Temporal Pathfinding in the Presence of Delays

Malte Renken

Algorithmics and Computational Complexity, TU Berlin, Germany

July 2022

Joint work with Eugen Füchsle, Hendrik Molter, and Rolf Niedermeier.

Motivation

Main Question

How to plan routes in temporal networks subject to delays?

Model

We assume that we have:

- a temporal graph \mathcal{G}, which is a directed multigraph where every edge e has
- a departure time $\mathrm{t}(e)$,
- a duration $\lambda(e)$,
- an arrival time $\mathrm{t}(e)+\lambda(e)$;
- a start vertex s and destination d;
- an upper bound δ on the delay of any single edge;
- an upper bound $x \in \mathbb{N}$ on the number of delayed edges.

Remarks:

- parallel edges are delayed independently;
- $\lambda(e)$ already includes transfer time \rightsquigarrow you can arrive at 3 o'clock and depart again at 3 o'clock.

Problem variants

Input:

- Temporal graph
$\mathcal{G}=(V, E, \mathrm{t}, \lambda)$
- Start $s \in V$
- Number of delays x
- Destination $d \in V$
- Delay time δ

Question:
Can we get from s to d even if an adversary chooses which edges to delay?

When do we know which edges are delayed?

- Delay-Robust Connection: We are told all the delays before we pick a route.
- Delayed-Routing Game: We learn the delays as they occur.
- Delay-Robust Route: We have to fix our route before knowing any delays.

Results overview

$$
x=\# \text { delays }
$$

- Delay-Robust Connection: We are told all the delays before we pick a route.
- Solvable in $\mathcal{O}(|V| \cdot|E|)$ time by a flow-based algorithm.
- Delayed-Routing Game: We learn the delays as they occur.
- Solvable in $\mathcal{O}(|V| \cdot|E| \cdot x)$ time by dynamic programming.
- Delayed-Routing Path Game: We learn the delays as they occur; we may not revisit earlier vertices.
- PSPACE-complete.
- Delay-Robust Route: We have to fix our route before knowing any delays.
- Strongly NP-complete;
- Solvable in $\mathcal{O}\left(|E|^{x+1} x^{2}\right)$.

Delays

What does it mean for an edge e to be delayed?
Option A: Train stuck in between stations: duration (and arrival) increase.
Option B: Train stuck at the station: departure (and arrival) increase \leadsto you might be lucky and still catch it even though you are late.

We care about worst case scenarios \rightsquigarrow may assume A.

For the same reason: All delays will use the maximum amount δ.

Delay-Robust Connection

We are told all the delays before we pick a route.
Idea: Reduce to a flow problem.

- Red and dashed edges have capacity ∞.
- Solid black edges have capacity 1.

Lemma
YES iff max flow from $(s, 1)$ to $(d, 4)$ is larger than x.

Delayed-Routing (Path) Game

We learn the delays as they occur.

Rules for Delayed-Routing Game:

- Traveler: choose next edge to traverse.
- Adversary: choose whether to delay that edge or not.

Traveler starts at s at time 1 and wins if and only if they reach d.
Extra rule for Delayed-Routing Path Game: Traveler loses if they revisit a vertex.

Example:

- Number of delays $x=1$.
- Delay time $\delta=1$.

Delayed-Routing (Path) Game

Algorithms

Delayed-Routing Game:

Traveler's turn can be described with:

- Current vertex
- Current time step
- Remaining delays

Delayed-Routing Path Game:

Traveler's turn can be described with:

- Current vertex
- Current time step
- Remaining delays
- Already visited vertices.

Strategy for the traveler:

For each edge the traveler could possibly take next, test if there is a winning strategy in both of these cases:

- edge is delayed, number of delays is reduced by 1 ,
- edge is not delayed, number of delays remains unchanged.

Dynamic programming \Rightarrow polynomial time
Depth-first search \Rightarrow polynomial space

Delay-Robust Route

We have to fix our route before knowing any delays.

$$
x=\# \text { delays }
$$

Given a route $s=v_{0}, v_{1}, \ldots, v_{k}=d$, for every prefix $v_{0}, v_{1}, \ldots, v_{i}$ we can draw a delay profile:

Can efficiently compute profile for v_{i+1} from profile of v_{i}.
\rightsquigarrow Delay-Robust Route \in NP
Can bound number of possible profiles by $|E|^{x}$ $\rightsquigarrow \mathcal{O}\left(|E|^{x+1} x^{2}\right)$ algorithm

Summary

In temporal networks, computing routes that cope with delays can be done

- efficiently, if you know the delays up front;
- pretty efficiently, if you don't know them, but can adjust your route on the go (but only if you can go in cycles);
- efficiently only in special cases if you need to fix you route beforehand.

Thank you!

