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eventually contract the disease?

Example: S = {A}, k = 2, r = 3.
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3
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Results:

Polytime solvable on trees.

NP-hard and W[1]-hard wrt. k for lifetime

two. Deligkas & Potapov [AAAI ’20]

Fixed-parameter tractable wrt. r .
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FPT Algorithm for Delaying: Idea

Algorithm Idea:

1 Move to equivalent model:

Instead of delaying time-edges, slow them.

 On the chosen time-edges, transmission takes 2 time steps instead of 1.
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 On the chosen time-edges, transmission takes 2 time steps instead of 1.

2 If we are given a set R of infected vertices, we can transform to a flow problem.

3 If maximum flow has value ≤ k , then the corresponding min-cut is a solution!

4 If maximum flow has value > k , consider set L of flow network vertices that “leak” flow to V \R.

In every solution, at least one (v , t) ∈ L stays reachable!

 Search-tree!
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FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.
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FPT Algorithm for Delaying: Search-Tree

Search-Tree Algorithm:

1 Start with R← S where S are the source vertices.

2 Transform to flow problem and check if there is a flow of value > k .

If no, then the corresponding min-cut is a solution.

If yes, compute a “small” set of neighbors Y of “leaking” network vertices (v , t) ∈ L.

Iterate over vertices v ∈ Y .

R
′← R∪{v}.

If |R′| ≤ r then recursively continue with R
′ at Step 2.

Otherwise, output “no solution”.

Theorem

Minimizing Reachability by Delaying can be solved in O(r r · k · |G|) time.
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Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.
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Conclusion and Future Work

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open

problems.

For the case where the “outbreak” is known, surprising difference in parameterized complexity

wrt. reachable set size between “delete” and “delay” version.

Both versions poly-time solvable on trees.

Future work:

Generalize tree-algorithm.

Thank you!

Arxiv link:
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