Temporal Reachability Minimization: Delaying vs. Deleting

Hendrik Molter¹ Malte Renken² Philipp Zschoche²

¹ Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel ² Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany

Algorithmic Aspects of Temporal Graphs IV

Extended abstract to appear in proceedings of MFCS 2021

Scenario: Diseases spread through physical contact.

Scenario: Diseases spread through physical contact.

Goal: Minimize potential infections to contain disease:

Scenario: Diseases spread through physical contact.

Goal: Minimize potential infections to contain disease:

By **removing** interactions.

Scenario: Diseases spread through physical contact.

Goal: Minimize potential infections to contain disease:

- By **removing** interactions.
- By **delaying** interactions.

Scenario: Diseases spread through physical contact.

Goal: Minimize potential infections to contain disease:

- By **removing** interactions.
- By **delaying** interactions.
- By **reordering** interaction patterns.

Scenario: Diseases spread through physical contact.

Goal: Minimize potential infections to contain disease:

- By **removing** interactions.
- By **delaying** interactions.
- By **reordering** interaction patterns.

Assumptions:

Known outbreak.

Scenario: Diseases spread through physical contact.

Goal: Minimize potential infections to contain disease:

- By **removing** interactions.
- By **delaying** interactions.
- By **reordering** interaction patterns.

Assumptions:

- Known outbreak.
- Unknown outbreak.

Minimizing Reachability by Time-Edge Modification

Modification

Known Outbreak

Unknown Outbreak

Hendrik Molter, BGU

Temporal Reachability Minimization: Delaying vs. Deleting

Modification	Known Outbreak	Unknown Outbreak
deleting	Our Work [MFCS '21]	Enright & Meeks [Algorithmica '18], Enright, Meeks, Mertzios, Zamaraev [JCSS '21]

Related Work

Modification	Known Outbreak	Unknown Outbreak
deleting	Our Work [MFCS '21]	Enright & Meeks [Algorithmica '18], Enright, Meeks, Mertzios, Zamaraev [JCSS '21]
delaying	Deligkas & Potapov [AAAI '20], Our Work [MFCS '21]	?

Related Work

Modification	Known Outbreak	Unknown Outbreak
deleting	Our Work [MFCS '21]	Enright & Meeks [Algorithmica '18], Enright, Meeks, Mertzios, Zamaraev [JCSS '21]
delaying	Deligkas & Potapov [AAAI '20], Our Work [MFCS '21]	?
reordering	?	Enright, Meeks, Skerman [JCSS '21]

Related Work

Modification	Known Outbreak	Unknown Outbreak
deleting	Our Work [MFCS '21]	Enright & Meeks [Algorithmica '18], Enright, Meeks, Mertzios, Zamaraev [JCSS '21]
delaying	Deligkas & Potapov [AAAI '20], Our Work [MFCS '21]	?
reordering	?	Enright, Meeks, Skerman [JCSS '21]
merging	Deligkas & Potapov [AAAI '20]	?

Temporal Graph

Temporal Graph

Temporal Graph

Temporal Graph

Temporal Graph

Temporal Graph

A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [\ell]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_ℓ over *V*, where ℓ is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Temporal Graph

A temporal graph $\mathscr{G} = (V, (E_i)_{i \in [\ell]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_ℓ over *V*, where ℓ is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [\ell]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_ℓ over *V*, where ℓ is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Non-strict temporal path. (Not strict.)

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [\ell]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_ℓ over *V*, where ℓ is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from s to z that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Non-strict temporal path. (Not strict.)

Temporal path (both strict and non-strict).

Temporal Reachability Minimization: Delaying vs. Deleting

Minimizing Reachability by Deleting

Given some initial outbreak S, can we **delete** up to k time-edges such that at most r vertices eventually contract the disease?

Minimizing Reachability by Deleting

Given some initial outbreak S, can we **delete** up to k time-edges such that at most r vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 2$$
.

Minimizing Reachability by Deleting

Given some initial outbreak S, can we **delete** up to k time-edges such that at most r vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 2$$
.

Results:

Polytime solvable on trees.

Minimizing Reachability by Deleting

Given some initial outbreak S, can we **delete** up to k time-edges such that at most r vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 2$$
.

Results:

- Polytime solvable on trees.
- NP-hard and W[1]-hard wrt. k for lifetime two. Deligkas & Potapov [AAAI '20]

Minimizing Reachability by Deleting

Given some initial outbreak S, can we **delete** up to k time-edges such that at most r vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 2$$
.

Results:

- Polytime solvable on trees.
- NP-hard and W[1]-hard wrt. k for lifetime two. Deligkas & Potapov [AAAI '20]
- W[1]-hard wrt. *r* for lifetime two.

Minimizing Reachability by Delaying

Given some initial outbreak S, can we **delay** up to k time-edges such that at most r vertices eventually contract the disease?

Minimizing Reachability by Delaying

Given some initial outbreak *S*, can we **delay** up to *k* time-edges such that at most *r* vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 3.$$

Minimizing Reachability by Delaying

Given some initial outbreak S, can we **delay** up to k time-edges such that at most r vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 3.$$

Results:

Polytime solvable on trees.

Minimizing Reachability by Delaying

Given some initial outbreak *S*, can we **delay** up to *k* time-edges such that at most *r* vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 3.$$

Results:

- Polytime solvable on trees.
- NP-hard and W[1]-hard wrt. k for lifetime two. Deligkas & Potapov [AAAI '20]

Minimizing Reachability by Delaying

Given some initial outbreak S, can we **delay** up to k time-edges such that at most r vertices eventually contract the disease?

Example:
$$S = \{A\}, k = 2, r = 3.$$

Results:

- Polytime solvable on trees.
- NP-hard and W[1]-hard wrt. k for lifetime two. Deligkas & Potapov [AAAI '20]
- Fixed-parameter tractable wrt. r.

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

 \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

- \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.
- 2 If we are given a set *R* of infected vertices, we can transform to a flow problem.

FPT Algorithm for Delaying: Flow Network

FPT Algorithm for Delaying: Flow Network

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

 \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.

- 2 If we are given a set *R* of infected vertices, we can transform to a flow problem.
- 3 If maximum flow has value $\leq k$, then the corresponding min-cut is a solution!

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

 \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.

- 2 If we are given a set *R* of infected vertices, we can transform to a flow problem.
- 3 If maximum flow has value $\leq k$, then the corresponding min-cut is a solution!
- 4 If maximum flow has value > k, consider set L of flow network vertices that "leak" flow to $V \setminus R$.

FPT Algorithm for Delaying: Flow Network

Temporal Reachability Minimization: Delaying vs. Deleting

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

 \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.

- 2 If we are given a set *R* of infected vertices, we can transform to a flow problem.
- 3 If maximum flow has value $\leq k$, then the corresponding min-cut is a solution!
- 4 If maximum flow has value > k, consider set L of flow network vertices that "leak" flow to $V \setminus R$.

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

 \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.

- 2 If we are given a set *R* of infected vertices, we can transform to a flow problem.
- 3 If maximum flow has value $\leq k$, then the corresponding min-cut is a solution!
- If maximum flow has value > k, consider set L of flow network vertices that "leak" flow to $V \setminus R$. In every solution, at least one $(v, t) \in L$ stays reachable!

Algorithm Idea:

1 Move to equivalent model:

Instead of **delaying** time-edges, **slow** them.

 \sim On the chosen time-edges, transmission takes 2 time steps instead of 1.

- 2 If we are given a set *R* of infected vertices, we can transform to a flow problem.
- 3 If maximum flow has value $\leq k$, then the corresponding min-cut is a solution!
- 4 If maximum flow has value > k, consider set L of flow network vertices that "leak" flow to $V \setminus R$. In every solution, at least one $(v, t) \in L$ stays reachable!

 \rightsquigarrow Search-tree!

Search-Tree Algorithm:

1 Start with $R \leftarrow S$ where S are the source vertices.

- **1** Start with $R \leftarrow S$ where S are the source vertices.
- **2** Transform to flow problem and check if there is a flow of value > k.

- **1** Start with $R \leftarrow S$ where S are the source vertices.
- 2 Transform to flow problem and check if there is a flow of value > k.
 - If no, then the corresponding min-cut is a solution.

- **1** Start with $R \leftarrow S$ where S are the source vertices.
- 2 Transform to flow problem and check if there is a flow of value > k.
 - If no, then the corresponding min-cut is a solution.
 - If yes, compute a "small" set of neighbors Y of "leaking" network vertices $(v, t) \in L$.

Search-Tree Algorithm:

- 1 Start with $R \leftarrow S$ where S are the source vertices.
- 2 Transform to flow problem and check if there is a flow of value > k.
 - If no, then the corresponding min-cut is a solution.
 - If yes, compute a "small" set of neighbors Y of "leaking" network vertices $(v, t) \in L$.
 - Iterate over vertices $v \in Y$.

 $\blacksquare R' \leftarrow R \cup \{v\}.$

Search-Tree Algorithm:

- **1** Start with $R \leftarrow S$ where S are the source vertices.
- 2 Transform to flow problem and check if there is a flow of value > k.
 - If no, then the corresponding min-cut is a solution.
 - If yes, compute a "small" set of neighbors Y of "leaking" network vertices $(v, t) \in L$.
 - Iterate over vertices $v \in Y$.

$$\blacksquare R' \leftarrow R \cup \{v\}.$$

If $|R'| \leq r$ then recursively continue with R' at Step 2.

- **1** Start with $R \leftarrow S$ where S are the source vertices.
- 2 Transform to flow problem and check if there is a flow of value > k.
 - If no, then the corresponding min-cut is a solution.
 - If yes, compute a "small" set of neighbors Y of "leaking" network vertices $(v, t) \in L$.
 - Iterate over vertices $v \in Y$.
 - $\blacksquare R' \leftarrow R \cup \{v\}.$
 - If $|R'| \le r$ then recursively continue with R' at Step 2.
 - Otherwise, output "no solution".

Search-Tree Algorithm:

- 1 Start with $R \leftarrow S$ where S are the source vertices.
- 2 Transform to flow problem and check if there is a flow of value > k.
 - If no, then the corresponding min-cut is a solution.
 - If yes, compute a "small" set of neighbors Y of "leaking" network vertices $(v, t) \in L$.
 - Iterate over vertices $v \in Y$.
 - $\blacksquare R' \leftarrow R \cup \{v\}.$
 - If $|R'| \leq r$ then recursively continue with R' at Step 2.
 - Otherwise, output "no solution".

Theorem

Minimizing Reachability by Delaying can be solved in $O(r^r \cdot k \cdot |G|)$ time.

Summary:

Reachability Minimization by Time-Edge Modification is a wide field with many still open problems.

Summary:

- Reachability Minimization by Time-Edge Modification is a wide field with many still open problems.
- For the case where the "outbreak" is known, surprising difference in parameterized complexity wrt. reachable set size between "delete" and "delay" version.

Summary:

- Reachability Minimization by Time-Edge Modification is a wide field with many still open problems.
- For the case where the "outbreak" is known, surprising difference in parameterized complexity wrt. reachable set size between "delete" and "delay" version.
- Both versions poly-time solvable on trees.

Summary:

- Reachability Minimization by Time-Edge Modification is a wide field with many still open problems.
- For the case where the "outbreak" is known, surprising difference in parameterized complexity wrt. reachable set size between "delete" and "delay" version.
- Both versions poly-time solvable on trees.

Future work:

Generalize tree-algorithm.

Summary:

- Reachability Minimization by Time-Edge Modification is a wide field with many still open problems.
- For the case where the "outbreak" is known, surprising difference in parameterized complexity wrt. reachable set size between "delete" and "delay" version.
- Both versions poly-time solvable on trees.

Future work:

Generalize tree-algorithm.

Thank you!

