
Temporal Reachability Minimization: Delaying vs. Deleting

Hendrik Molter1 Malte Renken2 Philipp Zschoche2

1 Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel
2 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany

Algorithmic Aspects of Temporal Graphs IV

Extended abstract to appear in proceedings of MFCS 2021

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Goal: Minimize potential infections to contain

disease:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Goal: Minimize potential infections to contain

disease:

By removing interactions.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Goal: Minimize potential infections to contain

disease:

By removing interactions.

By delaying interactions.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Goal: Minimize potential infections to contain

disease:

By removing interactions.

By delaying interactions.

By reordering interaction patterns.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Goal: Minimize potential infections to contain

disease:

By removing interactions.

By delaying interactions.

By reordering interaction patterns.

Assumptions:

Known outbreak.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Motivation: Disease Spreading

Scenario: Diseases spread through physical

contact.

Goal: Minimize potential infections to contain

disease:

By removing interactions.

By delaying interactions.

By reordering interaction patterns.

Assumptions:

Known outbreak.

Unknown outbreak.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2 / 13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification Known Outbreak Unknown Outbreak

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3 / 13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification Known Outbreak Unknown Outbreak

deleting Our Work [MFCS ’21]

Enright & Meeks [Algorithmica ’18],

Enright, Meeks, Mertzios,

Zamaraev [JCSS ’21]

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3 / 13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification Known Outbreak Unknown Outbreak

deleting Our Work [MFCS ’21]

Enright & Meeks [Algorithmica ’18],

Enright, Meeks, Mertzios,

Zamaraev [JCSS ’21]

delaying
Deligkas & Potapov [AAAI ’20],

Our Work [MFCS ’21]
?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3 / 13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification Known Outbreak Unknown Outbreak

deleting Our Work [MFCS ’21]

Enright & Meeks [Algorithmica ’18],

Enright, Meeks, Mertzios,

Zamaraev [JCSS ’21]

delaying
Deligkas & Potapov [AAAI ’20],

Our Work [MFCS ’21]
?

reordering ? Enright, Meeks, Skerman [JCSS ’21]

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3 / 13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification Known Outbreak Unknown Outbreak

deleting Our Work [MFCS ’21]

Enright & Meeks [Algorithmica ’18],

Enright, Meeks, Mertzios,

Zamaraev [JCSS ’21]

delaying
Deligkas & Potapov [AAAI ’20],

Our Work [MFCS ’21]
?

reordering ? Enright, Meeks, Skerman [JCSS ’21]

merging Deligkas & Potapov [AAAI ’20] ?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2: G3:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2: G3:

Temporal (s,z)-Path

Sequence of time edges forming a path from

s to z that have:

increasing time stamps (strict).

non-decreasing time stamps (non-strict).

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2: G3:

Temporal (s,z)-Path

Sequence of time edges forming a path from

s to z that have:

increasing time stamps (strict).

non-decreasing time stamps (non-strict).

s z
1 3 2 4

Not a temporal path.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2: G3:

Temporal (s,z)-Path

Sequence of time edges forming a path from

s to z that have:

increasing time stamps (strict).

non-decreasing time stamps (non-strict).

s z
1 3 2 4

Not a temporal path.

s z
1 1 3 4

Non-strict temporal path. (Not strict.)

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[ℓ]) is a

vertex set V with a list of edge sets E1, . . . ,Eℓ

over V , where ℓ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2: G3:

Temporal (s,z)-Path

Sequence of time edges forming a path from

s to z that have:

increasing time stamps (strict).

non-decreasing time stamps (non-strict).

s z
1 3 2 4

Not a temporal path.

s z
1 1 3 4

Non-strict temporal path. (Not strict.)

s z
1 2 3 4

Temporal path (both strict and non-strict).

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4 / 13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r

vertices eventually contract the disease?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5 / 13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r

vertices eventually contract the disease?

Example: S = {A}, k = 2, r = 2.

A

B

E

C

D

1,2

4
1

1,2

3
5

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5 / 13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r

vertices eventually contract the disease?

Example: S = {A}, k = 2, r = 2.

A

B

E

C

D

1,2

4
1

1,2

3
5

Results:

Polytime solvable on trees.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5 / 13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r

vertices eventually contract the disease?

Example: S = {A}, k = 2, r = 2.

A

B

E

C

D

1,2

4
1

1,2

3
5

Results:

Polytime solvable on trees.

NP-hard and W[1]-hard wrt. k for lifetime

two. Deligkas & Potapov [AAAI ’20]

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5 / 13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r

vertices eventually contract the disease?

Example: S = {A}, k = 2, r = 2.

A

B

E

C

D

1,2

4
1

1,2

3
5

Results:

Polytime solvable on trees.

NP-hard and W[1]-hard wrt. k for lifetime

two. Deligkas & Potapov [AAAI ’20]

W[1]-hard wrt. r for lifetime two.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5 / 13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices

eventually contract the disease?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6 / 13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices

eventually contract the disease?

Example: S = {A}, k = 2, r = 3.

A

B

E

C

D

1,2

4
1

1,2

3
5

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6 / 13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices

eventually contract the disease?

Example: S = {A}, k = 2, r = 3.

A

B

E

C

D

1,2

4
1

1,2

3
5

Results:

Polytime solvable on trees.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6 / 13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices

eventually contract the disease?

Example: S = {A}, k = 2, r = 3.

A

B

E

C

D

1,2

4
1

1,2

3
5

Results:

Polytime solvable on trees.

NP-hard and W[1]-hard wrt. k for lifetime

two. Deligkas & Potapov [AAAI ’20]

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6 / 13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices

eventually contract the disease?

Example: S = {A}, k = 2, r = 3.

A

B

E

C

D

1,2

4
1

1,2

3
5

Results:

Polytime solvable on trees.

NP-hard and W[1]-hard wrt. k for lifetime

two. Deligkas & Potapov [AAAI ’20]

Fixed-parameter tractable wrt. r .

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 7 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 7 / 13

FPT Algorithm for Delaying: Flow Network

A B C D
1 2,3 4

FPT Algorithm for Delaying: Flow Network

A B C D
1 2,3 4

A,1

A,2

A,3

A,4

A,5

A,6

B,1

B,2

B,3

B,4

B,5

B,6

C,1

C,2

C,3

C,4

C,5

C,6

D,1

D,2

D,3

D,4

D,5

D,6

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 8 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

3 If maximum flow has value ≤ k , then the corresponding min-cut is a solution!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 9 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

3 If maximum flow has value ≤ k , then the corresponding min-cut is a solution!

4 If maximum flow has value > k , consider set L of flow network vertices that “leak” flow to V \R.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 9 / 13

FPT Algorithm for Delaying: Flow Network

A B C D
1 2,3 4

A,1

A,2

A,3

A,4

A,5

A,6

B,1

B,2

B,3

B,4

B,5

B,6

C,1

C,2

C,3

C,4

C,5

C,6

D,1

D,2

D,3

D,4

D,5

D,6

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 10 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

3 If maximum flow has value ≤ k , then the corresponding min-cut is a solution!

4 If maximum flow has value > k , consider set L of flow network vertices that “leak” flow to V \R.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 11 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

3 If maximum flow has value ≤ k , then the corresponding min-cut is a solution!

4 If maximum flow has value > k , consider set L of flow network vertices that “leak” flow to V \R.

In every solution, at least one (v , t) ∈ L stays reachable!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 11 / 13

FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

3 If maximum flow has value ≤ k , then the corresponding min-cut is a solution!

4 If maximum flow has value > k , consider set L of flow network vertices that “leak” flow to V \R.

In every solution, at least one (v , t) ∈ L stays reachable!

 Search-tree!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 11 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v , t) ∈ L.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v , t) ∈ L.

Iterate over vertices v ∈ Y .

R
′← R∪{v}.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v , t) ∈ L.

Iterate over vertices v ∈ Y .

R
′← R∪{v}.

If |R′| ≤ r then recursively continue with R
′ at Step 2.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v , t) ∈ L.

Iterate over vertices v ∈ Y .

R
′← R∪{v}.

If |R′| ≤ r then recursively continue with R
′ at Step 2.

Otherwise, output “no solution”.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v , t) ∈ L.

Iterate over vertices v ∈ Y .

R
′← R∪{v}.

If |R′| ≤ r then recursively continue with R
′ at Step 2.

Otherwise, output “no solution”.

Theorem

Minimizing Reachability by Delaying can be solved in O(r r · k · |G|) time.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12 / 13

Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13 / 13

Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.

For the case where the “outbreak” is known, surprising difference in parameterized complexity

wrt. reachable set size between “delete” and “delay” version.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13 / 13

Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.

For the case where the “outbreak” is known, surprising difference in parameterized complexity

wrt. reachable set size between “delete” and “delay” version.

Both versions poly-time solvable on trees.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13 / 13

Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.

For the case where the “outbreak” is known, surprising difference in parameterized complexity

wrt. reachable set size between “delete” and “delay” version.

Both versions poly-time solvable on trees.

Future work:

Generalize tree-algorithm.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13 / 13

Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.

For the case where the “outbreak” is known, surprising difference in parameterized complexity

wrt. reachable set size between “delete” and “delay” version.

Both versions poly-time solvable on trees.

Future work:

Generalize tree-algorithm.

Thank you!

Arxiv link:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13 / 13

