Defining Labeling that Preserves Reachability

Nina Klobas¹ Hendrik Molter² George B. Mertzios¹ Paul G. Spirakis³

¹Durham University, UK

²Ben-Gurion University of the Negev, Israel

³University of Liverpool, UK & University of Patras, Greece

Algorithmic Aspects of Temporal Graphs V

4. July 2022

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

Overview

- Notation
- Problem definition
- ► Results

NOTATION AND DEFINITIONS	Results	MAL 15 NP-C.	FPT of MSL
●00	0	00000	00

BASIC DEFINITIONS

Definition

A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

¹All temporal paths are strict.

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
●00	0	00000	00

BASIC DEFINITIONS

Definition

A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Definition

A temporal graph \mathcal{G} is (temporally) connected iff for all $u, v \in V(G)$ there exists a temporal (u, v)-path¹. Let $R \subseteq V(G)$, \mathcal{G} is R-(temporally) connected iff for all $u, v \in R$ there exists a temporal (u, v)-path.

¹All temporal paths are strict.

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

Notations

_

• Maximum label $\alpha(\lambda)$ is called the age of \mathcal{G} .

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

Notations

- Maximum label $\alpha(\lambda)$ is called the age of \mathcal{G} .
- The total cost of (G, λ) is $|\lambda| = \sum_{e \in E} |\lambda_e|$.

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

Notations

- Maximum label $\alpha(\lambda)$ is called the age of \mathcal{G} .
- The total cost of (G, λ) is $|\lambda| = \sum_{e \in E} |\lambda_e|$.
- κ(G, α) is the minimum cost of (G, λ), where the maximum label used by λ is α.

Min. Labeling (ML)

- **Input:** A static graph G = (V, E) and an integer $k \in \mathbb{N}$.
- **Question:** Does there exist a temporally connected temporal graph (G, λ) , where $|\lambda| \le k$?

Min. Aged Labeling (MAL)

Input: A static graph G = (V, E) and two integers $k, a \in \mathbb{N}$. **Question:** Does there exist a temporally connected temporal graph (G, λ) , where $|\lambda| \le k$ and $\alpha(\lambda) \le a$?

Min. Labeling (ML)

- **Input:** A static graph G = (V, E) and an integer $k \in \mathbb{N}$.
- **Question:** Does there exist a temporally connected temporal graph (G, λ) , where $|\lambda| \le k$?

Min. Steiner Labeling (MSL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and an integer $k \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (G, λ) , where $|\lambda| \le k$?

Min. Aged Labeling (MAL)

Input: A static graph G = (V, E) and two integers $k, a \in \mathbb{N}$. **Question:** Does there exist a temporally connected temporal graph (G, λ) , where $|\lambda| \le k$ and $\alpha(\lambda) \le a$?

Min. Aged Steiner Labeling (MASL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and two integers $k, a \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$ and $\alpha(\lambda) \le a$?

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected		
R-connected		

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	
R-connected		

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected		

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	
	FPT wrt. $ R $	

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	W[1]-hard wrt R
	FPT wrt. $ R $	

Notation and Definitions	Results	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	W[1]-hard wrt $ R $
	FPT wrt. $ R $	

Notation and Definitions	Results	MAL 15 NP-C.	FPT of MSL
000	0	●0000	00

Reduction from MONOTONE MAX XOR(3):

Notation and Definitions	Results	MAL 15 NP-C.	FPT of MSL
000	0	●0000	00

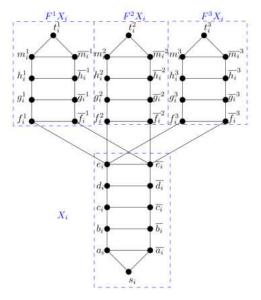
Reduction from Monotone Max XOR(3):

- conjunction of XOR clauses,

Notation and Definitions	Results	MAL 15 NP-C.	FPT of MSL
000	0	●0000	00

Reduction from MONOTONE MAX XOR(3):

- conjunction of XOR clauses,
- non-negated variables,


NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	0000	00

Reduction from MONOTONE MAX XOR(3):

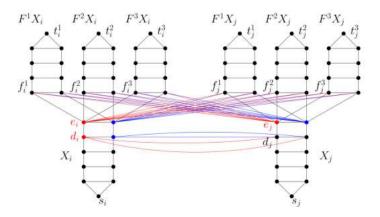
- conjunction of XOR clauses,
- non-negated variables,
- variables appear exactly 3 times.

NOTATION AND DEFINITIONS	Results	MAL 15 NP-c.	FPT of MSL
000	0	0000	00

VARIABLE GADGETS

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	0000	00

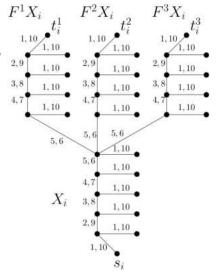
Connecting variable gadgets I


Clause $(x_i \oplus x_j)$ with 3rd and 1st appearance of x_i, x_j , respectively.

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

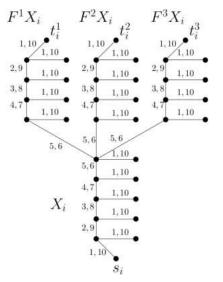
Connecting variable gadgets II

No clause with x_i and x_j .



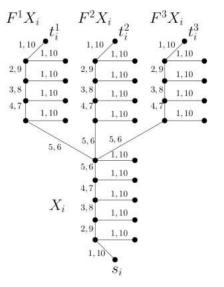
Notation and Definitions	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

$\blacktriangleright \alpha = d = 10,$


Notation and Definitions	Results 0	MAL 15 NP-c. 0000●	FPT of MSL 00

- $\blacktriangleright \ \alpha = d = 10,$
- label one side from s_i to t_i ,

Notation and Definitions	Results O	MAL 15 NP-c. 0000●	FPT of MSL 00


- $\blacktriangleright \ \alpha = d = 10,$
- label one side from s_i to t_{i_i} ,
- a clause is satisfied iff only one side of the shared fork is labeled.

Notation and Definitions	Results O	MAL 15 NP-c. 0000●	FPT of MSL 00

- $\blacktriangleright \ \alpha = d = 10,$
- label one side from s_i to t_{i_i} ,
- a clause is satisfied iff only one side of the shared fork is labeled.

$$OPT(G_{\phi}, d_{\phi}) \leq \operatorname{poly}(n, k)$$
$$\Leftrightarrow$$
$$OPT(\phi) \geq k.$$

	MAL is NP-c.	FPT of MSL
000 0	00000	•0

NOTATION AND DEFINITIONS RESULTS	MAL is NP-c.	FPT of MSL
000 0	00000	•0

Crucial property:

Notation and Definitions	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	•0

Crucial property:

 There exists a minimum labeling that is a tree or a tree with a C₄.

Crucial property:

 There exists a minimum labeling that is a tree or a tree with a C₄.

Idea of the algorithm:

Crucial property:

 There exists a minimum labeling that is a tree or a tree with a C₄.

Idea of the algorithm:

► Use an FPT algorithm for Steiner Tree.

Crucial property:

 There exists a minimum labeling that is a tree or a tree with a C₄.

Idea of the algorithm:

- ► Use an FPT algorithm for Steiner Tree.
- ► Iterate over all *C*₄s in *G*, check if one can be labeled in an optimum solution.

NOTATION AND DEFINITIONS	Results	MAL IS NP-C.	FPT of MSL
000	0	00000	00

Thank you!