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FPT Algorithm for Delaying: Search-Tree
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Start with R < S where S are the source vertices.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.

Transform to flow problem and check if there is a flow of value > k.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

m If |R'| < r then recursively continue with R’ at Step 2.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

m If |R'| < r then recursively continue with R’ at Step 2.

m Otherwise, output “no solution”.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13



FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

m If |R'| < r then recursively continue with R’ at Step 2.

m Otherwise, output “no solution”.

Minimizing Reachability by Delaying can be solved in O(r" - k - |G|) time.
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Arxiv link:

Thank you!
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