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SIR on static graphs

‣ Infection rate β → Infection across an SI link* is a Poisson process for its 
duration. 

‣  . . . *Edge in a static graph. 

‣Constant recovery rate ν → Exponentially distributed durations of infection. 

‣One seed chosen at random among all vertices.

‣Gillespie 

‣Event-driven algorithm (Kiss, Miller, Simon, 2017), a.k.a. Next-reaction 

‣Composition / rejection (St-Onge, Comp. Phys. Comm. 2019)

Algorithms



SIR on temporal graphs

‣Realism | After all, the goal is to simulate reality 

‣Continuity | It should be possible to reduce the time dimension and get static 
network epidemiology. 

‣Simplicity | Keep the same level of abstraction throughout the modeling. 

‣Generalizability | It should be easy to extend the model. 

‣Speed | As a tiebreaker among design principles.

Design principles:

P Holme, 2021. Fast and principled simulations of the SIR model on temporal 
networks. PLoS ONE 16(2): e0246961.



Algorithmic model formulation

‣ Initialization | Initialize all individuals to susceptible. 

‣Seeding | Pick a random individual i and a random time ti in the interval [0,T). At 
time ti, infect i. 

‣Recovery | Whenever a node becomes infected, let it stay infected for an 
exponentially distributed time δ before it recovers. 

‣Contagion | If i got infected at time ti and is still infected at time t > ti, and j is 
susceptible at time t, then a contact (i,j,t) will infect j with probability β.



Straightforward algorithm

1. Initialize all nodes as susceptible. 

2. Run through the contacts in increasing order of time. 

3. If a there is a contact between a susceptible and infectious node, then infect the 
susceptible node with probability β. 

4. Whenever a node gets infected (including the source), then draw its time to recovery 
from an exponential distribution, and change its state to I. 

5. Stop the simulation when there are no infectious nodes.
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51. Bisection search to find the first contact that can spread the disease.  

2. Stop the simulations when all infected nodes are no longer active.

Could be sped up with several tricks:
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Contact lists ordered in decreasing order of the last element.

Event-based algorithm



Event-based algorithm

1. Use bisection search to find the smallest index k of tij such that ti < tij(k). 
Where tij(k) denotes the k’th contact of tij. 

2. Add a random number K generated by⎣log(1–X) / log(1–β)⎦ to k and 

denote the sum by k′. (The probability of the k’th event of a Bernoulli process 
occurring.) X is a uniform random number in [0,1). 

3. If k′ is larger than tij’s number of elements, then return some out-of-bounds 
value (to signal that no contact will spread the disease). Otherwise, return k′
—the contact between i and j that could be contagious.

Contagious contact 

Finding what contact between two nodes i and j that would spread the disease, if 
any.
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Event-based algorithm

1. Pop the individual i with the earliest infection time from the heap. 

2. Iterate through the neighbors j of i. 

a. If j is susceptible, get the time tj when it would be infected by i (by calling 
contagious-contact). 

b. If it simultaneously holds that 

i. There is no earlier infection event of j on the heap. 

ii. i’s recovery time is not earlier than tj. 

then put the contagion (i infects j at time tj) on the heap.

Infect 

Handling the infection of one node i.



Event-based algorithm

Taken together:

1. Read the network and initialize everything. 

2. Infect the source node. 

3. While there are any nodes left on the heap, call infect. 

4. Reset the simulation. 

5. Go to 2 until you have enough averages. 

6. Evaluate the output.



Transmission probability
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Example output: SocioPatterns Gallery day 1
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A graph with complex behavior w.r.t SIR
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Complexity

N = number of nodes 
M = number of edges (node pairs with at least one contact) 
C = number of contacts 

Straightforward algorithms: O(N + C) 
Event-driven algorithm: O(L log N log C) 
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Speed-up relative to the straightforward algorithm
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SIR with fixed infection-duration

Everything like before, except the disease lasts a fixed duration T. 
Could we then compute the infection probability of a node for all β at once?

Work

in

progress



SIR with fixed infection-duration

Everything like before, except the disease lasts a fixed duration T. 

This makes the problem more structured and should be much faster. For 

example, we then compute the infection probability of a node for all β at once? 

Naïve algorithm idea: 

1. For every node i, let a variable xi representing the minimum value of T 

needed to reach i. 

2. Go through every contact (i,j,t) in increasing t. Update xi to max(xi,tj+xj) where 

tj is the time since j was infected, and similarly for xj.



The catch

1

2

3

4

5

6

7

1

2

3

4

5

6

7

time

time

S I R
T



petterhol.me 

Code: github.com/pholme/tsir/ 

Thank you!


