time 


•    : variable for vertex 


•   : variable for edge  at 

position  in the walk

'u,ℓ,i

u
ℓ − 1

i

v1, v2 u i

u v1, v2

i

xu u

yvu,ℓ,j (v, u, j)

ℓ
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Pu,ℓ,i = xu ∑
v∈Ni(u)

yuv,ℓ−1,iPv,ℓ−1,i−1 + Pu,ℓ,i−1



generating temporal walks (length = 0)
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generating temporal walks (length = 1)
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generating temporal walks (length = 2)
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algorithm

• generate all restless walks of length  using  

a polynomial encoding 


• check if there exists a multilinear monomial of size  in 


• evaluate  with random substitution for the variables 


• there exists a restless path if and only if there exists a  
multilinear monomial

k − 1
P

2k − 1 P

P
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A

xA

yAB

xB xD xE xC

B D E C

yBD yDE yEC
xA yAB xB xD xE xCyBD yDE yEC

path-length : k − 1 (4)

monomial-size :  2k − 1 (9)



vertex color constraints

• given a graph and a multiset of colors


• similarly, we can introduce new variable to 
restrict the color on vertices


• generate a polynomial encoding of walks


• evaluate the polynomial to check if there 
exists a path which agree with multiset of 

colors in 


• constrained-multilinear sieving


• Bjorklund et al. (STACS 2013, Algorithmica)

M
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overview of results
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   problem complexity

   k-temppath

   pathmotif

   colorfulpath

   (s,d)-colorfulpath

   rainbowpath

   EC-temppath

   EC-pathmotif

   VC-pathmotif

O(2k(nt + m))

O(2k(nt + m))

O(2k(nt + m))

O(2k(nt + m))

O(2k(nt + m))

O(2k(nt + m))

O(2k(nt + m))

O(qk2k(nt + m))

 - num of vertices 


 - num of edges 

n

m

 - max timestamp 


 - length of path/walk

t

k



extracting a solution
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extracting a solution
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• Bjorklund, Kaski and 
Kowalik (ESA 2016)


• recursively divide the 
graph and search for a 
pattern


•  queries


• we improve this to 

exactly  queries 
(Thejaswi et al. 2021)

O(k log n)

k



vertex localisation

• static underlying graph — backbone network 
obtained by ignoring edge timestamps


• fact : there exists a temporal path if there exists a 
path in static underlying graph  
(vice versa might not be true)


• build a sieve to evaluate find all vertices which are 
incident to at least one match


• difficult to give a theoretical bound on the size of the 
underlying graph 
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experiments
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experimental results

• datasets 
— transportation networks from Helsinki and Madrid  
     up to 36 million edges, 8 thousand vertices, 1400 timestamps 

— temporal graphs from SNAP 
     up to 800 thousand edges, 130 thousand vertices, 100 thousand timestamps  

— synthetic graphs 
     -regular and power-law graphs using graph generator 


• hardware 
— workstation  
     4-core Haswell CPU with 16 GB main memory 

— computenode  
     24-core Haswell CPU with 128 GB main memory 

d
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edge linear scaling (  )m
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  extraction — extract a solution

-regular graphs
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multiset exponential scaling (  )k
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* decision   — decide existence


  extraction — extract a solution

-regular graphs
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max timestamp scaling (  )t

35

* decision   — decide existence


  extraction — extract a solution

-regular graphs
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scaling to one billion edges (  )m

36

* decision   — decide existence


  extraction — extract a solution

-regular graphs


 (fixed)
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computenode
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real-world datasets
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* Base — baseline (extraction) 

Alg — algebraic fingerprinting (extraction)
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real-world datasets



summary of algorithmic results
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