Counting Temporal Paths

Jessica Enright¹ Kitty Meeks¹ <u>Hendrik Molter²</u>

¹ School of Computing Science, University of Glasgow, Glasgow, UK ² Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel

Algorithmic Aspects of Temporal Graphs V

Project initiated at Dagstuhl Seminar "Temporal Graphs: Structure, Algorithms, Applications".

Temporal Graph

Temporal Graph

Temporal Graph

Temporal Graph

Temporal Graph

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [T]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_T over *V*, where *T* is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [T]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_T over *V*, where *T* is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [T]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_T over *V*, where *T* is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Non-strict temporal path. (Not strict.)

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [T]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_T over *V*, where *T* is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Non-strict temporal path. (Not strict.)

Temporal path (both strict and non-strict).

Motivation: Temporal Betweenness

"How important is Berlin main station as a hub for the public transportation network?"

Motivation: Temporal Betweenness

"How important is Berlin main station as a hub for the public transportation network?"

Betweenness of a vertex v in a graph G = (V, E):

"How likely is a shortest (optimal) path to pass through vertex v?"

Hendrik Molter, BGU

Counting Temporal Paths

Which temporal path from *s* to *z* is optimal?

Which temporal path from s to z is optimal?

Shortest temporal paths use the minimum number of edges.

Which temporal path from s to z is optimal?

- **Shortest** temporal paths use the minimum number of edges.
- **Foremost** temporal paths have a minimum arrival time.

Which temporal path from s to z is optimal?

- **Shortest** temporal paths use the minimum number of edges.
- **Foremost** temporal paths have a minimum arrival time.
- **Fastest** temporal paths have a minimum difference between starting and arrival time.

Temporal Betweenness Centrality

$$C_B^{(\star)}(v) = \sum_{s
eq v
eq z} egin{cases} 0 &
eq ext{ temp.}(s,z) ext{-path} \ rac{\sigma_{sz}^{(\star)}(v)}{\sigma_{sz}^{(\star)}} &
ext{ otherwise} \end{cases}$$

 $\sigma_{sz}^{(\star)}$: # \star -temp. paths from s to z

 $\sigma_{sz}^{(\star)}(v)$: # \star -temp. paths from s to z via v

Temporal Betweenness Centrality

$$C_{B}^{(\star)}(v) = \sum_{s
eq v
eq z} egin{cases} 0 &
eq ext{ temp.}(s,z) ext{-path} \ rac{\sigma_{sz}^{(\star)}(v)}{\sigma_{sz}^{(\star)}} & ext{ otherwise} \end{cases}$$

 $\sigma_{sz}^{(\star)}$: # \star -temp. paths from s to z $\sigma_{sz}^{(\star)}(v)$: # \star -temp. paths from s to z via v

* denotes "optimality concept"

Temporal Betweenness Centrality

$$\mathcal{C}_{\mathcal{B}}^{(\star)}(v) = \sum_{s
eq v
eq z} egin{cases} 0 &
eq ext{ temp.}(s,z) ext{-path} \ rac{\sigma_{sz}^{(\star)}(v)}{\sigma_{sz}^{(\star)}} &
ext{ otherwise} \ \end{pmatrix}$$

 $\sigma_{sz}^{(\star)}$: # \star -temp. paths from s to z $\sigma_{sz}^{(\star)}(v)$: # \star -temp. paths from s to z via v

* denotes "optimality concept"

Computing temporal betweenness essentially equivalent to counting (optimal) temporal paths.

Temporal Betweenness Centrality

$$C^{(\star)}_{B}(v) = \sum_{s
eq v
eq z} egin{cases} 0 &
eq ext{ temp.}(s,z) ext{-path} \ rac{\sigma^{(\star)}_{sz}(v)}{\sigma^{(\star)}_{sz}} & ext{ otherwise} \end{cases}$$

 $\sigma_{sz}^{(\star)}$: # \star -temp. paths from s to z $\sigma_{sz}^{(\star)}(v)$: # \star -temp. paths from s to z via v

* denotes "optimality concept"

- Computing temporal betweenness essentially equivalent to counting (optimal) temporal paths.
- For many interesting optimality concepts such as "foremost" or "fastest" the corresponding counting problem is **#P-hard**.

#Temporal Path

- **Input:** A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.
- **Task:** Count the temporal (s, z)-paths in \mathcal{G} .

#Temporal Path

Input: A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.

Task: Count the temporal (s, z)-paths in \mathcal{G} .

Remarks:

Solving #Temporal Path allows to count foremost temporal paths by removing all "late" time steps.

#Temporal Path

Input: A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.

Task: Count the temporal (s, z)-paths in \mathcal{G} .

Remarks:

- Solving #Temporal Path allows to count foremost temporal paths by removing all "late" time steps.
- Solving **#Temporal Path** allows to count **fastest** temporal paths with linear overhead (in *T*).

#Temporal Path

Input: A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.

Task: Count the temporal (s, z)-paths in \mathcal{G} .

Remarks:

- Solving #Temporal Path allows to count foremost temporal paths by removing all "late" time steps.
- Solving **#Temporal Path** allows to count **fastest** temporal paths with linear overhead (in *T*).
- One can count temporal (s, z)-paths via a vertex v by removing v from \mathscr{G} .

#Temporal Path

Input: A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.

Task: Count the temporal (s, z)-paths in \mathcal{G} .

Remarks:

- Solving #Temporal Path allows to count foremost temporal paths by removing all "late" time steps.
- Solving **#Temporal Path** allows to count **fastest** temporal paths with linear overhead (in *T*).
- One can count temporal (s, z)-paths via a vertex v by removing v from \mathscr{G} .
- For this talk: focus on **non-strict** temporal paths.

#Temporal Path

- **Input:** A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.
- **Task:** Count the temporal (s, z)-paths in \mathcal{G} .

Observation

#Temporal Path is **#P**-hard even if T = 1.

#Temporal Path

- **Input:** A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.
- **Task:** Count the temporal (s, z)-paths in \mathcal{G} .

Observation

#Temporal Path is **#P**-hard even if T = 1.

Parameterized Counting

#Temporal Path

- **Input:** A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [T]})$ and two vertices $s, z \in V$.
- **Task:** Count the temporal (s, z)-paths in \mathcal{G} .

Observation

#Temporal Path is **#P**-hard even if T = 1.

Parameterized Counting

Approximate Counting

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (*s*,*z*)-path.

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (*s*, *z*)-path.

Let $s = v_1, v_2, \dots, v_\ell = z$ be the sequence of vertices visited by any temporal (s, z)-path.

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (*s*, *z*)-path.

Let $s = v_1, v_2, \dots, v_\ell = z$ be the sequence of vertices visited by any temporal (s, z)-path.

Use dynamic program F(v, t) := number of temporal (s, v)-paths that arrive in v at time t or earlier.

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (*s*, *z*)-path.

Let $s = v_1, v_2, \dots, v_\ell = z$ be the sequence of vertices visited by any temporal (s, z)-path.

Use dynamic program F(v,t) := number of temporal (s, v)-paths that arrive in v at time t or earlier.

$$F(v_1 = s, t) = 1$$

$$F(v_i, t) = \sum_{t' \le t \text{ with } \{v_{i-1}, v_i\} \in E_{t'}} F(v_{i-1}, t') \text{ for } 1 < i \le \ell.$$

Observation

Underlying graph is forest \Rightarrow same sequence of vertices visited by any temporal (*s*, *z*)-path.

Let $s = v_1, v_2, \dots, v_\ell = z$ be the sequence of vertices visited by any temporal (s, z)-path.

Use dynamic program F(v, t) := number of temporal (s, v)-paths that arrive in v at time t or earlier.

$$F(v_1 = s, t) = 1$$

$$F(v_i, t) = \sum_{t' \le t \text{ with } \{v_{i-1}, v_i\} \in E_{t'}} F(v_{i-1}, t') \text{ for } 1 < i \le \ell.$$

Theorem

#Temporal Path solvable in polynomial time if the underlying graph is a forest.

Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Question: How can we generalize the forest algorithm?

Theorem

#Temporal Path is \oplus W[1]-hard when parameterized by the **feedback vertex number** of the underlying graph.

Question: How can we generalize the forest algorithm?

Theorem

#Temporal Path is \oplus W[1]-hard when parameterized by the **feedback vertex number** of the underlying graph.

Main Ideas:

Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.
Question: How can we generalize the forest algorithm?

Theorem

#Temporal Path is \oplus W[1]-hard when parameterized by the **feedback vertex number** of the underlying graph.

Main Ideas:

Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.

Each vertex v represented by two intervals a_v, b_v .

Vertices v, w have an edge iff $a_v \cap a_w \neq \emptyset$ or $b_v \cap b_w \neq \emptyset$.

Question: How can we generalize the forest algorithm?

Theorem

#Temporal Path is \oplus W[1]-hard when parameterized by the **feedback vertex number** of the underlying graph.

Main Ideas:

Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.

Each vertex v represented by two intervals a_v, b_v .

Vertices v, w have an edge iff $a_v \cap a_w \neq \emptyset$ or $b_v \cap b_w \neq \emptyset$.

Investigating the reduction shows that ⊕Multicolored Independent Set on 2-Track Interval Graphs is ⊕W[1]-hard when parameterized by the number of colors.

Question: How can we generalize the forest algorithm?

Theorem

#Temporal Path is \oplus W[1]-hard when parameterized by the **feedback vertex number** of the underlying graph.

Main Ideas:

Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard when parameterized by the solution size.

Each vertex v represented by two intervals a_v, b_v .

Vertices v, w have an edge iff $a_v \cap a_w \neq \emptyset$ or $b_v \cap b_w \neq \emptyset$.

- Investigating the reduction shows that ⊕Multicolored Independent Set on 2-Track Interval Graphs is ⊕W[1]-hard when parameterized by the number of colors.
- Model one track with vertices and one with time.

Problem: "Cheating" temporal paths.

Problem: "Cheating" temporal paths.

Problem: "Cheating" temporal paths.

Problem: "Cheating" temporal paths.

Problem: "Cheating" temporal paths.

Problem: "Cheating" temporal paths.

Problem: "Cheating" temporal paths.

Idea: There should always be an even number of cheating temporal (s, z)-paths.

Lemma

The parity of temporal (s, z)-paths equals the parity of **colorful** independent sets.

Generalizations of the Forest Algorithm and Further Results

Theorem

#Temporal Path is in FPT when parameterized by the **feedback edge number** of the underlying graph.

Generalizations of the Forest Algorithm and Further Results

Theorem

#Temporal Path is in FPT when parameterized by the **feedback edge number** of the underlying graph.

Theorem

#Temporal Path is in FPT when parameterized by the timed feedback vertex number.

Generalizations of the Forest Algorithm and Further Results

Theorem

#Temporal Path is in FPT when parameterized by the **feedback edge number** of the underlying graph.

Theorem

#Temporal Path is in FPT when parameterized by the timed feedback vertex number.

Theorem

#Temporal Path is in FPT when parameterized by the **treewidth** of the underlying graph and the **lifetime** *T*.

Theorem

#Temporal Path is in FPT when parameterized by the vertex-interval-membership-width.

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times [T]$ such that underlying graph of $\mathscr{G} - X$ is a forest.

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times [T]$ such that underlying graph of $\mathscr{G} - X$ is a forest.

Go through all variants which (and in which order) to traverse TFVS appearances.

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times [T]$ such that underlying graph of $\mathscr{G} - X$ is a forest.

Go through all variants which (and in which order) to traverse TFVS appearances.

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times [T]$ such that underlying graph of $\mathscr{G} - X$ is a forest.

Go through all variants which (and in which order) to traverse TFVS appearances.

Use forest algorithm to compute all ways to close "gaps" between TFVS appearances.

Timed Feedback Vertex Set

Minimum size $X \subseteq V \times [T]$ such that underlying graph of $\mathscr{G} - X$ is a forest.

- Go through all variants which (and in which order) to traverse TFVS appearances.
- Use forest algorithm to compute all ways to close "gaps" between TFVS appearances.
- For every valid way to glue together a temporal (*s*, *z*)-path, the number of temporal (*s*, *z*)-paths visiting the same vertex sequence equals the **product** of the number of ways to close each gap.

Note: Intersection graphs of paths segments in forests are chordal.

Note: Intersection graphs of paths segments in forests are chordal.

#Weighted Multicolored Independent Set on Chordal Graphs

Input: A chordal graph G = (V, E), a coloring $c : V \to [k]$, and weights $w : V \to \mathbb{N}$.

Task: Compute $\sum_{X \subseteq V | X \text{ is a multicolored independent set in } G \prod_{v \in X} w(v)$.

Note: Intersection graphs of paths segments in forests are chordal.

#Weighted Multicolored Independent Set on Chordal Graphs

Input: A chordal graph G = (V, E), a coloring $c : V \to [k]$, and weights $w : V \to \mathbb{N}$.

Task: Compute $\sum_{X \subseteq V | X \text{ is a multicolored independent set in } G \prod_{v \in X} w(v)$.

Idea: Adapt FPT algorithm for Multicolored Independent Set on Chordal Graphs parameterized by number of colors by Bentert, van Bevern, and Niedermeier [JOSH 2019].

Hendrik Molter, BGU

Approximation Results

Theorem

There is no FPRAS for **#Temporal Path** unless NP=BPP.

Theorem

There is no FPRAS for **#Temporal Path** unless NP=BPP.

Theorem

#Temporal Path admits an FPTRAS when parameterized by the maximum length of a temporal (s, z)-path.

Theorem

There is no FPRAS for **#Temporal Path** unless NP=BPP.

Theorem

#Temporal Path admits an FPTRAS when parameterized by the maximum length of a temporal (s, z)-path.

Problems:

Not straightforward to approximate number of temporal (s, z)-path that visit a vertex v.

Theorem

There is no FPRAS for **#Temporal Path** unless NP=BPP.

Theorem

#Temporal Path admits an FPTRAS when parameterized by the maximum length of a temporal (s, z)-path.

Problems:

- Not straightforward to approximate number of temporal (s, z)-path that visit a vertex v.
- Not straightforward to approximate temporal betweenness.

Summary:

To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.
- Presumably not in FPT for the feedback vertex number of the underlying graph.

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.
- Presumably not in FPT for the feedback vertex number of the underlying graph.
- FPT algorithms for several "distance to forest"-parameterizations.
Conclusion and Future Research

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.
- Presumably not in FPT for the feedback vertex number of the underlying graph.
- FPT algorithms for several "distance to forest"-parameterizations.

Future Work:

Investigate vertex cover number of the underlying graph as a parameter.

Conclusion and Future Research

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.
- Presumably not in FPT for the feedback vertex number of the underlying graph.
- FPT algorithms for several "distance to forest"-parameterizations.

Future Work:

- Investigate vertex cover number of the underlying graph as a parameter.
- Most results seem also to work for restless temporal paths or delay-robust routes.

Conclusion and Future Research

Summary:

- To the best of our knowledge we initiated exploring the parameterized and approximation complexity landscape of temporal path counting.
- Solvable in polynomial time if underlying graph is a forest.
- Presumably not in FPT for the feedback vertex number of the underlying graph.
- FPT algorithms for several "distance to forest"-parameterizations.

Future Work:

- Investigate vertex cover number of the underlying graph as a parameter.
- Most results seem also to work for restless temporal paths or delay-robust routes.

Link to arXiv.

Thank you!