Some Thoughts on Dynamic Unit Disk Graphs

Neven Villani

ENS Paris-Saclay and LaBRI, France
joint work with Arnaud Casteigts
Algorithmic Aspects of Temporal Graphs IV - July 2021

école

normale
supérieure
paris-saclay

Outline

(1) Motivation
(2) 2-dimensional
(3) 1-dimensional
(4) Conclusion

Static Unit Disk Graphs

Definition (Unit Disk Graph)

$G=(V, E)$ an undirected graph is a Unit Disk Graph (UDG) in dimension n when there exists an embedding $\iota: V \rightarrow \mathbb{R}^{n}$ such that $\forall v, v^{\prime} \in V,\left\{v, v^{\prime}\right\} \in E \Longleftrightarrow\left\|\iota(v)-\iota\left(v^{\prime}\right)\right\| \leqslant 1$

Static Unit Disk Graphs

Definition (Unit Disk Graph)

$G=(V, E)$ an undirected graph is a Unit Disk Graph (UDG) in dimension n when there exists an embedding $\iota: V \rightarrow \mathbb{R}^{n}$ such that $\forall v, v^{\prime} \in V,\left\{v, v^{\prime}\right\} \in E \Longleftrightarrow\left\|\iota(v)-\iota\left(v^{\prime}\right)\right\| \leqslant 1$

Static Unit Disk Graphs

Definition (Unit Disk Graph)

$G=(V, E)$ an undirected graph is a Unit Disk Graph (UDG) in dimension n when there exists an embedding $\iota: V \rightarrow \mathbb{R}^{n}$ such that $\forall v, v^{\prime} \in V,\left\{v, v^{\prime}\right\} \in E \Longleftrightarrow\left\|\iota(v)-\iota\left(v^{\prime}\right)\right\| \leqslant 1$

Dynamic UDG

Definition

A dynamic UDG is $\mathcal{G}=\left(V, E_{0}, \cdots, E_{\tau}\right)$ such that all
$G_{i}=\left(V, E_{i}\right)$ are UDG and successive embeddings change in limited ways.
G_{i} : "snapshots"
$\left(V, \bigcup_{0 \leqslant i \leqslant \tau} E_{i}\right)$:"footprint"

- To what extent can dynamic UDG be recognized?
- How to define "limited ways" ?

Plausible Mobility

Figure: Inferring of positions from contact trace

Tolerates missing or extra links.
Reasonable assumption in the case of a low quality trace, but can we do better ?

Whitbeck, Plausible Mobility, https://plausible.lip6.fr (2011)

Results

setting	static	dynamic
unrestricted (2D)	NP-hard	
tree (2D)	NP-hard	
caterpillar (2D)		
1D	Linear $^{(2)}$	

(1) Breu \& Kirkpatrick, Unit disk graph recognition is NP-hard (1998)
(2) Bhore \& Nickel \& Nöllenburg, Recognition of Unit Disk Graphs for Caterpillars, Embedded Trees, and Outerplanar Graphs (2021)
(3) Booth \& Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using $P Q$-tree algorithms (1976) (And at least 3 other papers)

Results

setting	static	dynamic
unrestricted (2D)	NP-hard	
tree (2D)	NP-hard	
caterpillar (2D)	NP-hard	Linear
12)	NP-hard	NP-hard
1D	Linear $^{(3)}$	Linear

- Seemingly no interesting tractable problem in two dimensions, simpler reduction than in the static problem ${ }^{(*)}$ all snapshots are caterpillars
- An extension of a data structure for the 1-dimensional case can handle temporality.
(1) Breu \& Kirkpatrick, Unit disk graph recognition is NP-hard (1998)
(2) Bhore \& Nickel \& Nöllenburg, Recognition of Unit Disk Graphs for Caterpillars, Embedded Trees, and Outerplanar Graphs (2021)
(3) Booth \& Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using $P Q$-tree algorithms (1976) (And at least 3 other papers)

Overview and intuition

- reduction from 3-SAT
- one group of disks for each variable
- each variable can take two states, interpreted as true or false
- clauses are handled sequentially over a sequence of consecutive snapshots

Overview and intuition

- reduction from 3-SAT
- one group of disks for each variable
- each variable can take two states, interpreted as true or false
- clauses are handled sequentially over a sequence of consecutive snapshots

Hypothesis: "slow enough". Speed is bounded by a constant fraction of the radius.
This makes variables unable to change state in the middle of the process.

Two configurations of variables

Left: true, Right: false

Clause assembling

The clause $C=\neg x_{1} \vee x_{2} \vee \perp$. With $x_{1}=x_{2}=$ true.
Satisfied thanks to x_{2}.
The central 12-cycle can fit 4 disks but not 6 .

Extension of the result

This shows NP-hardness in the general case.
Simpler proof than in the static case

+ linear number of disks instead of quadratic
+ fewer restrictions on initial 3-SAT instance

Extension of the result

This shows NP-hardness in the general case.

Simpler proof than in the static case

+ linear number of disks instead of quadratic
+ fewer restrictions on initial 3-SAT instance

Still NP-hard under the modified constraints (separately):

- integer coordinates
- footprint is a tree
- snapshots are caterpillars
- snapshots have CCs of size at most 2
- one event at a time
(caterpillar: tree with all vertices within distance 1 of a central path)

Extension of the result

This shows NP-hardness in the general case.

Simpler proof than in the static case

+ linear number of disks instead of quadratic
+ fewer restrictions on initial 3-SAT instance

Still NP-hard under the modified constraints (separately):

- integer coordinates (static: unknown)
- footprint is a tree (static: NP-hard)
- snapshots are caterpillars (static: linear)
- snapshots have CCs of size at most 2 (static: $O(1)$)
- one event at a time (static: irrelevant)
(caterpillar: tree with all vertices within distance 1 of a central path)

Takeaway and 1D restriction

Main source of problems: structures can be forced to "choose" one of several embeddings, which they are then unable to escape from.

In one dimension, an efficient representation of all possible configurations
\longrightarrow extension of $P Q$-trees

Physical 1D model

- one event at a time LinkUp or LinkDown
\longrightarrow perfect trace
- continuous transition from one embedding to the next

Equivalent permutations

Theorem

For $\tau \in \mathfrak{S}(V)$, there exists an injective embedding ८ of G with the same ordering of vertices iff all neighborhoods are contiguous subsequences of τ
\longrightarrow The set of all valid embeddings can be represented by a set of permutations.

Theorem

There exists a continuous transition without event from ι to ι^{\prime} iff ι and ι^{\prime} differ only in the order of vertices that have the same neighborhood
\longrightarrow From now on, only manipulations on sets of permutations

$P Q$-tree

Example:

A tree for the set
1234567, 1324567, 2134567,
2314567, 3124567, 3214567,
7654321, 7654231, 7654312,
7654132, 7654213, 7654123,

$P Q$-forest

- set of $P Q$-trees
- P-nodes as leaves contain disks with the same neighborhood
- toplevel trees can be arbitrarily permuted

$\operatorname{LinkUp}\left(v, v^{\prime}\right)$

Initial

$\operatorname{LinkUp}\left(v, v^{\prime}\right)$

Initial

Rotate

$\operatorname{LINKUP}\left(v, v^{\prime}\right)$

Initial

Rotate

Extract

$\operatorname{LINKUP}\left(v, v^{\prime}\right)$

Initial

Extract

Rotate

Flatten

$\operatorname{LinkDown}\left(v, v^{\prime}\right)$

Initial

$\operatorname{LinkDown}\left(v, v^{\prime}\right)$

Initial

Extract

$\operatorname{LinkDown}\left(v, v^{\prime}\right)$

Initial

Extract

Allow flip

Final result

- each new event requires amortized $O(\log n)$ (n : number of vertices)
- linear overall: $O(\tau \cdot \log n)$
(τ : number of events)
- online algorithm: updates the $P Q$-forest in real time

Open questions \& future works

- characterization of forbidden 1D patterns
- exact algorithm for 2D (even if exponential) ?
- 2D when the footprint is a caterpillar (despite it being too restrictive for practical purposes)

