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given a transport network
nodes are places

edges are connections
source — starting point

destination — ending
point

find a short path between
source and destination
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point of interests

3 - historical places

1 - cultural place

1 - garden / park

2 - buildings (restaurants)

minimum time to spend at
each POI

transportation links exist at
discrete timestamps

find a travel itinerary
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temporal graph

a temporal graph G is a tuple (V, E), where V is a set of vertices and
E C VX VX]|t]is set of edges.

a temporal edge is a tuple («, v, 1), where u,v € Vandi € [t}



temporal walk

given a temporal graph G = (V, £, 7), a temporal walk

W=u, €ap1 U €pco Uc €cpa Up €pEe6 UE €ECT7 UC

IS an alternating sequence of vertices and edges, such that the
timestamps of consecutive edges are (strictly) increasing

time-respecting (temporal) walk
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temporal path

' given a temporal graph G = (V, E, 7), a temporal path

P =uy, €A1 Up €pco Uc €cpa Up €pE6 UE

IS an alternating sequence of vertices and edges, such that the timestamps
on consecutive edges are (strictly) increasing and vertices are not repeated

time-respecting (temporal) path

*temporal path and walk variants with non-decreasing timestamps are also studied
7



strict and non-strict temporal walks

e strict walks have increasing
timestamps on consecutive
edges

* non-strict temporal walks have
non-increasing timestamps on
consecutive edges

* generalises to paths as well

e our technigue works for both
strict temporal walks Settmgs



temporal path problems



k—path problem in temporal graphs

mput glven a temporal graph G = (V E T) and an mteger k < \ V\
questlon IS there a temporal path of Iength k— 17

Temporal graph G*

problem is NP-hard, hardness follows from k-path problem in static graphs

10



path motif problem in temporal graphs

input: a temporal graph G = (V, E),
a colouring functionc : V — [¢g], and
a multiset M C [g] of colours, | M| =k
question: is there a temporal path P such that
the vertex colours of P agree with M?

A motif query and a temporal graph A PATHMOTIF

11



rainbow path problem In temporal graphs

mput a temporal graph G — (V E T)
| a colouring functionc : V — |g]

questlon is there a temporal path of length kK — 1 such that
the vertex colours are different??

OC000

A motif query and a temporal graph A RAINBOWPATH

12



motivation
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* find a path agreeing
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preliminaries

. let &” be a polynomial where each monomial M is of the form XX xﬁ”

» M is multilinear if f,,/, ...,f, € 10,1}, i.e, no variable is repeated

* for example:

- P = x x22 x,}BI x,/? + X3 X5 X, _» X, + X4 X5 x62 X10 Is @ polynomial,
2

2 10 .5

- monomials are x; x5 x_ —, X, X3 X5X, X, and x, X5 X; X

» multilinear monomial: X3 xsx, - X,

1 |- 2 2 .10 .5
 not a multilinear monomial: x, X5 X X1, X| X5 X~ X,

15



algebraic fingerprinting

* represent vertices and edges
XA XB XD XE Ac using variables

e encode a path/walk as a
monomial

XA YaB XB YBD XD YpE XE YEC XC

e assign values to variables at
random — Galois field 2°

e evaluate the monomial
(field multiplication)

Xy Xp Vap ~ Xp e If variables are not repeated —
evaluates to a non-zero term

XA YAB *B YBE XE YED XD YDB *B YBE *E YEC *C

16



algebraic fingerprinting

Xr » evaluates to zero term — if at least

one variable Is repeated

XA YaB XB YBE XE YED *D YDB *B YBE XE YEC XC  encode all walks in the graph as a

polynomial

‘4 ]]ol1]0[1]/0]/0|1]|1|1]|0[1|1[1]|0]|0]|0O
Yap| |O|O|1[1]|1]|]0(1|/0|0|O0O|O0O|1|1]|1|0]1 : : r
% | [0]1]0]/1]/0]1 0]/o]lo]o]o]o|o|o]|o]1 » repeat evaluation with 2° random
Ype| |1/0|1|/1|/1|1|1/0/0]/0]|0]0]|0]|0]|0]|O assignments
‘el |1]1|0|o|ojo|Oo|1|1|1[1][1[1]1]|0]0O
Yep| |0/0|0[0|0O|1[1|1[1[0/0|0|0|0|0]1
‘p|lolo|1|1|0|1]|0]|0|1|/0[1]|1[1]1/0]|0 20 — 1
o5/ 11]0/1/0/0/0/0/1/1/1]/0/0/1/0/1]*1 . false-negative probability is
‘s |]0o|1]0[1]|0]|1]|0]/0|0]0|0f0|0O|O]|O]1 2[9
YBE| |1/0|1|1]1][1]|1]/0/0]/0]|0]|0|0|0[0]0
‘“E||1|/1]0]0]0]0jO|1|1]|1[1|1|1]1]0]0 "
Vil [0]0l0l0lo]1 1]/41]/1,0/1/0 41 1]0]0 e no false-positives
‘] 1]1]1][0[1]/0|1]/0]|1/0/0/0|/0|0]|1]1

o/jojojojojoj0|0/0O|/O|OfO|0O|O0O|O]|O

* ¢ is number of vertices in path/walk

17



algorithm overview

e given a problem instance (say a graph) and a pattern to find (say a path)

* encode the problem as a polynomial such that there exists
a multilinear monomial if and only if the desired pattern is present

* evaluate the polynomial using random substitutions

e If one of the substitutions evaluate to a non-zero term,
then the desired pattern iIs present in the graph

. repeat the random substitution for 2 iterations

18
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Algorithmic solutions to tough computational
problems are making an impressive comeback.

’ BY IOANNIS KOUTIS AND RYAN WILLIAMS

Algebraic
Fingerprints
for Faster
Algorithms

IT WAS A major surprise when, in 2010, Andreas
Bjorklund discovered what many previously thought
impossible: a significantly improved algorithm for
the famous Hamiltonian path problem, also known as
Hamiltonicity. Hamiltonicity asks if a given graph
contains a path that goes through each vertex
exactly once, as illustrated in Figure 1.
Hamiltonicity was one of the first problems shown to
be NP-complete by Karp.”® The only known algorithms
for NP-complete problems require time scaling
exponentially with the size of the input. It is believed
they cannot be solved much faster in general,
although the possibility has not been ruled out."’
Given an undirected graph on n vertices, Bjérklund’s
algorithm can find a Hamiltonian path or report that
no such path exists in 0*(1.657") time.? The algorithm
still runs in exponential time but it is much faster than

a O%(f(k)) means a function smaller than p(n) - f(k) for some polynomial p(n).

98 COMMUNICATIONS OF THE ACM JANUARY 2016 | VOL.58 | NO.1

the 0*(2") running time of the previ-
ously fastest algorithm, known since
the 1960s.%"

Hamiltonicity is a prominent al-
gorithmic problem. Many research-
ers before Bjorklund have tried their
hand at it, without success. But some
of the tools Bjérklund used did not
become available until 2009 thanks
to progress in the k-path problem, a
related problem in the context of pa-
rameterized algorithms.

A parameterized race and a conjecture.
The k-path problem is a natural param-
eterized analogue of Hamiltonicity. The
goal now is to find in the given graph a
path of length k for some specified value
of k, rather than a path of length n. It
could be argued that, from a practical

Figure 1. A Hamiltonian path.

key insights

® There has recently been impressive
progress—after nearly 50 years of
stagnation—in algorithms that find exact
solutions for certain hard computational
problems, including the famous
Hamiltonian path problem.

® This progress is due to a few core ideas
that have found several applications.
A unifying theme is algebra: we “transform”
the given problem into a more general
algebraic format, then solve the
corresponding algebraic problem
that arises.

® This article walks the reader through
some of these exciting developments
and the underlying ideas. It also puts
them in context with the discover
process that led to them, highlighting
the role of parameterization.

monomials

detect if a monomial has a repeated
variable

theoretically best-known results for
graphs problems such as
Hamiltonian path,

k-path,

graph motifs, ...

theoretically best-known results for
temporal graph problems such as
colourful path,

path motifs,

restless path, ...



algorithm

XA YaB XB YBD XD YpE XE YEC XC

path-length : k — 1 (4)

monomial-size : 2k — 1 (9)

 generate all walks of length kK — 1 using a polynomial encoding P
» check if there exists a multilinear monomial of size 2k — 1 in P

e evaluate P with random substitution for the variables

* there exists a path if and only if there exists a multilinear monomial

20



generating temporal walks

.« &P, riencoding of all walks

ending at vertex u,
length £ — 1, and
at latest time 1

P,_.H.[ -1,i—1 Pv- = xvl yv; v, €—1,1 p'.'z,i—l,i—-l +

i
xr'ly"'l":ssf 1,1 P"’.‘i»{ Lt l+

%o Voo triPrtrin + P i - V1o V2 2r€ neighbours of u at time 1

» only walk to u if we have reached vy, v,
at latest time 1

e X, :variable for vertex u

Pu,f,i — Ay Z yuv,f—l,in,f—l,i—l T Pu,z/”,i—l

VN ) * Ve, : variable for edge (v, u, j) at

position £ in the walk

21



generating temporal walks (length = 0)

yvg,l,l(xa Y) = xU3 ‘@03,1,2 (Xﬂ Y) — xi)g

P 11 5¥) = X, P 195 ¥) = 5

(@) =1,i=1 (b)£=1,i =2



generating temporal walks (length = 1)

@03,2,1 (Xa Y) = xU3 y2)3l)2,1,1 xvz ‘@03,2,2 (X, Y) = 0

‘@Uz,lz (X, Y) —
Xvy Yvyv3,1,1 X3 T
Xvy Yvy03,1,2 Xv3

. o 07,2,1 (X, Y) —

Xvy Yvy01,1,1 X0y

«@vl,m(X, Y) = «@01,2,2 (X, Y) = Xv; Yvi03,1,2 Xvs

() f=2i=1 (d)£=2i=2

23



generating temporal walks (length = 2)

LQJU 9 =
903,3,1 (X, y) - 3,3,1 (X Y)

Xvs Yvyv3,1,1 Xvp Youy0,,1,1 Xy

Xv3 Yuy0s,1,1 Xvp Yvy0,,1,1 Xoy

c@2)2,3,1 (xa Y) =

1, 2 Xvy Yvyv3,2,2 Xv3 Yv30p,1,1 Xvp T+
Xvy Yuy01,2,2 X0y Yvy03,1,2 Xus

c@1)1,3,1 (Xy Y) =

Xv; Yv304,2,2 Xv3 Yus0,,1,1X 0,

(€)£=3i=1 (F)£=3,i=2

24



algorithm

YBD YDE YEC

XA YaB XB YBD XD YpE XE YEC XC

path-length: k — 1 (4)

monomial-size : 2k — 1 (9)

 generate all restless walks of length k£ — 1 using
a polynomial encoding P

o check if there exists a multilinear monomial of size 2k — 1 in P

e evaluate P with random substitution for the variables

* there exists a restless path if and only if there exists a
multilinear monomial

25



vertex color constraints

1,2

given a graph and a multiset of colors

similarly, we can introduce new variable to
restrict the color on vertices

generate a polynomial encoding of walks

evaluate the polynomial to check if there
exists a path which agree with multiset of

colors in M

constrained-multilinear sieving

Bjorklund et al. (STACS 2013, Algorithmica)

26
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&C In this paper, we study a family of pattern-detection prob- between S of vertices took pl'ace. .
5 lems in vertez-colored temporal graphs. In particular, given In thl? paper we study a family of pattern-detection
Introd 2 a vertex-colored temporal graph and a multi-set of colors problen.ls in graphs th‘:it are both ?abelea.! and temporal.
Patterr§ 2, as a query, we search for temporal paths in the graph that .In partlf:ular, we consider graphs in which each -vertex
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ko minutes on a haswell desktop with four cores. The colors associated with each location represent dif-
researcyp 8 ferent activities that can be enjoyed in that particular
erogengrs 1 Introduction location. For example, activity types may include items
associal o e e . . . such as museums, archaeological sites, restaurants, etc.
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straints (e.g., feasible transportation links, visit times,
and total duration) as well as the activity requirements
of the user, i.e., what kind of places they want to visit.

Another application is in the domain of analyzing
networks of financial transactions. Here, the vertices
represent financial entities, the vertex colors represent
features of the entities, and the temporal edges repre-
sent financial transactions between entities, annotated
with the time of the transaction, amount, and possi-
bly other features. An analyst may be interested in

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited
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overview of results

problem
k-temppath

pathmotif
colorfulpath
s,d)-colorfulpath
rainbowpath
EC-temppath
EC-pathmotif
VC-pathmotif

n - num of vertices
m - num of edges

complexity
OQ2K(nt + m))
OQ2K(nt + m))
OQ2K(nt + m))
OQ2K(nt + m))
O(q*2(nt + m))
OQ2K(nt + m))
OQ2K(nt + m))
OQ2K(nt + m))

! - max timestamp
k - length of path/walk



extracting a solution
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extracting a solution
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vertex localisation

e static underlying graph — backbone network
obtained by ignoring edge timestamps

» fact : there exists a temporal path if there exists a
path in static underlying graph
(vice versa might not be true)

e build a sieve to evaluate find all vertices which are
Incident to at least one match

o difficult to give a theoretical bound on the size of the
underlying graph
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experimental results

e datasets

— transportation networks from Helsinki and Madrid
up to 36 million edges, 8 thousand vertices, 1400 timestamps

— temporal graphs from SNAP
up to 800 thousand edges, 130 thousand vertices, 100 thousand timestamps
— synthetic graphs

d-regular and power-law graphs using graph generator

* hardware
— workstation
4-core Haswell CPU with 16 GB main memory
— computenode
24-core Haswell CPU with 128 GB main memory

32



edge linear scaling ( )

Number of edges (m)
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multiset exponential scaling ( 1)

d-regular graphs
d = 20 (fixed)
t = 100 (fixed)
n = 107 (fixed)

workstation

10 X Decision X
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10 11 12 13 14 15 16 17 18
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max timestamp scaling ( 7 )
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scaling to one billion edges ( )

10 | Extraction X< :
1()2 = Decision. ©O | a8 d-regular graphs
| 3 3 | d = 200 (fixed)
k = 5 (fixed)

t = 200 (fixed)

computenode

Number of edges (Wl) * decision — decide existence

extraction — extract a solution



real-world datasets

Dataset n m t k=9 k=10
Base Alg Base Alg

Tram(M) 70 35144 1265  1.37 0.24 1337.98 28.05

Train(M) 91 43677 1181  40.01 0.25 — 24.12
Bus(M) 4597 2254993 1440 6337.89 1.27 — 278.91
[U-bus(M) 7543 1495055 1440 744.79 1.30 — 325.51
Bus(H) 7959 6403785 1440 —  1.67 — 444.66
Metro(M) 467 37565706 1440 — 12.87 — 98.69

* Base — baseline (extraction)
Alg — algebraic fingerprinting (extraction)
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real-world datasets

Dataset n m t No vloc (seconds) Vloc (seconds) Speedup Memory (GB)
Bitcoin alpha 3783 24,190 1647 0.69 0.36 1.9 0.10
Madrid tram 70 35,139 1265 0.20 0.12 1.7 0.00
Bitcoin otc 588" 35,596 31,467 22.19 13.27 1.7 2.95
DNC emails 189° 39,268 19,383 4,63 2.83 1.6 0.58
Madrid train 9 43,672 1181 0.19 0.12 1.7 0.00
College msg 1899 58,975 35,913 12.52 714 1.8 1.11
Chess 7301 64,962 100 0.12 0.10 1.1 0.01
Elections 7118 103,679 98,026 85.85 53.32 1.6 11.40
Emails EU core 986 327,228 139 649 4415 23.93 1.8 2.26
Epinions 131,828 841,376 939 531 4,63 1.1 1.97
Madrid interurban bus 7543 1,495,050 1440 1.44 1.11 1.3 0.22
Madrid bus 4597 2,254,988 1440 1.77 1.40 1.3 0.21
Helsinki bus 7959 6,403,780 1440 3.50 3.52 1.0 0.41
Madrid metro 467 37,565,706 1195 12.87 12.87 1.0 1.76




summary of algorithmic results

Problem Hardness Time complexity Space complexity
k-TEMPPATH NP-complete (Lemma i O(2%k(nt +m)) O(nt)
PATHMOTIF NP-complete (Lemma t O(2kk(nt + m)) O(nt)
COLORFULPATH NP-complete (Lemma i O(2kk(nt + m)) O(nt)
(s,d)-COLORFULPATH NP-complete (Lemma i O (2 k(nt + m)) O(nt)
RAINBOWPATH NP-complete (Lemmal5.5) &(q*2¥k(nt +m)) &(nt)
EC-TEMPPATH NP-complete (Lemma t O (2% (nk + m)) O (n)
EC-PATHMOTIF NP-complete (Lemma h O(2%(nk + m)) O (n)
VC-PATHMOTIF NP-complete (Lemma|5.8)  &(2k(nt +m)) O(nt)
VC-COLORFULPATH Polynomial o(mt) O(nt)
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e source code — https://qgithub.com/suhastheju

— thank you
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