Temporal Reachability Minimization: Delaying vs. Deleting

Hendrik Molter! Malte Renken? Philipp Zschoche?

1 Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel
2 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany

Algorithmic Aspects of Temporal Graphs IV

Extended abstract to appear in proceedings of MFCS 2021

Motivation: Disease Spreading

Scenario: Diseases spread through physical
contact.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2/13

Motivation: Disease Spreading

Scenario: Diseases spread through physical
contact.

Goal: Minimize potential infections to contain
disease:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2/13

Motivation: Disease Spreading

Scenario: Diseases spread through physical
contact.

Goal: Minimize potential infections to contain
disease:

m By removing interactions.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2/13

Motivation: Disease Spreading

Scenario: Diseases spread through physical
contact.

Goal: Minimize potential infections to contain
disease:

m By removing interactions.

m By delaying interactions.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 2/13

Motivation: Disease Spreading

Hendrik Molter, BGU

Scenario: Diseases spread through physical
contact.

Goal: Minimize potential infections to contain
disease:

m By removing interactions.
m By delaying interactions.

m By reordering interaction patterns.

Temporal Reachability Minimization: Delaying vs. Deleting

/13

Motivation: Disease Spreading

Hendrik Molter, BGU

Scenario: Diseases spread through physical
contact.

Goal: Minimize potential infections to contain
disease:

m By removing interactions.
m By delaying interactions.

m By reordering interaction patterns.

Assumptions:

m Known outbreak.

Temporal Reachability Minimization: Delaying vs. Deleting

/13

Motivation: Disease Spreading

Hendrik Molter, BGU

Scenario: Diseases spread through physical
contact.

Goal: Minimize potential infections to contain
disease:

m By removing interactions.
m By delaying interactions.

m By reordering interaction patterns.

Assumptions:
m Known outbreak.

m Unknown outbreak.

Temporal Reachability Minimization: Delaying vs. Deleting

/13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification H Known Outbreak Unknown Outbreak

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3/13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification | Known Outbreak | Unknown Outbreak
Enright & Meeks [Algorithmica ’18],
deleting Our Work [MFCS '21] Enright, Meeks, Mertzios,

Zamaraev [JCSS '21]

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3/13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification | Known Outbreak | Unknown Outbreak
Enright & Meeks [Algorithmica ’18],
deleting Our Work [MFCS '21] Enright, Meeks, Mertzios,

Zamaraev [JCSS '21]

Deligkas & Potapov [AAAI '20],

?
Our Work [MFCS "21] '

delaying

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3/13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification | Known Outbreak | Unknown Outbreak
Enright & Meeks [Algorithmica ’18],
deleting Our Work [MFCS '21] Enright, Meeks, Mertzios,

Zamaraev [JCSS '21]

Deligkas & Potapov [AAAI '20],
Our Work [MFCS '21]

reordering H ? ‘ Enright, Meeks, Skerman [JCSS '21]

delaying ?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3/13

Related Work

Minimizing Reachability by Time-Edge Modification

Modification | Known Outbreak | Unknown Outbreak
Enright & Meeks [Algorithmica ’18],
deleting Our Work [MFCS '21] Enright, Meeks, Mertzios,

Zamaraev [JCSS '21]

Deligkas & Potapov [AAAI '20],

' ?

delaying Our Work [MFCS "21] '
reordering H ? ‘ Enright, Meeks, Skerman [JCSS '21]

merging H Deligkas & Potapov [AAAI '20] ‘ ?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 3/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph &4 = (V,(Ej)ic[q) is a
vertex set V with a list of edge sets E4,...,E/
over V, where £ is the lifetime of 4.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph &4 = (V,(Ej)ic[q) is a
vertex set V with a list of edge sets E4,...,E/
over V, where £ is the lifetime of 4.

g o2 3

1,2

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph &4 = (V,(Ej)ic[q) is a
vertex set V with a list of edge sets E4,...,E/
over V, where £ is the lifetime of 4.

g o2 3

1,2
G1Z

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph &4 = (V,(Ej)ic[q) is a
vertex set V with a list of edge sets E4,...,E/
over V, where £ is the lifetime of 4.

g o2 3

1,2
G1Z G2:

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph

A temporal graph &4 = (V,(Ej)ic[q) is a
vertex set V with a list of edge sets E4,...,E/
over V, where £ is the lifetime of 4.

g o2 3

1,2
G1Z Ggi

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

I

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph Temporal (s, z)-Path

A temporal graph &4 = (V,(Ej)ic[q) is a Sequence of time edges forming a path from
vertex set V with a list of edge sets Ey,...,E, Sto zthat have:
over V, where / is the lifetime of ¢. m increasing time stamps (strict).
@ 2 3 ®m non-decreasing time stamps (non-strict).
e >
1] 1 2 |3
1,2

|ZAaNI|

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph Temporal (s, z)-Path

A temporal graph &4 = (V,(Ej)ic[q) is a Sequence of time edges forming a path from

vertex set V with a list of edge sets Ey,...,E, Sto zthat have:

over V, where / is the lifetime of ¢. m increasing time stamps (strict).

@ 2 3 ®m non-decreasing time stamps (non-strict).
: q b
() () ()
" < |° O+—0O07070+0
Not a temporal path.

|ZAaNI|

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph Temporal (s, z)-Path

A temporal graph &4 = (V,(Ej)ic[q) is a Sequence of time edges forming a path from
vertex set V with a list of edge sets E;,...,E, Sto zthat have:
over V, where £ is the lifetime of 4.

® increasing time stamps (strict).

@ P 3 ®m non-decreasing time stamps (non-strict).
e]
() () ()
By < |° O+—0O07070+0
Not a temporal path.
1,2

007070

Gi: Go: Gs:
:[/ . ._X # o ‘—I | Non-strict temporal path. (Not strict.)

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 4/13

Temporal Graphs and Temporal Reachability: Definition

Temporal Graph Temporal (s, z)-Path

A temporal graph &4 = (V,(Ej)ic[q) is a Sequence of time edges forming a path from

vertex set V with a list of edge sets Ey,...,E, Sto zthat have:

over V, where / is the lifetime of ¢. m increasing time stamps (strict).

@ P 3 ®m non-decreasing time stamps (non-strict).
e]
()
By < |° O+—0O07070+0
Not a temporal path
1,2

O
O
O
070
5 O G

v

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting

¢ I Non strict temporal path. (Not strict.)

M M M
_ 2 \J 3 4
(

13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r
vertices eventually contract the disease?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5/13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r
vertices eventually contract the disease?

Example: S={A},k=2,r=2.

B 15 C
e _/.\3\.
Ao/\4w5 D

E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5/13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r
vertices eventually contract the disease?

Example: S={A},k=2,r=2. Results:

B c m Polytime solvable on trees.
/? 1.2 7\
1,2 3 \.
Ao . \1\./ 5 D

E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5/13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r
vertices eventually contract the disease?

Example: S={A},k=2,r=2. Results:
B c m Polytime solvable on trees.
192 /? 1.2 7\ 3 [] NP-hard. and W[1]-hard wrt. k for lifetime
A ./\’ 1 5 ~eD two. Deligkas & Potapov [AAAI '20]
4 W
E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 5/13

Minimizing Reachability by Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we delete up to k time-edges such that at most r
vertices eventually contract the disease?

Example: S={A},k=2,r=2. Results:
B c m Polytime solvable on trees.
192 /? 1.2 7\ 3 [] NP-hard. and W[1]-hard wrt. k for lifetime
A ./\’ 1 5 ~eD two. Deligkas & Potapov [AAAI '20]
4 W m W[1]-hard wrt. r for lifetime two.
E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices
eventually contract the disease?

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6/13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices
eventually contract the disease?

Example: S={A}, k=2,r=3.

B 15 C
e _/.\3\.
Ao/\4w5 D

E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6/13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices
eventually contract the disease?

Example: S={A}, k=2,r=3. Results:

B c m Polytime solvable on trees.
/? 1.2 7\
1,2 3 \.
Ao . \1\./ 5 D

E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6/13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices
eventually contract the disease?

Example: S={A}, k=2,r=3. Results:
B c m Polytime solvable on trees.
192 /? 1.2 7\ 3 [] NP-hard. and W[1]-hard wrt. k for lifetime
A ./\’ 1 5 ~eD two. Deligkas & Potapov [AAAI '20]
4 W
E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6/13

Minimizing Reachability by Delaying

Minimizing Reachability by Delaying

Given some initial outbreak S, can we delay up to k time-edges such that at most r vertices
eventually contract the disease?

Example: S={A}, k=2,r=3. Results:
B c m Polytime solvable on trees.
192 /? 1.2 7\ 3 [] NP-hard. and W[1]-hard wrt. k for lifetime
A ./\’ 1 5 ~eD two. Deligkas & Potapov [AAAI '20]
4 W m Fixed-parameter tractable wrt. r.
E

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 6/13

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 7/13

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

If we are given a set R of infected vertices, we can transform to a flow problem.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 7/13

FPT Algorithm for Delaying: Flow Network

A B
—— 1 L

C D

4— o

2,3

FPT Algorithm for Delaying: Flow Network

®Ab eB,6 e C,6 D,6

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 8/13

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

If we are given a set R of infected vertices, we can transform to a flow problem.

If maximum flow has value < k, then the corresponding min-cut is a solution!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting

/13

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

If we are given a set R of infected vertices, we can transform to a flow problem.
If maximum flow has value < k, then the corresponding min-cut is a solution!

If maximum flow has value > k, consider set L of flow network vertices that “leak” flow to V'\ R.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 9/13

FPT Algorithm for Delaying: Flow Network

®Ab eB,6 e C,6 D,6

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 10/13

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

If we are given a set R of infected vertices, we can transform to a flow problem.
If maximum flow has value < k, then the corresponding min-cut is a solution!

If maximum flow has value > k, consider set L of flow network vertices that “leak” flow to V'\ R.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 11/183

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

If we are given a set R of infected vertices, we can transform to a flow problem.
If maximum flow has value < k, then the corresponding min-cut is a solution!

If maximum flow has value > k, consider set L of flow network vertices that “leak” flow to V'\ R.
In every solution, at least one (v, t) € L stays reachable!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 11/183

FPT Algorithm for Delaying: Idea

Algorithm ldea:

Move to equivalent model:
Instead of delaying time-edges, slow them.
~= On the chosen time-edges, transmission takes 2 time steps instead of 1.

If we are given a set R of infected vertices, we can transform to a flow problem.

If maximum flow has value < k, then the corresponding min-cut is a solution!

If maximum flow has value > k, consider set L of flow network vertices that “leak” flow to V'\ R.

In every solution, at least one (v, t) € L stays reachable!
~» Search-tree!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting

11/183

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

Start with R < S where S are the source vertices.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.

Transform to flow problem and check if there is a flow of value > k.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

m If |R'| < r then recursively continue with R’ at Step 2.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

m If |R'| < r then recursively continue with R’ at Step 2.

m Otherwise, output “no solution”.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:
Start with R <— S where S are the source vertices.
Transform to flow problem and check if there is a flow of value > k.

m If no, then the corresponding min-cut is a solution.
m If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v, t) € L.
m lterate over vertices v € Y.

B R« RU{v}.

m If |R'| < r then recursively continue with R’ at Step 2.

m Otherwise, output “no solution”.

Minimizing Reachability by Delaying can be solved in O(r" - k - |G|) time.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 12/13

Conclusion and Future Work

Summary:

m Reachability Minimization by Time-Edge Modification is a wide field with many still open
problems.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13/13

Conclusion and Future Work

Summary:
m Reachability Minimization by Time-Edge Modification is a wide field with many still open
problems.

m For the case where the “outbreak” is known, surprising difference in parameterized complexity
wrt. reachable set size between “delete” and “delay” version.

13/13

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting

Conclusion and Future Work

Summary:

m Reachability Minimization by Time-Edge Modification is a wide field with many still open
problems.

m For the case where the “outbreak” is known, surprising difference in parameterized complexity
wrt. reachable set size between “delete” and “delay” version.

m Both versions poly-time solvable on trees.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13/13

Conclusion and Future Work

Summary:

m Reachability Minimization by Time-Edge Modification is a wide field with many still open
problems.

m For the case where the “outbreak” is known, surprising difference in parameterized complexity
wrt. reachable set size between “delete” and “delay” version.

m Both versions poly-time solvable on trees.
Future work:

m Generalize tree-algorithm.

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13/13

Conclusion and Future Work

Summary:

m Reachability Minimization by Time-Edge Modification is a wide field with many still open
problems.

m For the case where the “outbreak” is known, surprising difference in parameterized complexity
wrt. reachable set size between “delete” and “delay” version.

m Both versions poly-time solvable on trees.
Future work:

m Generalize tree-algorithm.

Arxiv link:

Thank you!

Hendrik Molter, BGU Temporal Reachability Minimization: Delaying vs. Deleting 13/13

