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Temporal Graphs and Temporal Paths: Notation and Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[T ]) is a
vertex set V with a list of edge sets E1, . . . ,ET

over V , where T is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1:

Temporal (s,z)-Path

Sequence of time edges forming a path
from s to z that have:

increasing time stamps (strict).

non-decreasing time stamps (non-strict).

s z
1 3 2 4

Not a temporal path.

s z
1 1 3 4

Non-strict temporal path. (Not strict.)

s z
1 2 3 4

Temporal path (both strict and non-strict).
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Motivation: Temporal Betweenness

“How important is Berlin main station as a hub for the public transportation network?”

Betweenness of a vertex v in a graph G = (V ,E):
“How likely is a shortest (optimal) path to pass through vertex v?”
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Optimal Temporal Paths

Which temporal path from s to z is optimal?

s z

1

1

3

2 3

4

4

5

5

Shortest temporal paths use the minimum number of edges.

Foremost temporal paths have a minimum arrival time.

Fastest temporal paths have a minimum difference between starting and arrival time.
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Temporal Betweenness: Definition

Temporal Betweenness Centrality

C(?)
B (v) = ∑

s 6=v 6=z

0 @ temp.(s,z)-path
σ
(?)
sz (v)

σ
(?)
sz

otherwise

σ
(?)
sz : # ?-temp. paths from s to z σ

(?)
sz (v): # ?-temp. paths from s to z via v

? denotes “optimality concept”

Computing temporal betweenness essentially equivalent to counting (optimal) temporal paths.

For many interesting optimality concepts such as “foremost” or “fastest” the corresponding
counting problem is #P-hard.
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Temporal Path Counting I

#Temporal Path

Input: A temporal graph G = (V ,(Ei)i∈[T ]) and two vertices s,z ∈ V .

Task: Count the temporal (s,z)-paths in G .

Remarks:

Solving #Temporal Path allows to count foremost temporal paths by removing all “late” time
steps.

Solving #Temporal Path allows to count fastest temporal paths with linear overhead (in T ).

One can count temporal (s,z)-paths via a vertex v by removing v from G .

For this talk: focus on non-strict temporal paths.
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Temporal Path Counting I

#Temporal Path

Input: A temporal graph G = (V ,(Ei)i∈[T ]) and two vertices s,z ∈ V .

Task: Count the temporal (s,z)-paths in G .

Remarks:

Solving #Temporal Path allows to count foremost temporal paths by removing all “late” time
steps.

Solving #Temporal Path allows to count fastest temporal paths with linear overhead (in T ).

One can count temporal (s,z)-paths via a vertex v by removing v from G .

For this talk: focus on non-strict temporal paths.

Hendrik Molter, BGU Counting Temporal Paths 6 / 16



Temporal Path Counting I

#Temporal Path

Input: A temporal graph G = (V ,(Ei)i∈[T ]) and two vertices s,z ∈ V .

Task: Count the temporal (s,z)-paths in G .

Remarks:

Solving #Temporal Path allows to count foremost temporal paths by removing all “late” time
steps.

Solving #Temporal Path allows to count fastest temporal paths with linear overhead (in T ).

One can count temporal (s,z)-paths via a vertex v by removing v from G .

For this talk: focus on non-strict temporal paths.

Hendrik Molter, BGU Counting Temporal Paths 6 / 16



Temporal Path Counting I

#Temporal Path

Input: A temporal graph G = (V ,(Ei)i∈[T ]) and two vertices s,z ∈ V .

Task: Count the temporal (s,z)-paths in G .

Remarks:

Solving #Temporal Path allows to count foremost temporal paths by removing all “late” time
steps.

Solving #Temporal Path allows to count fastest temporal paths with linear overhead (in T ).

One can count temporal (s,z)-paths via a vertex v by removing v from G .

For this talk: focus on non-strict temporal paths.

Hendrik Molter, BGU Counting Temporal Paths 6 / 16



Temporal Path Counting I

#Temporal Path

Input: A temporal graph G = (V ,(Ei)i∈[T ]) and two vertices s,z ∈ V .

Task: Count the temporal (s,z)-paths in G .

Remarks:

Solving #Temporal Path allows to count foremost temporal paths by removing all “late” time
steps.

Solving #Temporal Path allows to count fastest temporal paths with linear overhead (in T ).

One can count temporal (s,z)-paths via a vertex v by removing v from G .

For this talk: focus on non-strict temporal paths.

Hendrik Molter, BGU Counting Temporal Paths 6 / 16



Temporal Path Counting II

#Temporal Path

Input: A temporal graph G = (V ,(Ei)i∈[T ]) and two vertices s,z ∈ V .

Task: Count the temporal (s,z)-paths in G .

Observation

#Temporal Path is #P-hard even if T = 1.

Parameterized Counting Approximate Counting
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Warm-Up: Temporal Path Counting on Forests

Observation

Underlying graph is forest⇒ same sequence of vertices visited by any temporal (s,z)-path.

Let s = v1,v2, . . . ,v` = z be the sequence of vertices visited by any temporal (s,z)-path.

Use dynamic program
F(v , t) := number of temporal (s,v)-paths that arrive in v at time t or earlier.

F(v1 = s, t) = 1

F(vi , t) = ∑
t ′≤t with {vi−1,vi}∈Et′

F(vi−1, t
′) for 1 < i ≤ `.

Theorem

#Temporal Path solvable in polynomial time if the underlying graph is a forest.
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Parameterized Hardness I

Question: How can we generalize the forest algorithm?

Theorem

#Temporal Path is ⊕W[1]-hard when parameterized by the feedback vertex number of
the underlying graph.

Main Ideas:

Jiang [TCS 2010] showed that Independent Set on 2-Track Interval Graphs is W[1]-hard
when parameterized by the solution size.

Each vertex v represented by two intervals av ,bv .

Vertices v ,w have an edge iff av ∩aw 6= /0 or bv ∩bw 6= /0.

Investigating the reduction shows that ⊕Multicolored Independent Set on 2-Track Interval
Graphs is ⊕W[1]-hard when parameterized by the number of colors.

Model one track with vertices and one with time.
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Parameterized Hardness II

v1 v2 v3 v4 v5 v6

. . .

v2|I|

a b

s
z ′

z

w1 w2 w3

. . .
wk

1

1
1

1

2|I|

2

5

5
5 5 5

5 5 55, 4

1

4

4

4
4 4

4 4

Two interval pairs a = ([1,4], [2,5]) and b = ([3,6], [1,4]), where c(a) = 1, c(b) = 3.
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Parameterized Hardness III

Problem: “Cheating” temporal paths.

Idea: There should always be an even number of cheating temporal (s,z)-paths.
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4

Lemma

The parity of temporal (s,z)-paths equals the parity of colorful independent sets.
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Generalizations of the Forest Algorithm and Further Results

Theorem

#Temporal Path is in FPT when parameterized by the feedback edge number of the
underlying graph.

Theorem

#Temporal Path is in FPT when parameterized by the timed feedback vertex number.

Theorem

#Temporal Path is in FPT when parameterized by the treewidth of the underlying graph
and the lifetime T .

Theorem

#Temporal Path is in FPT when parameterized by the vertex-interval-membership-width.
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Timed Feedback Vertex Number I

Timed Feedback Vertex Set

Minimum size X ⊆ V × [T ] such that underlying graph of G −X is a forest.

TFVS:

Forest:

ss (v , t1) (w , t2)
. . .

z

Go through all variants which (and in which order) to traverse TFVS appearances.

Use forest algorithm to compute all ways to close “gaps” between TFVS appearances.

For every valid way to glue together a temporal (s,z)-path, the number of temporal
(s,z)-paths visiting the same vertex sequence equals the product of the number of ways to
close each gap.
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Timed Feedback Vertex Number II

TFVS:

Forest:

ss
. . .

z

Note: Intersection graphs of paths segments in forests are chordal.

#Weighted Multicolored Independent Set on Chordal Graphs

Input: A chordal graph G = (V ,E), a coloring c : V → [k ], and weights w : V → N.

Task: Compute ∑X⊆V |X is a multicolored independent set in G ∏v∈X w(v).

Idea: Adapt FPT algorithm for Multicolored Independent Set on Chordal Graphs
parameterized by number of colors by Bentert, van Bevern, and Niedermeier [JOSH 2019].
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Approximation Results

Theorem

There is no FPRAS for #Temporal Path unless NP=BPP.

Theorem

#Temporal Path admits an FPTRAS when parameterized by the maximum length of a
temporal (s,z)-path.

Problems:

Not straightforward to approximate number of temporal (s,z)-path that visit a vertex v .

Not straightforward to approximate temporal betweenness.
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Conclusion and Future Research

Summary:

To the best of our knowledge we initiated exploring the parameterized
and approximation complexity landscape of temporal path counting.

Solvable in polynomial time if underlying graph is a forest.

Presumably not in FPT for the feedback vertex number of the
underlying graph.

FPT algorithms for several “distance to forest”-parameterizations.

Future Work:

Investigate vertex cover number of the underlying graph as a
parameter.

Most results seem also to work for restless temporal paths or
delay-robust routes.

Link to arXiv.

Thank you!
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