Finding path motifs in temporal graphs using algebraic fingerprints

Suhas Thejaswi

Department of Computer Science, Aalto University
suhas.thejaswi@aalto.fi

Juho Lauri

Helsinki, Finland juho.lauri@gmail.com

Aristides Gionis

Division of Theoretical Computer Science, KTH Royal Institute of Technology
argioni@kth.se

motivation

- given a transport network
- nodes are places
- edges are connections
- source - starting point
- destination - ending point
- find a short path between source and destination

motivation

- additional requirements
- point of interests

3 - historical places
1 - cultural place
1 - garden / park
2 - buildings (restaurants)

- minimum time to spend at each POI
- transportation links exist at discrete timestamps
- find a travel itinerary

outline

- preliminaries
- problem statement
- algebraic fingerprinting
- solving path-motif problem
- algorithmic results
- experimental results

temporal graph

a temporal graph G is a tuple (V, E), where V is a set of vertices and $E \subseteq V \times V \times[t]$ is set of edges.
a temporal edge is a tuple (u, v, i), where $u, v \in V$ and $i \in[t]$

temporal walk

given a temporal graph $G=(V, E, \tau)$, a temporal walk

$$
W=u_{A} e_{A B, 1} u_{B} e_{B C, 2} u_{C} e_{C D, 4} u_{D} e_{D E, 6} u_{E} e_{E C, 7} u_{C}
$$

is an alternating sequence of vertices and edges, such that the timestamps of consecutive edges are (strictly) increasing

time-respecting (temporal) walk

temporal path

given a temporal graph $G=(V, E, \tau)$, a temporal path

$$
P=u_{A} e_{A B, 1} u_{B} e_{B C, 2} u_{C} e_{C D, 4} u_{D} e_{D E, 6} u_{E}
$$

is an alternating sequence of vertices and edges, such that the timestamps on consecutive edges are (strictly) increasing and vertices are not repeated

[^0]
strict and non-strict temporal walks

non-strict temporal walks

strict temporal walks

- strict walks have increasing timestamps on consecutive edges
- non-strict temporal walks have non-increasing timestamps on consecutive edges
- generalises to paths as well
- our technique works for both settings

temporal path problems

k-path problem in temporal graphs

input: given a temporal graph $G=(V, E, \tau)$, and an integer $k \leq|V|$ question: is there a temporal path of length $k-1$?

Graph G

Temporal graph G^{τ}
problem is NP-hard, hardness follows from k-path problem in static graphs

path motif problem in temporal graphs

> input: a temporal graph $G=(V, E)$,
> a colouring function $c: V \rightarrow[q]$, and a multiset $M \subseteq[q]$ of colours, $|M|=k$
> question: is there a temporal path P such that the vertex colours of P agree with M ?

A motif query and a temporal graph

A PathMotif

rainbow path problem in temporal graphs

input: a temporal graph $G=(V, E, \tau)$,
a colouring function $c: V \rightarrow[q]$
question: is there a temporal path of length $k-1$ such that the vertex colours are different?

A motif query and a temporal graph

A RainbowPath

motivation

Legend (POI Categories)

- additional requirements
- point of interests

3 - historical places
1 - cultural place
1 - garden
2 - buildings (restaurants)

- motif M

- find a path agreeing colours in M

algorithm

preliminaries

- let \mathscr{P} be a polynomial where each monomial M is of the form $x_{1}^{f_{1}} x_{2}^{f_{2}} \ldots x_{n}^{f_{n}}$
- M is multilinear if $f_{1}, f_{2}, \ldots, f_{n} \in\{0,1\}$, i.e, no variable is repeated
- for example:
- $\mathscr{P}=x_{1} x_{2}^{2} x_{n-1}^{10} x_{n}^{5}+x_{3} x_{5} x_{n-2} x_{n}+x_{4} x_{5} x_{6}^{2} x_{10}$ is a polynomial,
- monomials are $x_{1} x_{2}^{2} x_{n-1}^{10} x_{n}^{5}, x_{3} x_{5} x_{n-2} x_{n}$ and $x_{4} x_{5} x_{6}^{2} x_{10}$
- multilinear monomial: $x_{3} x_{5} x_{n-2} x_{n}$
- not a multilinear monomial: $x_{4} x_{5} x_{6}^{2} x_{10}, x_{1} x_{2}^{2} x_{n-1}^{10} x_{n}^{5}$

algebraic fingerprinting

$$
x_{A} y_{A B} x_{B} y_{B D} \quad x_{D} \quad y_{D E} \quad x_{E} \quad y_{E C} \quad x_{C}
$$

$x_{A} y_{A B} x_{B} y_{B E} x_{E} y_{E D} x_{D} y_{D B} x_{B} y_{B E} x_{E} y_{E C} x_{C}$

- represent vertices and edges using variables
- encode a path/walk as a monomial
- assign values to variables at random - Galois field 2^{b}
- evaluate the monomial (field multiplication)
- If variables are not repeated evaluates to a non-zero term

$x_{A} y_{A B} x_{B} y_{B E} x_{E} y_{E D} x_{D} y_{D B} x_{B} y_{B E} x_{E} y_{E C} x_{C}$

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

algebraic fingerprinting

- evaluates to zero term - if at least one variable is repeated
- encode all walks in the graph as a polynomial
- repeat evaluation with 2^{ℓ} random assignments
- false-negative probability is $\frac{2 \ell-1}{2^{b}}$
- no false-positives
* ℓ is number of vertices in path/walk

algorithm overview

- given a problem instance (say a graph) and a pattern to find (say a path)
- encode the problem as a polynomial such that there exists a multilinear monomial if and only if the desired pattern is present
- evaluate the polynomial using random substitutions
- if one of the substitutions evaluate to a non-zero term, then the desired pattern is present in the graph
- repeat the random substitution for 2^{ℓ} iterations

algebraic fingerprinting

- represent paths and walks as monomials
- detect if a monomial has a repeated variable
- theoretically best-known results for graphs problems such as
Hamiltonian path,
k-path, graph motifs, ...
- theoretically best-known results for temporal graph problems such as colourful path, path motifs, restless path, ...

algorithm

$$
\begin{gathered}
x_{A} y_{A B} x_{B} y_{B D} x_{D} y_{D E} x_{E} y_{E C} x_{C} \\
\text { path-length : } k-1(4) \\
\text { monomial-size : } 2 k-1(9)
\end{gathered}
$$

- generate all walks of length $k-1$ using a polynomial encoding P
- check if there exists a multilinear monomial of size $2 k-1$ in P
- evaluate P with random substitution for the variables
- there exists a path if and only if there exists a multilinear monomial

generating temporal walks

$P_{v_{4}, \ell-1, i-1}$

- $\mathscr{P}_{u, \ell, i}$ encoding of all walks ending at vertex u, length $\ell-1$, and at latest time i
- v_{1}, v_{2} are neighbours of u at time i
- only walk to u if we have reached v_{1}, v_{2} at latest time i
- x_{u} : variable for vertex u

$$
P_{u, \ell, i}=x_{u} \sum_{v \in N_{i}(u)} y_{u v, \ell-1, i} P_{v, \ell-1, i-1}+P_{u, \ell, i-1}
$$

- $y_{v u, \ell, j}$: variable for edge (v, u, j) at position ℓ in the walk

generating temporal walks (length $=0$)

$$
\mathscr{P}_{v_{1}, 1,1}(\mathbf{x}, \mathbf{y})=x_{v_{1}}
$$

$\mathscr{P}_{v_{3}, 1,2}(\mathbf{x}, \mathbf{y})=x_{v_{3}}$

$$
\mathscr{P}_{v_{1}, 1,2}(\mathbf{x}, \mathbf{y})=x_{v_{1}}
$$

(a) $\ell=1, i=1$
(b) $\ell=1, i=2$

generating temporal walks (length $=1$)

$$
\mathscr{P}_{v_{3}, 2,1}(\mathbf{x}, \mathbf{y})=x_{v_{3}} y_{v_{3} v_{2}, 1,1} x_{v_{2}}
$$

$$
\mathscr{P}_{v_{1}, 2,1}(\mathbf{x}, \mathbf{y})=\emptyset
$$

$\mathscr{P}_{v_{3}, 2,2}(\mathbf{x}, \mathbf{y})=\emptyset$

$$
\mathscr{P}_{v_{1}, 2,2}(\mathbf{x}, \mathbf{y})=x_{v_{1}} y_{v_{1} v_{3}, 1,2} x_{v_{3}}
$$

(c) $\ell=2, i=1$
(d) $\ell=2, i=2$

generating temporal walks (length = 2)

$$
\mathscr{P}_{v_{1}, 3,1}(\mathbf{x}, \mathbf{y})=\emptyset
$$

(e) $\ell=3, i=1$
(f) $\ell=3, i=2$

algorithm

$$
\begin{gathered}
x_{A} y_{A B} x_{B} y_{B D} x_{D} y_{D E} x_{E} y_{E C} x_{C} \\
\text { path-length : } k-1(4) \\
\text { monomial-size : } 2 k-1(9)
\end{gathered}
$$

- generate all restless walks of length $k-1$ using a polynomial encoding P
- check if there exists a multilinear monomial of size $2 k-1$ in P
- evaluate P with random substitution for the variables
- there exists a restless path if and only if there exists a multilinear monomial

vertex color constraints

$M: g$ (b) b

- given a graph and a multiset of colors
- similarly, we can introduce new variable to restrict the color on vertices
- generate a polynomial encoding of walks
- evaluate the polynomial to check if there exists a path which agree with multiset of colors in M
- constrained-multilinear sieving
- Bjorklund et al. (STACS 2013, Algorithmica)

overview of results

Pattern detection in large temporal graphs using algebraic fingerprints*
Suhas Thejaswi ${ }^{\dagger}$
Aristides Gionis ${ }^{\ddagger}$

problem	complexity
k-temppath	$O\left(2^{k}(n t+m)\right)$
pathmotif	$O\left(2^{k}(n t+m)\right)$
colorfulpath	$O\left(2^{k}(n t+m)\right)$
(s,d)-colorfulpath	$O\left(2^{k}(n t+m)\right)$
rainbowpath	$O\left(q^{k}{ }^{k}(n t+m)\right)$
EC-temppath	$O\left(2^{k}(n t+m)\right)$
EC-pathmotif	$O\left(2^{k}(n t+m)\right)$
VC-pathmotif	$O\left(2^{k}(n t+m)\right)$

$$
\begin{array}{ll}
n \text { - num of vertices } & t \text { - max timestamp } \\
m \text { - num of edges } & k \text { - length of path/walk }
\end{array}
$$

extracting a solution

extracting a solution

- Bjorklund, Kaski and Kowalik (ESA 2016)
- recursively divide the graph and search for a pattern
- $O(k \log n)$ queries
- we improve this to exactly k queries (Thejaswi et al. 2021)

vertex localisation

- static underlying graph - backbone network obtained by ignoring edge timestamps
- fact : there exists a temporal path if there exists a path in static underlying graph (vice versa might not be true)
- build a sieve to evaluate find all vertices which are incident to at least one match
- difficult to give a theoretical bound on the size of the underlying graph

experiments

experimental results

- datasets
- transportation networks from Helsinki and Madrid up to 36 million edges, 8 thousand vertices, 1400 timestamps
- temporal graphs from SNAP
up to 800 thousand edges, 130 thousand vertices, 100 thousand timestamps
- synthetic graphs
d-regular and power-law graphs using graph generator
- hardware
- workstation

4-core Haswell CPU with 16 GB main memory

- computenode

24-core Haswell CPU with 128 GB main memory

edge linear scaling (m)

multiset exponential scaling (k)

d-regular graphs
$d=20$ (fixed)
$t=100$ (fixed)
$n=10^{3}$ (fixed)
workstation

max timestamp scaling (t)

scaling to one billion edges (m)

d-regular graphs
$d=200$ (fixed)
$k=5$ (fixed)
$t=200$ (fixed)
computenode

* decision - decide existence extraction - extract a solution

real-world datasets

Dataset	n	m	t	$k=5$		$k=10$	
				Base	Alg	Base	Alg
Tram(M)	70	35144	1265	1.37	0.24	1337.98	28.05
Train(M)	91	43677	1181	40.01	0.25	-	24.12
Bus(M)	4597	2254993	1440	6337.89	1.27	-	278.91
IU-bus(M)	7543	1495055	1440	744.79	1.30	-	325.51
Bus(H)	7959	6403785	1440	-	1.67	-	444.66
Metro(M)	467	37565706	1440		12.87	-	98.69

[^1]
real-world datasets

Dataset	n	m	t	No vloc (seconds)	Vloc (seconds)	Speedup	Memory (GB)
Bitcoin alpha	3783	24,190	1647	0.69	0.36	1.9	0.10
Madrid tram	70	35,139	1265	0.20	0.12	1.7	0.00
Bitcoin otc	5881	35,596	31,467	22.19	13.27	1.7	2.95
DNC emails	1891	39,268	19,383	4.63	2.83	1.6	0.58
Madrid train	91	43,672	1181	0.19	0.12	1.7	0.00
College msg	1899	58,975	35,913	12.52	7.14	1.8	1.11
Chess	7301	64,962	100	0.12	0.10	1.1	0.01
Elections	7118	103,679	98,026	85.85	53.32	1.6	11.40
Emails EU core	986	327,228	139649	44.15	23.93	1.8	2.26
Epinions	131,828	841,376	939	5.31	4.63	1.1	1.97
Madrid interurban bus	7543	1,495,050	1440	1.44	1.11	1.3	0.22
Madrid bus	4597	2,254,988	1440	1.77	1.40	1.3	0.21
Helsinki bus	7959	6,403,780	1440	3.50	3.52	1.0	0.41
Madrid metro	467	37,565,706	1195	12.87	12.87	1.0	1.76

summary of algorithmic results

Problem	Hardness	Time complexity	Space complexity
k-TEMPPATH	NP-complete (Lemma 5.1$)$	$\mathscr{O}\left(2^{k} k(n t+m)\right)$	$\mathscr{O}(n t)$
PATHMOTIF	NP-complete (Lemma 5.2	$\mathscr{O}\left(2^{k} k(n t+m)\right)$	$\mathscr{O}(n t)$
COLORFULPATH	NP-complete (Lemma 5.3	$\mathscr{O}\left(2^{k} k(n t+m)\right)$	$\mathscr{O}(n t)$
(s, d)-ColorfulPath	NP-complete (Lemma 5.4	$\mathscr{O}\left(2^{k} k(n t+m)\right)$	$\mathscr{O}(n t)$
RAINBOWPATH	NP-complete (Lemma 5.5	$\mathscr{O}\left(q^{k} 2^{k} k(n t+m)\right)$	$\mathscr{O}(n t)$
EC-TEMPPATH	NP-complete (Lemma 5.6	$\mathscr{O}\left(2^{k}(n k+m)\right)$	$\mathscr{O}(n)$
EC-PATHMOTIF	NP-complete (Lemma 5.7	$\mathscr{O}\left(2^{k}(n k+m)\right)$	$\mathscr{O}(n)$
VC-PATHMOTIF	NP-complete (Lemma 5.8	$\mathscr{O}\left(2^{k} k(n t+m)\right)$	$\mathscr{O}(n t)$
VC-CoLORFULPATH	Polynomial	$\mathscr{O}(m t)$	$\mathscr{O}(n t)$

references

- Thejaswi, S. and Gionis, A., 2020. Pattern detection in large temporal graphs using algebraic fingerprints. In Proceedings of the 2020 SIAM International Conference on Data Mining (pp. 37-45).
- Thejaswi, S., Gionis, A. and Lauri, J., 2020. Finding path motifs in large temporal graphs using algebraic fingerprints. Big Data, 8(5), pp.335-362. Special issue - Best of SIAM Data Mining 2020
- Thejaswi, S. Lauri, J. and Gionis, A., 2020. Restless reachability problems in temporal graphs. arXiv preprint arXiv:2010.08423
- source code - https://github.com/suhastheju

\author{

- thank you
}

[^0]: * temporal path and walk variants with non-decreasing timestamps are also studied

[^1]: * Base - baseline (extraction)

 Alg - algebraic fingerprinting (extraction)

