Counting Temporal Paths

Jessica Enright ${ }^{1} \quad$ Kitty Meeks ${ }^{1} \quad$ Hendrik Molter ${ }^{2}$
${ }^{1}$ School of Computing Science, University of Glasgow, Glasgow, UK
${ }^{2}$ Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel

Algorithmic Aspects of Temporal Graphs V

Project initiated at Dagstuhl Seminar "Temporal Graphs: Structure, Algorithms, Applications".

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal (s, z)-Path
Sequence of time edges forming a path from s to z that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal (s, z)-Path
Sequence of time edges forming a path from s to z that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal (s, z)-Path
Sequence of time edges forming a path from s to z that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ is a vertex set V with a list of edge sets E_{1}, \ldots, E_{T} over V, where T is the lifetime of \mathscr{G}.

Temporal (s, z)-Path
Sequence of time edges forming a path from s to z that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Motivation: Temporal Betweenness

"How important is Berlin main station as a hub for the public transportation network?"

Motivation: Temporal Betweenness

"How important is Berlin main station as a hub for the public transportation network?"
Betweenness of a vertex v in a graph $G=(V, E)$:
"How likely is a shortest (optimal) path to pass through vertex v ?"

Optimal Temporal Paths

Which temporal path from s to z is optimal?

Optimal Temporal Paths

Which temporal path from s to z is optimal?

- Shortest temporal paths use the minimum number of edges.

Optimal Temporal Paths

Which temporal path from s to z is optimal?

- Shortest temporal paths use the minimum number of edges.
- Foremost temporal paths have a minimum arrival time.

Optimal Temporal Paths

Which temporal path from s to z is optimal?

- Shortest temporal paths use the minimum number of edges.
- Foremost temporal paths have a minimum arrival time.
- Fastest temporal paths have a minimum difference between starting and arrival time.

Temporal Betweenness: Definition

Temporal Betweenness Centrality

$$
C_{B}^{(\star)}(v)=\sum_{s \neq v \neq z} \begin{cases}0 & \nexists \text { temp. }(s, z) \text {-path } \\ \frac{\sigma_{s z}^{(\star)}(v)}{\sigma_{s z}^{(\star)}} & \text { otherwise }\end{cases}
$$

$\sigma_{s z}^{(\star)}: \#$ *-temp. paths from s to $z \quad \sigma_{s z}^{(\star)}(v)$: \# *-temp. paths from s to z via v

Temporal Betweenness: Definition

Temporal Betweenness Centrality

$$
C_{B}^{(\star)}(v)=\sum_{s \neq v \neq z} \begin{cases}0 & \nexists \text { temp. }(s, z) \text {-path } \\ \frac{\sigma_{s z}^{(\star)}(v)}{\sigma_{s z}^{(\star)}} & \text { otherwise }\end{cases}
$$

$\sigma_{s z}^{(\star)}: \#$ *-temp. paths from s to $z \quad \sigma_{s z}^{(\star)}(v)$: \# *-temp. paths from s to z via v
\star denotes "optimality concept"

Temporal Betweenness: Definition

Temporal Betweenness Centrality

$$
C_{B}^{(\star)}(v)=\sum_{s \neq v \neq z} \begin{cases}0 & \nexists \text { temp. }(s, z) \text {-path } \\ \frac{\sigma_{s z}^{(\star)}(v)}{\sigma_{s z}^{(\star)}} & \text { otherwise }\end{cases}
$$

$\sigma_{s z}^{(\star)}:$ \# \star-temp. paths from s to $z \quad \sigma_{s z}^{(\star)}(v)$: \# \star-temp. paths from s to z via v
^ denotes "optimality concept"

■ Computing temporal betweenness essentially equivalent to counting (optimal) temporal paths.

Temporal Betweenness: Definition

Temporal Betweenness Centrality

$$
C_{B}^{(\star)}(v)=\sum_{s \neq v \neq z} \begin{cases}0 & \nexists \text { temp. }(s, z) \text {-path } \\ \frac{\sigma_{s z}^{(\star)}(v)}{\sigma_{s z}^{(\star)}} & \text { otherwise }\end{cases}
$$

$\sigma_{s z}^{(\star)}: \#$-temp. paths from s to $z \quad \sigma_{s z}^{(\star)}(v)$: \# ג-temp. paths from s to z via v

> ^ denotes "optimality concept"

■ Computing temporal betweenness essentially equivalent to counting (optimal) temporal paths.

- For many interesting optimality concepts such as "foremost" or "fastest" the corresponding counting problem is \#P-hard.

Temporal Path Counting I

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Temporal Path Counting I

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Remarks:

■ Solving \#Temporal Path allows to count foremost temporal paths by removing all "late" time steps.

Temporal Path Counting I

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Remarks:

■ Solving \#Temporal Path allows to count foremost temporal paths by removing all "late" time steps.

- Solving \#Temporal Path allows to count fastest temporal paths with linear overhead (in T).

Temporal Path Counting I

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Remarks:

- Solving \#Temporal Path allows to count foremost temporal paths by removing all "late" time steps.
- Solving \#Temporal Path allows to count fastest temporal paths with linear overhead (in T).
- One can count temporal (s, z)-paths via a vertex v by removing v from \mathscr{G}.

Temporal Path Counting I

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Remarks:

- Solving \#Temporal Path allows to count foremost temporal paths by removing all "late" time steps.
- Solving \#Temporal Path allows to count fastest temporal paths with linear overhead (in T).
- One can count temporal (s, z)-paths via a vertex v by removing v from \mathscr{G}.
- For this talk: focus on non-strict temporal paths.

Temporal Path Counting II

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Observation

\#Temporal Path is \#P-hard even if $T=1$.

Temporal Path Counting II

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Observation

\#Temporal Path is \#P-hard even if $T=1$.

Parameterized Counting

Temporal Path Counting II

\#Temporal Path

Input: A temporal graph $\mathscr{G}=\left(V,\left(E_{i}\right)_{i \in[T]}\right)$ and two vertices $s, z \in V$.
Task: Count the temporal (s, z)-paths in \mathscr{G}.

Observation

\#Temporal Path is \#P-hard even if $T=1$.

Parameterized Counting
Approximate Counting

Warm-Up: Temporal Path Counting on Forests

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (s, z)-path.

Warm-Up: Temporal Path Counting on Forests

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (s, z)-path.
Let $s=v_{1}, v_{2}, \ldots, v_{\ell}=z$ be the sequence of vertices visited by any temporal (s, z)-path.

Warm-Up: Temporal Path Counting on Forests

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (s, z)-path.
Let $s=v_{1}, v_{2}, \ldots, v_{\ell}=z$ be the sequence of vertices visited by any temporal (s, z)-path.
Use dynamic program
$F(v, t):=$ number of temporal (s, v)-paths that arrive in v at time t or earlier.

Warm-Up: Temporal Path Counting on Forests

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (s, z)-path.
Let $s=v_{1}, v_{2}, \ldots, v_{\ell}=z$ be the sequence of vertices visited by any temporal (s, z)-path.
Use dynamic program
$F(v, t):=$ number of temporal (s, v)-paths that arrive in v at time t or earlier.

$$
\begin{aligned}
F\left(v_{1}=s, t\right) & =1 \\
F\left(v_{i}, t\right) & =\sum_{t^{\prime} \leq t \text { with }\left\{v_{i-1}, v_{i}\right\} \in E_{t^{\prime}}} F\left(v_{i-1}, t^{\prime}\right) \text { for } 1<i \leq \ell .
\end{aligned}
$$

Warm-Up: Temporal Path Counting on Forests

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (s, z)-path.
Let $s=v_{1}, v_{2}, \ldots, v_{\ell}=z$ be the sequence of vertices visited by any temporal (s, z)-path.
Use dynamic program
$F(v, t):=$ number of temporal (s, v)-paths that arrive in v at time t or earlier.

$$
\begin{aligned}
F\left(v_{1}=s, t\right) & =1 \\
F\left(v_{i}, t\right) & =\sum_{t^{\prime} \leq t \text { with }\left\{v_{i-1}, v_{i}\right\} \in E_{t^{\prime}}} F\left(v_{i-1}, t^{\prime}\right) \text { for } 1<i \leq \ell .
\end{aligned}
$$

Theorem

\#Temporal Path solvable in polynomial time if the underlying graph is a forest.

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Theorem

\#Temporal Path is \oplus W[1]-hard when parameterized by the feedback vertex number of the underlying graph.

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Theorem

\#Temporal Path is \oplus W[1]-hard when parameterized by the feedback vertex number of the underlying graph.

Main Ideas:

■ Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Theorem

\#Temporal Path is \oplus W[1]-hard when parameterized by the feedback vertex number of the underlying graph.

Main Ideas:

■ Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.
Each vertex v represented by two intervals a_{v}, b_{v}. Vertices v, w have an edge iff $a_{v} \cap a_{w} \neq \emptyset$ or $b_{v} \cap b_{w} \neq \emptyset$.

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Theorem

\#Temporal Path is \oplus W[1]-hard when parameterized by the feedback vertex number of the underlying graph.

Main Ideas:

■ Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.
Each vertex v represented by two intervals a_{v}, b_{v}. Vertices v, w have an edge iff $a_{v} \cap a_{w} \neq \emptyset$ or $b_{v} \cap b_{w} \neq \emptyset$.

- Investigating the reduction shows that \oplus Multicolored Independent Set on 2-Track Interval Graphs is $\oplus \mathrm{W}[1]$-hard when parameterized by the number of colors.

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Theorem

\#Temporal Path is \oplus W[1]-hard when parameterized by the feedback vertex number of the underlying graph.

Main Ideas:

■ Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.
Each vertex v represented by two intervals a_{v}, b_{v}. Vertices v, w have an edge iff $a_{v} \cap a_{w} \neq \emptyset$ or $b_{v} \cap b_{w} \neq \emptyset$.

- Investigating the reduction shows that \oplus Multicolored Independent Set on 2-Track Interval Graphs is $\oplus \mathrm{W}[1]$-hard when parameterized by the number of colors.
- Model one track with vertices and one with time.

Parameterized Hardness II

$\bigcirc_{v_{2| | \mid}}$

Parameterized Hardness II

(

Parameterized Hardness II

Two interval pairs $a=([1,4],[2,5])$ and $b=([3,6],[1,4])$, where $c(a)=1, c(b)=3$.

Parameterized Hardness II

Two interval pairs $a=([1,4],[2,5])$ and $b=([3,6],[1,4])$, where $c(a)=1, c(b)=3$.

Parameterized Hardness II

Two interval pairs $a=([1,4],[2,5])$ and $b=([3,6],[1,4])$, where $c(a)=1, c(b)=3$.

Parameterized Hardness II

Two interval pairs $a=([1,4],[2,5])$ and $b=([3,6],[1,4])$, where $c(a)=1, c(b)=3$.

Parameterized Hardness III

Problem: "Cheating" temporal paths.

Parameterized Hardness III

Problem: "Cheating" temporal paths.
Idea: There should always be an even number of cheating temporal (s, z)-paths.

Parameterized Hardness III

Problem: "Cheating" temporal paths.
Idea: There should always be an even number of cheating temporal (s, z)-paths.

Parameterized Hardness III

Problem: "Cheating" temporal paths.
Idea: There should always be an even number of cheating temporal (s, z)-paths.

Parameterized Hardness III

Problem: "Cheating" temporal paths.
Idea: There should always be an even number of cheating temporal (s, z)-paths.

Parameterized Hardness III

Problem: "Cheating" temporal paths.
Idea: There should always be an even number of cheating temporal (s, z)-paths.

Parameterized Hardness III

Problem: "Cheating" temporal paths.
Idea: There should always be an even number of cheating temporal (s, z)-paths.

Lemma

The parity of temporal (s, z)-paths equals the parity of colorful independent sets.

Generalizations of the Forest Algorithm and Further Results

Theorem

\#Temporal Path is in FPT when parameterized by the feedback edge number of the underlying graph.

Generalizations of the Forest Algorithm and Further Results

Theorem

\#Temporal Path is in FPT when parameterized by the feedback edge number of the underlying graph.

Theorem

 \#Temporal Path is in FPT when parameterized by the timed feedback vertex number.
Generalizations of the Forest Algorithm and Further Results

Theorem

\#Temporal Path is in FPT when parameterized by the feedback edge number of the underlying graph.

Theorem

\#Temporal Path is in FPT when parameterized by the timed feedback vertex number.

Theorem

\#Temporal Path is in FPT when parameterized by the treewidth of the underlying graph and the lifetime \boldsymbol{T}.

Theorem

\#Temporal Path is in FPT when parameterized by the vertex-interval-membership-width.

Timed Feedback Vertex Number I

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times[T]$ such that underlying graph of $\mathscr{G}-X$ is a forest.

Timed Feedback Vertex Number I

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times[T]$ such that underlying graph of $\mathscr{G}-X$ is a forest.

■ Go through all variants which (and in which order) to traverse TFVS appearances.

Timed Feedback Vertex Number I

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times[T]$ such that underlying graph of $\mathscr{G}-X$ is a forest.

■ Go through all variants which (and in which order) to traverse TFVS appearances.

Timed Feedback Vertex Number I

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times[T]$ such that underlying graph of $\mathscr{G}-X$ is a forest.

- Go through all variants which (and in which order) to traverse TFVS appearances.

■ Use forest algorithm to compute all ways to close "gaps" between TFVS appearances.

Timed Feedback Vertex Number I

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times[T]$ such that underlying graph of $\mathscr{G}-X$ is a forest.

- Go through all variants which (and in which order) to traverse TFVS appearances.

■ Use forest algorithm to compute all ways to close "gaps" between TFVS appearances.

- For every valid way to glue together a temporal (s, z)-path, the number of temporal (s, z)-paths visiting the same vertex sequence equals the product of the number of ways to close each gap.

Timed Feedback Vertex Number II

TFVS:

Forest:

Timed Feedback Vertex Number II

TFVS:

Forest:

Note: Intersection graphs of paths segments in forests are chordal.

Timed Feedback Vertex Number II

TFVS:

Forest:

Note: Intersection graphs of paths segments in forests are chordal.

\#Weighted Multicolored Independent Set on Chordal Graphs

Input: A chordal graph $G=(V, E)$, a coloring $c: V \rightarrow[k]$, and weights $w: V \rightarrow \mathbb{N}$.
Task: Compute $\sum_{X \subseteq V \mid X}$ is a multicolored independent set in $G \prod_{v \in X} w(v)$.

Timed Feedback Vertex Number II

TFVS:

Forest:

Note: Intersection graphs of paths segments in forests are chordal.

\#Weighted Multicolored Independent Set on Chordal Graphs

Input: A chordal graph $G=(V, E)$, a coloring $c: V \rightarrow[k]$, and weights $w: V \rightarrow \mathbb{N}$.
Task: Compute $\sum_{X \subseteq V \mid X}$ is a multicolored independent set in $G \prod_{v \in X} w(v)$.
Idea: Adapt FPT algorithm for Multicolored Independent Set on Chordal Graphs parameterized by number of colors by Bentert, van Bevern, and Niedermeier [JOSH 2019].

Approximation Results

Theorem
There is no FPRAS for \#Temporal Path unless NP=BPP.

Approximation Results

Theorem

There is no FPRAS for \#Temporal Path unless NP=BPP.

Theorem

\#Temporal Path admits an FPTRAS when parameterized by the maximum length of a temporal (s, z)-path.

Approximation Results

Theorem

There is no FPRAS for \#Temporal Path unless NP=BPP.

Theorem

\#Temporal Path admits an FPTRAS when parameterized by the maximum length of a temporal (s, z)-path.

Problems:

\square Not straightforward to approximate number of temporal (s, z)-path that visit a vertex v.

Approximation Results

Theorem

There is no FPRAS for \#Temporal Path unless NP=BPP.

Theorem

\#Temporal Path admits an FPTRAS when parameterized by the maximum length of a temporal (s, z)-path.

Problems:

■ Not straightforward to approximate number of temporal (s, z)-path that visit a vertex v.

- Not straightforward to approximate temporal betweenness.

Conclusion and Future Research

Summary:

■ To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

Conclusion and Future Research

Summary:

■ To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

■ Solvable in polynomial time if underlying graph is a forest.

Conclusion and Future Research

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.
- Presumably not in FPT for the feedback vertex number of the underlying graph.

Conclusion and Future Research

Summary:

■ To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

- Solvable in polynomial time if underlying graph is a forest.

■ Presumably not in FPT for the feedback vertex number of the underlying graph.

■ FPT algorithms for several "distance to forest"-parameterizations.

Conclusion and Future Research

Summary:

■ To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

- Solvable in polynomial time if underlying graph is a forest.

■ Presumably not in FPT for the feedback vertex number of the underlying graph.

■ FPT algorithms for several "distance to forest"-parameterizations.

Future Work:

- Investigate vertex cover number of the underlying graph as a parameter.

Conclusion and Future Research

Summary:

■ To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

- Solvable in polynomial time if underlying graph is a forest.

■ Presumably not in FPT for the feedback vertex number of the underlying graph.

■ FPT algorithms for several "distance to forest"-parameterizations.

Future Work:

- Investigate vertex cover number of the underlying graph as a parameter.
- Most results seem also to work for restless temporal paths or delay-robust routes.

Conclusion and Future Research

Summary:

■ To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

- Solvable in polynomial time if underlying graph is a forest.

■ Presumably not in FPT for the feedback vertex number of the underlying graph.

■ FPT algorithms for several "distance to forest"-parameterizations.

Future Work:

Link to arXiv.

- Investigate vertex cover number of the underlying graph as a parameter.
- Most results seem also to work for restless temporal paths or delay-robust routes.

