Parameterized Temporal Exploration Problems

Thomas Erlebach

Joint work with Jakob T. Spooner

Algorithmic Aspects of Temporal Graphs V ICALP 2022-4 July 2022

Temporal graphs

Definition (Temporal Graph)

A temporal graph $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ with underlying graph $G_{\downarrow}=(V, E)$ and lifetime L consists of L static graphs (layers, steps) $G_{i}=\left(V, E_{i}\right)$ with $E_{i} \subseteq E$.

Temporal graphs

Definition (Temporal Graph)

A temporal graph $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ with underlying graph $G_{\downarrow}=(V, E)$ and lifetime L consists of L static graphs (layers, steps) $G_{i}=\left(V, E_{i}\right)$ with $E_{i} \subseteq E$.

- If $e \in E_{t}$, we call (e, t) a time-edge.

- Strict temporal walk: increasing time steps

- Non-strict temporal walk: non-decreasing time steps

Temporal exploration

Temporal Exploration Problem (TEXP)

Given a temporal graph \mathcal{G} and start vertex s, decide whether there is a temporal walk that starts at s at time 1 and visits all vertices.

- Strict TEXP:
- Michail and Spirakis, 2014, 2016: NP-complete to decide if a temporal graph can be explored
- If every G_{t} is connected and $L \geq n^{2}$:
- Can be explored in $O\left(n^{2}\right)$ steps, no $O\left(n^{1-\varepsilon}\right)$ approximation for Foremost-TEXP unless $P=$ NP (E, Hoffmann and Kammer, 2015, 2021).
- Subquadratic upper bounds on exploration time for many special cases (EHK'15,'21; IW'18; EKLSS'19; ...)
- Strict TEXP:
- Michail and Spirakis, 2014, 2016: NP-complete to decide if a temporal graph can be explored
- If every G_{t} is connected and $L \geq n^{2}$:
- Can be explored in $O\left(n^{2}\right)$ steps, no $O\left(n^{1-\varepsilon}\right)$ approximation for Foremost-TEXP unless $P=$ NP (E , Hoffmann and Kammer, 2015, 2021).
- Subquadratic upper bounds on exploration time for many special cases (EHK'15,'21; IW'18; EKLSS'19; ...)
- Non-strict TEXP (E and Spooner, 2020):
- NP-complete to to decide if a temporal graph can be explored
- Temporal diameter 2: $O(\sqrt{n} \cdot \log n)$ steps, no $O\left(n^{\frac{1}{2}-\varepsilon}\right)$-approximation unless $P=N P$
- Temporal diameter 3: may require up to $\Theta(n)$ steps, no $O\left(n^{1-\varepsilon}\right)$-approximation unless $P=N P$

Auxiliary tool

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013; Wu et al., 2014)

Given a temporal graph \mathcal{G}, a vertex v, and a time t, one can compute in $O\left(L n^{2}\right)$ time a foremost (i.e., earliest arrival time) strict temporal walk to any (or all) destination vertices w starting at v at time t.

A similar algorithm exists for non-strict walks.

Auxiliary tool

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013; Wu et al., 2014)

Given a temporal graph \mathcal{G}, a vertex v, and a time t, one can compute in $O\left(L n^{2}\right)$ time a foremost (i.e., earliest arrival time) strict temporal walk to any (or all) destination vertices w starting at v at time t.

A similar algorithm exists for non-strict walks.

Auxiliary tool

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013; Wu et al., 2014)
Given a temporal graph \mathcal{G}, a vertex v, and a time t, one can compute in $O\left(L n^{2}\right)$ time a foremost (i.e., earliest arrival time) strict temporal walk to any (or all) destination vertices w starting at v at time t.

A similar algorithm exists for non-strict walks.
The main difficulty in TEXP is to decide the best order in which vertices should be visited.

Parameterized complexity of TEXP

- TEXP is a computationally difficult problem.
- Are there efficient parameterized algorithms for (variants of) TEXP?

Parameterized complexity of TEXP

- TEXP is a computationally difficult problem.
- Are there efficient parameterized algorithms for (variants of) TEXP?

Definition

A problem is fixed-parameter tractable (FPT) if an instance of size n with parameter k can be solved in $f(k) \cdot n^{O(1)}$ time.

Parameterized complexity of TEXP

- TEXP is a computationally difficult problem.
- Are there efficient parameterized algorithms for (variants of) TEXP?

Definition

A problem is fixed-parameter tractable (FPT) if an instance of size n with parameter k can be solved in $f(k) \cdot n^{O(1)}$ time.

Examples of possible parameters for TEXP:

- $L=$ lifetime
- $\gamma=$ maximum number of connected components per layer

Variants of TEXP

k-fixed TEXP

Given a temporal graph \mathcal{G} and start vertex s and vertex subset $X \subseteq V$ with $|X|=k$, decide whether there is a temporal walk that starts at s at time 1 and visits at least all vertices in X.

Variants of TEXP

k-fixed TEXP

Given a temporal graph \mathcal{G} and start vertex s and vertex subset $X \subseteq V$ with $|X|=k$, decide whether there is a temporal walk that starts at s at time 1 and visits at least all vertices in X.

k-arbitrary TEXP

Given a temporal graph \mathcal{G} and start vertex s and $k \in \mathbb{N}$, decide whether there is a temporal walk that starts at s at time 1 and visits k different vertices.

Variants of TEXP

k-fixed TEXP

Given a temporal graph \mathcal{G} and start vertex s and vertex subset $X \subseteq V$ with $|X|=k$, decide whether there is a temporal walk that starts at s at time 1 and visits at least all vertices in X.

k-arbitrary TEXP

Given a temporal graph \mathcal{G} and start vertex s and $k \in \mathbb{N}$, decide whether there is a temporal walk that starts at s at time 1 and visits k different vertices.

Set-TEXP

Given a temporal graph \mathcal{G} and start vertex s and m vertex subsets $S_{i} \subseteq V$, is there a temporal walk that starts at s at time 1 and visits at least one vertex from each S_{i}.

Our results

Problem	Parameter	strict	non-strict
TEXP	L	FPT	FPT
TEXP	γ	NPC for $\gamma=1$	poly for $\gamma=1,2$
k-fixed TEXP	k	FPT	FPT
k-arbitrary TEXP	k	FPT	FPT
Set-TEXP	L	W[2]-hard	W[2]-hard

Reminder:

- $L=$ lifetime
- $\gamma=$ maximum number of connected components per layer
- $k=$ number of vertices to be visited

Results for strict

temporal exploration problems

- k-fixed TEXP
- Trivial: $O\left(k!\cdot n^{2} L\right)$ (try all orders)

FPT algorithms for strict model

- k-fixed TEXP
- Trivial: $O\left(k!\cdot n^{2} L\right)$ (try all orders)
- Use dynamic programming similar to the classical Held-Karp algorithm for TSP: $O\left(2^{k} k \cdot n^{2} L\right)$ time

FPT algorithms for strict model

- k-fixed TEXP
- Trivial: $O\left(k!\cdot n^{2} L\right)$ (try all orders)
- Use dynamic programming similar to the classical Held-Karp algorithm for TSP: $O\left(2^{k} k \cdot n^{2} L\right)$ time
- k-arbitrary TEXP
- Trivial: $O\left(n^{k} \cdot n^{2} L\right)$ (try all vertex sequences of length k)

FPT algorithms for strict model

- k-fixed TEXP
- Trivial: $O\left(k!\cdot n^{2} L\right)$ (try all orders)
- Use dynamic programming similar to the classical Held-Karp algorithm for TSP: $O\left(2^{k} k \cdot n^{2} L\right)$ time
- k-arbitrary TEXP
- Trivial: $O\left(n^{k} \cdot n^{2} L\right)$ (try all vertex sequences of length k)
- Use color coding (Alon, Yuster, Zwick 1995) and dynamic programming to get FPT algorithms:
- Randomized $O\left((2 e)^{k} L^{3} \log \frac{1}{\varepsilon}\right)$ time, correct output with probability $1-\varepsilon$
- Derandomization: deterministic $(2 e)^{k} k^{O(\log k)} L n^{3} \log n$ time

Results for non-strict

temporal exploration problems

- A temporal walk can visit all vertices of its connected component in each time step.
- In step 1, the walk can visit all vertices in the connected component containing s.
- The connected components visited in two consecutive time steps must share a vertex.
- We can represent a temporal exploration by specifying the connected component that it visits in every step.

- A temporal walk can visit all vertices of its connected component in each time step.
- In step 1, the walk can visit all vertices in the connected component containing s.
- The connected components visited in two consecutive time steps must share a vertex.
- We can represent a temporal exploration by specifying the connected component that it visits in every step.

Non-strict TEXP with parameter L

- Bounded search tree algorithm

Non-strict TEXP with parameter L

- Bounded search tree algorithm
- Choices for the largest component visited by OPT:
- As OPT visits all n vertices in L steps, it must visit one component containing at least n / L vertices.
- In each of the L steps, there exist at most L components with at least n / L vertices.
- \Rightarrow There are $\leq L^{2}$ possible choices for the largest component visited by OPT.

Non-strict TEXP with parameter L

- Bounded search tree algorithm
- Choices for the largest component visited by OPT:
- As OPT visits all n vertices in L steps, it must visit one component containing at least n / L vertices.
- In each of the L steps, there exist at most L components with at least n / L vertices.
- \Rightarrow There are $\leq L^{2}$ possible choices for the largest component visited by OPT.
- If there are u unvisited vertices and $L-i$ steps left:
- As OPT visits all u vertices in $L-i$ steps, it must visit one component containing at least $u /(L-i)$ vertices.
- In each of the $L-i$ steps, there exist at most $L-i$ components with at least $u /(L-i)$ unvisited vertices.
- \Rightarrow There are $\leq(L-i)^{2}$ possible choices for the largest component visited by OPT.

Non-strict TEXP with parameter L

- Bounded search tree algorithm
- Choices for the largest component visited by OPT:
- As OPT visits all n vertices in L steps, it must visit one component containing at least n / L vertices.
- In each of the L steps, there exist at most L components with at least n / L vertices.
- \Rightarrow There are $\leq L^{2}$ possible choices for the largest component visited by OPT.
- If there are u unvisited vertices and $L-i$ steps left:
- As OPT visits all u vertices in $L-i$ steps, it must visit one component containing at least $u /(L-i)$ vertices.
- In each of the $L-i$ steps, there exist at most $L-i$ components with at least $u /(L-i)$ unvisited vertices.
- \Rightarrow There are $\leq(L-i)^{2}$ possible choices for the largest component visited by OPT.

Theorem

Non-strict TEXP can be solved in $O\left(L(L!)^{2} n\right)$ time.

Illustration of the algorithm

$\stackrel{s}{\bigcirc}$	\bigcirc	O	O	0	O
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}

- For $i=0,1, \ldots$, add a component in an unused step that has at least $u /(L-i)$ unvisited vertices
- When $u=0$, complete the components into a temporal walk

Illustration of the algorithm

$\begin{aligned} & s \\ & 0 \end{aligned}$	0	\bigcirc	0	\bigcirc	0
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	0	0	\bigcirc	0
\bigcirc	0	\bigcirc	0	\bigcirc	0
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}

- For $i=0,1, \ldots$, add a component in an unused step that has at least $u /(L-i)$ unvisited vertices
- When $u=0$, complete the components into a temporal walk

Illustration of the algorithm

$\begin{aligned} & s \\ & 0 \end{aligned}$	0	0	0	\bigcirc	0
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	0	0	\bigcirc	\bigcirc	0
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}

- For $i=0,1, \ldots$, add a component in an unused step that has at least $u /(L-i)$ unvisited vertices
- When $u=0$, complete the components into a temporal walk

Illustration of the algorithm

s	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	O	0	0	0	0
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}

- For $i=0,1, \ldots$, add a component in an unused step that has at least $u /(L-i)$ unvisited vertices
- When $u=0$, complete the components into a temporal walk

Illustration of the algorithm

s	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}

- For $i=0,1, \ldots$, add a component in an unused step that has at least $u /(L-i)$ unvisited vertices
- When $u=0$, complete the components into a temporal walk

Illustration of the algorithm

5					
0	0	0	0	0	0
0					
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}

- For $i=0,1, \ldots$, add a component in an unused step that has at least $u /(L-i)$ unvisited vertices
- When $u=0$, complete the components into a temporal walk

The resulting search tree

- Depth $\leq L$
- $O\left((L!)^{2}\right)$ nodes, time $O(n L)$ per node
- Total time $O\left(L(L!)^{2} n\right)$

Non-strict TEXP with parameter γ

$\gamma=$ maximum number of connected components per layer

- With $\gamma=1$ connected components per layer, non-strict exploration can trivially be completed in one step.

Non-strict TEXP with parameter γ

$\gamma=$ maximum number of connected components per layer

- With $\gamma=1$ connected components per layer, non-strict exploration can trivially be completed in one step.
- Consider $\gamma=2$. We can assume:
- No two consecutive layers have identical connected components.
- Every layer has exactly 2 connected components.

Possible transitions between consecutive layers

The transition from layer i to $i+1$ can be one of two types:

Possible transitions between consecutive layers
The transition from layer i to $i+1$ can be one of two types:

- Free transition: Each component of layer i can reach each component of layer $i+1$, for example:

$$
\begin{gathered}
\text { layer } i \text { : } \\
\text { layer } i+1 \text { : }
\end{gathered}
$$

Possible transitions between consecutive layers
The transition from layer i to $i+1$ can be one of two types:

- Free transition: Each component of layer i can reach each component of layer $i+1$, for example:

- Restricted transition: One component of layer i cannot reach one component of layer $i+1$, for example:

Only possible if one component shrinks and the other grows.

Observation 1

Observation

If there is a restricted transition from layer i to $i+1$, the whole graph can be explored from the shrinking component in layer i.

Observation 1

Observation

If there is a restricted transition from layer i to $i+1$, the whole graph can be explored from the shrinking component in layer i.

Proof.

Explore the shrinking component in step i, then the growing one in step $i+1$.

Observation 2

Observation

If a restricted transition follows a free transition, the whole graph can be explored.

Observation 2

Observation

If a restricted transition follows a free transition, the whole graph can be explored.

Proof.

Move to the shrinking component in the free transition, then proceed as in the previous observation.

Observation 3

Observation

In $\log _{2} n$ consecutive free transitions, the whole graph can be explored.

Observation 3

Observation

In $\log _{2} n$ consecutive free transitions, the whole graph can be explored.

Proof.

We can visit at least half of the unvisited vertex in each step, so the exploration is finished after $\log _{2} n$ steps.

Polynomial algorithm for $\gamma=2$

Algorithm:

- If a restricted transition follows a free transition, answer YES.

Polynomial algorithm for $\gamma=2$

Algorithm:

- If a restricted transition follows a free transition, answer YES.
- If there is an initial sequence of restricted transitions:
- If s is always in the growing component, can only stay in that component.
- If s is ever in the shrinking component, can complete the exploration.

Algorithm:

- If a restricted transition follows a free transition, answer YES.
- If there is an initial sequence of restricted transitions:
- If s is always in the growing component, can only stay in that component.
- If s is ever in the shrinking component, can complete the exploration.
- In the remaining steps with only free transitions, try the up to $2^{\log _{2} n}=n$ possible choices for up to $\log _{2} n$ steps.

Polynomial algorithm for $\gamma=2$

Algorithm:

- If a restricted transition follows a free transition, answer YES.
- If there is an initial sequence of restricted transitions:
- If s is always in the growing component, can only stay in that component.
- If s is ever in the shrinking component, can complete the exploration.
- In the remaining steps with only free transitions, try the up to $2^{\log _{2} n}=n$ possible choices for up to $\log _{2} n$ steps.

Theorem

Non-strict TEXP with $\gamma=2$ can be solved in $O\left(n L+n^{2} \log n\right)$ time.

W[2]-hardness of Set-TEXP

Reminder:
Set-TEXP: Given m vertex subsets $S_{i} \subseteq V$, is there a temporal walk that starts at s and visits at least one vertex from each S_{i} ?

Theorem
Set-TEXP with parameter L is W[2]-hard.

W[2]-hardness of Set-TEXP

Reminder:
Set-TEXP: Given m vertex subsets $S_{i} \subseteq V$, is there a temporal walk that starts at s and visits at least one vertex from each S_{i} ?

Theorem

Set-TEXP with parameter L is W[2]-hard.

Proof.

- Non-strict model: Parameterized reduction from SetCover
- Strict model: Parameterized reduction from HittingSet (works even if each G_{i} is a complete graph)

Conclusion

- Our results

Problem
TEXP
TEXP
k-fixed TEXP
k-arbitrary TEXP
Set-TEXP

Parameter	strict	non-strict
L	FPT	FPT
γ	NPC for $\gamma=1$	poly for $\gamma=1,2$
k	FPT	FPT
k	FPT	FPT
L	W[2]-hard	W[2]-hard

- Open problem
- Is non-strict TEXP with parameter γ (the maximum number of connected components per layer) in XP or even FPT?

Conclusion

- Our results

Problem	Parameter	strict	non-strict
TEXP	L	FPT	FPT
TEXP	γ	NPC for $\gamma=1$	poly for $\gamma=1,2$
k-fixed TEXP	k	FPT	FPT
k-arbitrary TEXP	k	FPT	FPT
Set-TEXP	L	W[2]-hard	W[2]-hard

- Open problem
- Is non-strict TEXP with parameter γ (the maximum number of connected components per layer) in XP or even FPT? Even for $\gamma=3$ the complexity is open!

Thank you!

Questions?

