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Temporal graphs

Definition (Temporal Graph)

A temporal graph G = 〈G1, ...,GL〉 with underlying graph
G↓ = (V ,E ) and lifetime L consists of L static graphs (layers,
steps) Gi = (V ,Ei ) with Ei ⊆ E .

G↓ G1 G2 G3 G4

If e ∈ Et , we call (e, t) a time-edge.

t
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Temporal walks

Strict temporal walk: increasing time steps

3 5 6 8

Non-strict temporal walk: non-decreasing time steps

2 2 2 4
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Temporal exploration

Temporal Exploration Problem (TEXP)

Given a temporal graph G and start vertex s, decide whether there
is a temporal walk that starts at s at time 1 and visits all vertices.
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Previous work

Strict TEXP:

Michail and Spirakis, 2014, 2016: NP-complete to decide if a
temporal graph can be explored
If every Gt is connected and L ≥ n2:

Can be explored in O(n2) steps, no O(n1−ε) approximation for
Foremost-TEXP unless P = NP (E, Hoffmann and Kammer,
2015, 2021).
Subquadratic upper bounds on exploration time for many
special cases (EHK’15,’21; IW’18; EKLSS’19; . . . )

Non-strict TEXP (E and Spooner, 2020):

NP-complete to to decide if a temporal graph can be explored
Temporal diameter 2: O(

√
n · log n) steps,

no O(n
1
2−ε)-approximation unless P = NP

Temporal diameter 3: may require up to Θ(n) steps,
no O(n1−ε)-approximation unless P = NP
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Auxiliary tool

Gt Gt+1 Gt+2 Gt+3

v

w w w w

Algorithm for foremost temporal walk (cf. Bui-Xuan et al., 2013;
Wu et al., 2014)

Given a temporal graph G, a vertex v , and a time t, one can
compute in O(Ln2) time a foremost (i.e., earliest arrival time)
strict temporal walk to any (or all) destination vertices w starting
at v at time t.

A similar algorithm exists for non-strict walks.

The main difficulty in TEXP is to decide the best order in which
vertices should be visited.
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Parameterized complexity of TEXP

TEXP is a computationally difficult problem.

Are there efficient parameterized algorithms for (variants of)
TEXP?

Definition

A problem is fixed-parameter tractable (FPT) if an instance of
size n with parameter k can be solved in f (k) · nO(1) time.

Examples of possible parameters for TEXP:

L = lifetime

γ = maximum number of connected components per layer
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Variants of TEXP

k-fixed TEXP

Given a temporal graph G and start vertex s and vertex subset
X ⊆ V with |X | = k , decide whether there is a temporal walk that
starts at s at time 1 and visits at least all vertices in X .

k-arbitrary TEXP

Given a temporal graph G and start vertex s and k ∈ N, decide
whether there is a temporal walk that starts at s at time 1 and
visits k different vertices.

Set-TEXP

Given a temporal graph G and start vertex s and m vertex subsets
Si ⊆ V , is there a temporal walk that starts at s at time 1 and
visits at least one vertex from each Si .
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Our results

Problem Parameter strict non-strict

TEXP L FPT FPT

TEXP γ NPC for γ = 1 poly for γ = 1, 2

k-fixed TEXP k FPT FPT

k-arbitrary TEXP k FPT FPT

Set-TEXP L W[2]-hard W[2]-hard

Reminder:

L = lifetime

γ = maximum number of connected components per layer

k = number of vertices to be visited
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Results for strict

temporal exploration problems
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FPT algorithms for strict model

k-fixed TEXP

Trivial: O(k! · n2L) (try all orders)

Use dynamic programming similar to the classical Held-Karp
algorithm for TSP: O(2kk · n2L) time

k-arbitrary TEXP

Trivial: O(nk · n2L) (try all vertex sequences of length k)
Use color coding (Alon, Yuster, Zwick 1995) and dynamic
programming to get FPT algorithms:

Randomized O((2e)kLn3 log 1
ε

) time, correct output with
probability 1 − ε
Derandomization: deterministic (2e)kkO(log k)Ln3 log n time
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Results for non-strict

temporal exploration problems
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TEXP in the non-strict model

G1 G2 G3 G4

s

A temporal walk can visit all vertices of its connected
component in each time step.

In step 1, the walk can visit all vertices in the connected
component containing s.

The connected components visited in two consecutive time
steps must share a vertex.

We can represent a temporal exploration by specifying the
connected component that it visits in every step.
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Non-strict TEXP with parameter L

Bounded search tree algorithm

Choices for the largest component visited by OPT:
As OPT visits all n vertices in L steps, it must visit one
component containing at least n/L vertices.
In each of the L steps, there exist at most L components with
at least n/L vertices.
⇒ There are ≤ L2 possible choices for the largest component
visited by OPT.

If there are u unvisited vertices and L− i steps left:
As OPT visits all u vertices in L− i steps, it must visit one
component containing at least u/(L− i) vertices.
In each of the L− i steps, there exist at most L− i
components with at least u/(L− i) unvisited vertices.
⇒ There are ≤ (L− i)2 possible choices for the largest
component visited by OPT.

Theorem

Non-strict TEXP can be solved in O(L(L!)2n) time.
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Illustration of the algorithm

s

G1 G2 G3 G4 G5 G6

For i = 0, 1, . . ., add a component in an unused step that has
at least u/(L− i) unvisited vertices

When u = 0, complete the components into a temporal walk
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The resulting search tree

...

degree L2

degree 12

degree (L− 2)2

degree (L− 1)2

Depth ≤ L

O((L!)2) nodes, time O(nL) per node

Total time O(L(L!)2n)
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Non-strict TEXP with parameter γ

γ = maximum number of connected components per layer

With γ = 1 connected components per layer, non-strict
exploration can trivially be completed in one step.

Consider γ = 2. We can assume:

No two consecutive layers have identical connected
components.
Every layer has exactly 2 connected components.
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Possible transitions between consecutive layers

The transition from layer i to i + 1 can be one of two types:

Free transition: Each component of layer i can reach each
component of layer i + 1, for example:

c d eab

ab edclayer i :

layer i + 1:

Restricted transition: One component of layer i cannot
reach one component of layer i + 1, for example:

a b c d e

a b c d e

layer i :

layer i + 1:

Only possible if one component shrinks and the other grows.
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Observation 1

Observation

If there is a restricted transition from layer i to i + 1, the whole
graph can be explored from the shrinking component in layer i .

Proof.

Explore the shrinking component in step i , then the growing one in
step i + 1.

a b c d e

a b c d e

layer i :

layer i + 1:
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Observation 2

Observation

If a restricted transition follows a free transition, the whole graph
can be explored.

Proof.

Move to the shrinking component in the free transition, then
proceed as in the previous observation.

c d e

a b c d e

ablayer i :

layer i + 1:

layer i − 1: ab edc

free

restricted
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Observation 3

Observation

In log2 n consecutive free transitions, the whole graph can be
explored.

Proof.

We can visit at least half of the unvisited vertex in each step, so
the exploration is finished after log2 n steps.

i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6

log2 n layers
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Polynomial algorithm for γ = 2

Algorithm:

If a restricted transition follows a free transition, answer YES.

If there is an initial sequence of restricted transitions:

If s is always in the growing component, can only stay in that
component.
If s is ever in the shrinking component, can complete the
exploration.

In the remaining steps with only free transitions, try the up to
2log2 n = n possible choices for up to log2 n steps.

Theorem

Non-strict TEXP with γ = 2 can be solved in O(nL + n2 log n)
time.
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W[2]-hardness of Set-TEXP

Reminder:
Set-TEXP: Given m vertex subsets Si ⊆ V , is there a temporal
walk that starts at s and visits at least one vertex from each Si?

Theorem

Set-TEXP with parameter L is W[2]-hard.

Proof.

Non-strict model: Parameterized reduction from SetCover

Strict model: Parameterized reduction from HittingSet
(works even if each Gi is a complete graph)
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Conclusion

Our results

Problem Parameter strict non-strict

TEXP L FPT FPT
TEXP γ NPC for γ = 1 poly for γ = 1, 2
k-fixed TEXP k FPT FPT
k-arbitrary TEXP k FPT FPT
Set-TEXP L W[2]-hard W[2]-hard

Open problem
Is non-strict TEXP with parameter γ (the maximum number
of connected components per layer) in XP or even FPT?

Even for γ = 3 the complexity is open!
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Thank you!

Questions?


