
Petter

Holme

Temporal

network

epidemiology:

Subtleties

and

algorithms

Temporal networks

i j t

1 2 0

1 2 5

2 3 7

1 2 8

3 4 9

⋮ ⋮ ⋮

0

2

3

4

Time

10

1

5

SIR on static graphs

‣ Infection rate β → Infection across an SI link* is a Poisson process for its
duration.

‣ . . . *Edge in a static graph.

‣Constant recovery rate ν → Exponentially distributed durations of infection.

‣One seed chosen at random among all vertices.

‣Gillespie

‣Event-driven algorithm (Kiss, Miller, Simon, 2017), a.k.a. Next-reaction

‣Composition / rejection (St-Onge, Comp. Phys. Comm. 2019)

Algorithms

SIR on temporal graphs

‣Realism | After all, the goal is to simulate reality

‣Continuity | It should be possible to reduce the time dimension and get static
network epidemiology.

‣Simplicity | Keep the same level of abstraction throughout the modeling.

‣Generalizability | It should be easy to extend the model.

‣Speed | As a tiebreaker among design principles.

Design principles:

P Holme, 2021. Fast and principled simulations of the SIR model on temporal
networks. PLoS ONE 16(2): e0246961.

Algorithmic model formulation

‣ Initialization | Initialize all individuals to susceptible.

‣Seeding | Pick a random individual i and a random time ti in the interval [0,T). At
time ti, infect i.

‣Recovery | Whenever a node becomes infected, let it stay infected for an
exponentially distributed time δ before it recovers.

‣Contagion | If i got infected at time ti and is still infected at time t > ti, and j is
susceptible at time t, then a contact (i,j,t) will infect j with probability β.

Straightforward algorithm

1. Initialize all nodes as susceptible.

2. Run through the contacts in increasing order of time.

3. If a there is a contact between a susceptible and infectious node, then infect the
susceptible node with probability β.

4. Whenever a node gets infected (including the source), then draw its time to recovery
from an exponential distribution, and change its state to I.

5. Stop the simulation when there are no infectious nodes.

0

2

3

4

Time

10

1

51. Bisection search to find the first contact that can spread the disease.

2. Stop the simulations when all infected nodes are no longer active.

Could be sped up with several tricks:

0

A

B

5 10 15 20

a

b

c

d

Time

a:

b

c

d

192 15

0 4 6

10

b: a 0 4 6 c: a

d

192 15

13 16

d: c 13 16

a 10

Internal representation of the temporal network

Contact lists ordered in decreasing order of the last element.

Event-based algorithm

Event-based algorithm

1. Use bisection search to find the smallest index k of tij such that ti < tij(k).
Where tij(k) denotes the k’th contact of tij.

2. Add a random number K generated by⎣log(1–X) / log(1–β)⎦ to k and

denote the sum by k′. (The probability of the k’th event of a Bernoulli process
occurring.) X is a uniform random number in [0,1).

3. If k′ is larger than tij’s number of elements, then return some out-of-bounds
value (to signal that no contact will spread the disease). Otherwise, return k′
—the contact between i and j that could be contagious.

Contagious contact

Finding what contact between two nodes i and j that would spread the disease, if
any.

a:

b

c

d

192 15

0 4 6

10

b: a 0 4 6 c: a

d

192 15

13 16

d: c 13 16

a 10

Event-based algorithm

1. Pop the individual i with the earliest infection time from the heap.

2. Iterate through the neighbors j of i.

a. If j is susceptible, get the time tj when it would be infected by i (by calling
contagious-contact).

b. If it simultaneously holds that

i. There is no earlier infection event of j on the heap.

ii. i’s recovery time is not earlier than tj.

then put the contagion (i infects j at time tj) on the heap.

Infect

Handling the infection of one node i.

Event-based algorithm

Taken together:

1. Read the network and initialize everything.

2. Infect the source node.

3. While there are any nodes left on the heap, call infect.

4. Reset the simulation.

5. Go to 2 until you have enough averages.

6. Evaluate the output.

Transmission probability

10

0.1

1

0.01 0.1 1

R
e
co

ve
ry

 r
a
te

O
u
tb

re
a
k

si
ze

2

4

6

8

10

12

14

16

18

Example output: SocioPatterns Gallery day 1

1

2

3

4

5

6

7

0.1 1 10

O
u
tb

re
a
k

si
ze

Infection rate

Analytical

Straightforward algorithm

Event-based algorithm

A B

Validation of the program

A graph with complex behavior w.r.t SIR

7

1 6 75

1 6 751 6

1

2

3

4

5

0.1 1 10
1

2

3

4

5

6

7

0.1 1 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 1 10

326

3 2 5

3

2

7

5

Sentinel

surveillance

VaccinationInfluence

maximization

Ω Ω

τ

2

1

4 5

6 7

3

β β

β

P
 H

ol
m

e,
 P

hy
s.

 R
ev

.
E
 9

6
,
0
6
2
3
0
5
 (
2
0
1
7
).

Complexity

N = number of nodes
M = number of edges (node pairs with at least one contact)
C = number of contacts

Straightforward algorithms: O(N + C)
Event-driven algorithm: O(L log N log C)

5

10

15

1 10 100 1000

5

10

15

10 100

5

10

15

R
e
la

ti
ve

 s
p
e
e
d
-
u
p

10001 10

R
e
la

ti
ve

 s
p
e
e
d
-
u
p

R
e
la

ti
ve

 s
p
e
e
d
-
u
p

Average degree, z Number of nodes, nAvg. no. contacts per edge, c

BA Cz = 2

n = 100

c = 100

n = 100

c = 100

z = 2

0 0 0

Speed-up relative to the straightforward algorithm of
artificial networks

Speed-up relative to the straightforward algorithm

Transmission probability

R
e
co

ve
ry

 r
a
te

0

10

20

30

40

S
p
e
e
d
-
u
p

1000

100

10

1

0.1

0.1 10.010.001

1

10

100

1000

10000

1000 10000 100000 1×106 1×107

Number of contacts

R
e
la

ti
ve

 s
p
e
e
d
-
u
p

Speed-up relative to the straightforward algorithm

SIR with fixed infection-duration

Everything like before, except the disease lasts a fixed duration T.
Could we then compute the infection probability of a node for all β at once?

Work

in

progress

SIR with fixed infection-duration

Everything like before, except the disease lasts a fixed duration T.

This makes the problem more structured and should be much faster. For

example, we then compute the infection probability of a node for all β at once?

Naïve algorithm idea:

1. For every node i, let a variable xi representing the minimum value of T

needed to reach i.

2. Go through every contact (i,j,t) in increasing t. Update xi to max(xi,tj+xj) where

tj is the time since j was infected, and similarly for xj.

The catch

1

2

3

4

5

6

7

1

2

3

4

5

6

7

time

time

S I R
T

petterhol.me

Code: github.com/pholme/tsir/

Thank you!

