Parameterized Temporal Exploration Problems

Thomas Erlebach

Joint work with Jakob T. Spooner

Algorithmic Aspects of Temporal Graphs V ICALP 2022 – 4 July 2022

Definition (Temporal Graph)

A temporal graph $\mathcal{G} = \langle G_1, ..., G_L \rangle$ with underlying graph $G_{\downarrow} = (V, E)$ and lifetime *L* consists of *L* static graphs (layers, steps) $G_i = (V, E_i)$ with $E_i \subseteq E$.

• • = • • = •

Definition (Temporal Graph)

A temporal graph $\mathcal{G} = \langle G_1, ..., G_L \rangle$ with underlying graph $G_{\downarrow} = (V, E)$ and lifetime *L* consists of *L* static graphs (layers, steps) $G_i = (V, E_i)$ with $E_i \subseteq E$.

• If $e \in E_t$, we call (e, t) a time-edge.

Temporal Exploration Problem (TEXP)

Given a temporal graph G and start vertex s, decide whether there is a temporal walk that starts at s at time 1 and visits all vertices.

- Strict TEXP:
 - Michail and Spirakis, 2014, 2016: *NP*-complete to decide if a temporal graph can be explored
 - If every G_t is connected and $L \ge n^2$:
 - Can be explored in O(n²) steps, no O(n^{1-ε}) approximation for Foremost-TEXP unless P = NP (E, Hoffmann and Kammer, 2015, 2021).
 - Subquadratic upper bounds on exploration time for many special cases (EHK'15,'21; IW'18; EKLSS'19; ...)

- Strict TEXP:
 - Michail and Spirakis, 2014, 2016: *NP*-complete to decide if a temporal graph can be explored
 - If every G_t is connected and $L \ge n^2$:
 - Can be explored in O(n²) steps, no O(n^{1-ε}) approximation for Foremost-TEXP unless P = NP (E, Hoffmann and Kammer, 2015, 2021).
 - Subquadratic upper bounds on exploration time for many special cases (EHK'15,'21; IW'18; EKLSS'19; ...)
- Non-strict TEXP (E and Spooner, 2020):
 - NP-complete to to decide if a temporal graph can be explored
 - Temporal diameter 2: O(√n · log n) steps, no O(n^{1/2}-ε)-approximation unless P = NP
 - Temporal diameter 3: may require up to Θ(n) steps, no O(n^{1-ε})-approximation unless P = NP

・ 同 ト ・ ヨ ト ・ ヨ ト

Auxiliary tool

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013; Wu et al., 2014)

Given a temporal graph G, a vertex v, and a time t, one can compute in $O(Ln^2)$ time a foremost (i.e., earliest arrival time) strict temporal walk to any (or all) destination vertices w starting at v at time t.

A similar algorithm exists for non-strict walks.

Auxiliary tool

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013; Wu et al., 2014)

Given a temporal graph \mathcal{G} , a vertex v, and a time t, one can compute in $O(Ln^2)$ time a foremost (i.e., earliest arrival time) strict temporal walk to any (or all) destination vertices w starting at v at time t.

A similar algorithm exists for non-strict walks.

Auxiliary tool

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013; Wu et al., 2014)

Given a temporal graph \mathcal{G} , a vertex v, and a time t, one can compute in $O(Ln^2)$ time a foremost (i.e., earliest arrival time) strict temporal walk to any (or all) destination vertices w starting at v at time t.

A similar algorithm exists for non-strict walks.

The main difficulty in TEXP is to decide the best order in which vertices should be visited.

Parameterized complexity of TEXP

- TEXP is a computationally difficult problem.
- Are there efficient parameterized algorithms for (variants of) TEXP?

Parameterized complexity of TEXP

- TEXP is a computationally difficult problem.
- Are there efficient parameterized algorithms for (variants of) TEXP?

Definition

A problem is fixed-parameter tractable (FPT) if an instance of size *n* with parameter *k* can be solved in $f(k) \cdot n^{O(1)}$ time.

Parameterized complexity of TEXP

- TEXP is a computationally difficult problem.
- Are there efficient parameterized algorithms for (variants of) TEXP?

Definition

A problem is fixed-parameter tractable (FPT) if an instance of size *n* with parameter *k* can be solved in $f(k) \cdot n^{O(1)}$ time.

Examples of possible parameters for TEXP:

- L = lifetime
- $\gamma = \max$ imum number of connected components per layer

• • = • • = •

k-fixed TEXP

Given a temporal graph \mathcal{G} and start vertex s and vertex subset $X \subseteq V$ with |X| = k, decide whether there is a temporal walk that starts at s at time 1 and visits at least all vertices in X.

(E)

k-fixed TEXP

Given a temporal graph \mathcal{G} and start vertex s and vertex subset $X \subseteq V$ with |X| = k, decide whether there is a temporal walk that starts at s at time 1 and visits at least all vertices in X.

k-arbitrary TEXP

Given a temporal graph \mathcal{G} and start vertex s and $k \in \mathbb{N}$, decide whether there is a temporal walk that starts at s at time 1 and visits k different vertices.

k-fixed TEXP

Given a temporal graph \mathcal{G} and start vertex s and vertex subset $X \subseteq V$ with |X| = k, decide whether there is a temporal walk that starts at s at time 1 and visits at least all vertices in X.

k-arbitrary TEXP

Given a temporal graph \mathcal{G} and start vertex s and $k \in \mathbb{N}$, decide whether there is a temporal walk that starts at s at time 1 and visits k different vertices.

Set-TEXP

Given a temporal graph \mathcal{G} and start vertex s and m vertex subsets $S_i \subseteq V$, is there a temporal walk that starts at s at time 1 and visits at least one vertex from each S_i .

・ 同 ト ・ ヨ ト ・ ヨ ト

Our results

Problem	Parameter	strict	non-strict	
TEXP	L	FPT	FPT	
TEXP	γ	NPC for $\gamma = 1$	poly for $\gamma=1,2$	
<i>k</i> -fixed TEXP	k	FPT	FPT	
<i>k</i> -arbitrary TEXP	k	FPT	FPT	
Set-TEXP	L	W[2]-hard	W[2]-hard	

Reminder:

- L = lifetime
- $\bullet \ \gamma = {\rm maximum} \ {\rm number} \ {\rm of} \ {\rm connected} \ {\rm components} \ {\rm per} \ {\rm layer}$
- k = number of vertices to be visited

()

Results for strict temporal exploration problems

- *k*-fixed TEXP
 - Trivial: $O(k! \cdot n^2 L)$ (try all orders)

• • = • • = •

- k-fixed TEXP
 - Trivial: $O(k! \cdot n^2 L)$ (try all orders)
 - Use dynamic programming similar to the classical Held-Karp algorithm for TSP: $O(2^k k \cdot n^2 L)$ time

- k-fixed TEXP
 - Trivial: $O(k! \cdot n^2 L)$ (try all orders)
 - Use dynamic programming similar to the classical Held-Karp algorithm for TSP: $O(2^k k \cdot n^2 L)$ time

- *k*-arbitrary TEXP
 - Trivial: $O(n^k \cdot n^2 L)$ (try all vertex sequences of length k)

- k-fixed TEXP
 - Trivial: $O(k! \cdot n^2 L)$ (try all orders)
 - Use dynamic programming similar to the classical Held-Karp algorithm for TSP: $O(2^k k \cdot n^2 L)$ time

- *k*-arbitrary TEXP
 - Trivial: $O(n^k \cdot n^2 L)$ (try all vertex sequences of length k)
 - Use color coding (Alon, Yuster, Zwick 1995) and dynamic programming to get FPT algorithms:
 - Randomized $O((2e)^k Ln^3 \log \frac{1}{\varepsilon})$ time, correct output with probability 1ε
 - Derandomization: deterministic $(2e)^k k^{O(\log k)} Ln^3 \log n$ time

< 同 > < 三 > < 三 >

Results for non-strict temporal exploration problems

TEXP in the non-strict model

- A temporal walk can visit all vertices of its connected component in each time step.
- In step 1, the walk can visit all vertices in the connected component containing *s*.
- The connected components visited in two consecutive time steps must share a vertex.
- We can represent a temporal exploration by specifying the connected component that it visits in every step.

TEXP in the non-strict model

- A temporal walk can visit all vertices of its connected component in each time step.
- In step 1, the walk can visit all vertices in the connected component containing *s*.
- The connected components visited in two consecutive time steps must share a vertex.
- We can represent a temporal exploration by specifying the connected component that it visits in every step.

• Bounded search tree algorithm

- Bounded search tree algorithm
- Choices for the largest component visited by OPT:
 - As OPT visits all *n* vertices in *L* steps, it must visit one component containing at least *n/L* vertices.
 - In each of the L steps, there exist at most L components with at least n/L vertices.
 - ⇒ There are ≤ L² possible choices for the largest component visited by OPT.

- Bounded search tree algorithm
- Choices for the largest component visited by OPT:
 - As OPT visits all *n* vertices in *L* steps, it must visit one component containing at least *n/L* vertices.
 - In each of the *L* steps, there exist at most *L* components with at least *n/L* vertices.
 - ⇒ There are ≤ L² possible choices for the largest component visited by OPT.
- If there are u unvisited vertices and L i steps left:
 - As OPT visits all u vertices in L i steps, it must visit one component containing at least u/(L - i) vertices.
 - In each of the L i steps, there exist at most L i components with at least u/(L i) unvisited vertices.
 - ⇒ There are ≤ (L − i)² possible choices for the largest component visited by OPT.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Bounded search tree algorithm
- Choices for the largest component visited by OPT:
 - As OPT visits all *n* vertices in *L* steps, it must visit one component containing at least *n/L* vertices.
 - In each of the L steps, there exist at most L components with at least n/L vertices.
 - ⇒ There are ≤ L² possible choices for the largest component visited by OPT.
- If there are u unvisited vertices and L i steps left:
 - As OPT visits all u vertices in L i steps, it must visit one component containing at least u/(L - i) vertices.
 - In each of the L i steps, there exist at most L i components with at least u/(L i) unvisited vertices.
 - ⇒ There are ≤ (L − i)² possible choices for the largest component visited by OPT.

Theorem

Non-strict TEXP can be solved in $O(L(L!)^2n)$ time.

s O	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
G_1	G_2	G_3	G_4	G_5	G_6

- For i = 0, 1, ..., add a component in an unused step that has at least u/(L i) unvisited vertices
- When u = 0, complete the components into a temporal walk

- For i = 0, 1, ..., add a component in an unused step that has at least u/(L i) unvisited vertices
- When u = 0, complete the components into a temporal walk

- For i = 0, 1, ..., add a component in an unused step that has at least u/(L − i) unvisited vertices
- When u = 0, complete the components into a temporal walk

- For i = 0, 1, ..., add a component in an unused step that has at least u/(L − i) unvisited vertices
- When u = 0, complete the components into a temporal walk

- For i = 0, 1, ..., add a component in an unused step that has at least u/(L − i) unvisited vertices
- When u = 0, complete the components into a temporal walk

- For i = 0, 1, ..., add a component in an unused step that has at least u/(L − i) unvisited vertices
- When u = 0, complete the components into a temporal walk

The resulting search tree

- $O((L!)^2)$ nodes, time O(nL) per node
- Total time $O(L(L!)^2n)$

- $\gamma = \max$ imum number of connected components per layer
 - With $\gamma = 1$ connected components per layer, non-strict exploration can trivially be completed in one step.

- $\gamma = \max$ imum number of connected components per layer
 - With $\gamma = 1$ connected components per layer, non-strict exploration can trivially be completed in one step.
 - Consider $\gamma = 2$. We can assume:
 - No two consecutive layers have identical connected components.
 - Every layer has exactly 2 connected components.

Possible transitions between consecutive layers

The transition from layer *i* to i + 1 can be one of two types:

Possible transitions between consecutive layers

The transition from layer *i* to i + 1 can be one of two types:

• Free transition: Each component of layer *i* can reach each component of layer *i* + 1, for example:

Possible transitions between consecutive layers

The transition from layer *i* to i + 1 can be one of two types:

• Free transition: Each component of layer *i* can reach each component of layer *i* + 1, for example:

• **Restricted transition:** One component of layer *i* cannot reach one component of layer *i* + 1, for example:

Only possible if one component shrinks and the other grows.

If there is a restricted transition from layer i to i + 1, the whole graph can be explored from the shrinking component in layer i.

• • = • • = •

If there is a restricted transition from layer i to i + 1, the whole graph can be explored from the shrinking component in layer i.

Proof. Explore the shrinking component in step *i*, then the growing one in step i + 1. layer *i*: a b c d e layer i + 1: a b c d e

.

If a restricted transition follows a free transition, the whole graph can be explored.

• • = • • = •

If a restricted transition follows a free transition, the whole graph can be explored.

Proof.

Move to the shrinking component in the free transition, then proceed as in the previous observation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Observation

In $\log_2 n$ consecutive free transitions, the whole graph can be explored.

э

• • = • • = •

In $\log_2 n$ consecutive free transitions, the whole graph can be explored.

Proof.

We can visit at least half of the unvisited vertex in each step, so the exploration is finished after $\log_2 n$ steps.

Algorithm:

• If a restricted transition follows a free transition, answer YES.

3.1

Algorithm:

- If a restricted transition follows a free transition, answer YES.
- If there is an initial sequence of restricted transitions:
 - If s is always in the growing component, can only stay in that component.
 - If *s* is ever in the shrinking component, can complete the exploration.

Algorithm:

- If a restricted transition follows a free transition, answer YES.
- If there is an initial sequence of restricted transitions:
 - If s is always in the growing component, can only stay in that component.
 - If *s* is ever in the shrinking component, can complete the exploration.
- In the remaining steps with only free transitions, try the up to $2^{\log_2 n} = n$ possible choices for up to $\log_2 n$ steps.

Algorithm:

- If a restricted transition follows a free transition, answer YES.
- If there is an initial sequence of restricted transitions:
 - If s is always in the growing component, can only stay in that component.
 - If *s* is ever in the shrinking component, can complete the exploration.
- In the remaining steps with only free transitions, try the up to $2^{\log_2 n} = n$ possible choices for up to $\log_2 n$ steps.

Theorem

Non-strict TEXP with $\gamma = 2$ can be solved in $O(nL + n^2 \log n)$ time.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reminder:

Set-TEXP: Given *m* vertex subsets $S_i \subseteq V$, is there a temporal walk that starts at *s* and visits at least one vertex from each S_i ?

Theorem

Set-TEXP with parameter L is W[2]-hard.

4 E 6 4 E 6

Reminder:

Set-TEXP: Given *m* vertex subsets $S_i \subseteq V$, is there a temporal walk that starts at *s* and visits at least one vertex from each S_i ?

Theorem

Set-TEXP with parameter L is W[2]-hard.

Proof.

- Non-strict model: Parameterized reduction from SETCOVER
- Strict model: Parameterized reduction from HITTINGSET (works even if each *G_i* is a complete graph)

Conclusion

• Our results

Problem	Parameter	strict	non-strict
TEXP	L	FPT	FPT
TEXP	γ	NPC for $\gamma = 1$	poly for $\gamma=1,2$
<i>k</i> -fixed TEXP	k	FPT	FPT
<i>k</i> -arbitrary TEXP	k	FPT	FPT
Set-TEXP	L	W[2]-hard	W[2]-hard

Open problem

 Is non-strict TEXP with parameter γ (the maximum number of connected components per layer) in XP or even FPT?

3 1 4 3

Conclusion

• Our results

Problem	Parameter	strict	non-strict
TEXP	L	FPT	FPT
TEXP	γ	NPC for $\gamma = 1$	poly for $\gamma=1,2$
<i>k</i> -fixed TEXP	k	FPT	FPT
<i>k</i> -arbitrary TEXP	k	FPT	FPT
Set-TEXP	L	W[2]-hard	W[2]-hard

Open problem

 Is non-strict TEXP with parameter γ (the maximum number of connected components per layer) in XP or even FPT?
Even for γ = 3 the complexity is open!

4 3 5 4 3

Thank you!

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?