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Core decomposition

Definition

The k-core (or core of order k) of a (non-temporal)
graph G = (V ,E ) is a maximal set of vertices
Ck ⊆ V such that ∀u ∈ Ck : deg(Ck , u) ≥ k .
The set of all k-cores V = C0 ⊇ C1 ⊇ · · · ⊇ Ck∗ is
the core decomposition of G .

that 

exact linear-time algorithm

important tool to analyze and visualize networks

speed-ups the extraction of dense subgraphs

at the basis of approximation algorithms for, e.g., densest subgraph betweenness
centrality
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Temporal graphs

A temporal graph is a representation of

entities (vertices)
their relations (links)
how these relations are established/broken along time
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Temporal graphs

Definition

A temporal graph is a triple G = (V ,T , τ), where

V is a set of vertices,

T = [t0, t1, . . . , tmax ] ⊆ N is a discrete time domain,

τ : V × V × T → {0, 1} is a function defining for each u, v ∈ V and each t ∈ T whether
edge (u, v) exists in t.
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[t0, t1]
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Motivation

Extracting dense structures together with their temporal span is a key mining primitive

anomaly detection in proximity networks

quantify the transmission opportunities of respiratory infections

identify events and buzzing stories

understand the dynamics of collaboration in successful professional teams
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Span-core decomposition

Definition

The (k,∆)-core of a temporal graph G = (V ,T , τ) is a maximal and non-empty set of
vertices ∅ 6= Ck,∆ ⊆ V , such that ∀u ∈ Ck,∆ : deg∆(Ck,∆, u) ≥ k , where ∆ ⊑ T is a temporal
interval and k ∈ N

+.

deg∆(Ck,∆, u) represents the degree of a vertex u in the subgraph induced by Ck,∆

within the temporal interval ∆

Problem

Given a temporal graph G , find the set of all (k ,∆)-cores of G .

the number of span-cores is O(|T |2)
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A näıve approach

Algorithm

generate all temporal intervals ∆ ⊑ T

for each ∆ ⊑ T , compute the subgraph G∆ = (V ,E∆)

run a core-decomposition subroutine on each G∆

O(|T |2 × |E |) time complexity
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Span-core search space
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Proposition

For any two span-cores Ck,∆, Ck′,∆′ of a temporal
graph G it holds that

k ′ ≤ k ∧∆′ ⊑ ∆ ⇒ Ck,∆ ⊆ Ck′,∆′ .

Corollary

Given a temporal graph G = (V ,T , τ), and a temporal
interval ∆ = [ts , te ] ⊑ T , let ∆+ = [min{ts + 1, te}, te ]
and ∆− = [ts ,max{te − 1, ts}]. It holds that

Ck,∆ ⊆ (Ck,∆+ ∩ Ck,∆−
) =

⋂

∆′⊑∆

Ck,∆′ .
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A more efficient algorithm

Algorithm

generate temporal intervals ∆ ⊑ T of increasing size

for each ∆ ⊑ T such that |∆| > 1, run a core-decomposition subroutine from
(C1,∆+

∩ C1,∆−
)

if C1,∆+ or C1,∆−
does not exist, skip the core decomposition for ∆

worst-case time complexity still O(|T |2 × |E |), but the algorithm is much faster in
practice than the näıve one
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Maximal span-cores

Definition

A span-core Ck,∆ of a temporal graph G is said maximal if there does not exist any other
span-core Ck′

,∆′ of G such that k ≤ k ′ and ∆ ⊑ ∆′.

Problem

Given a temporal graph G , find the set of all maximal (k ,∆)-cores of G .

the number of maximal span-cores is O(|T |2)

experimentally, maximal span-cores are at least one order of magnitude less than the
overall span-cores
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A filtering-based (näıve) approach

Algorithm

equip the algorithm for span-core decomposition with a data structure M that

stores the span-core of the highest order for every temporal interval ∆ ⊑ T

at the storage of a span-core Ck,∆, removes the span-cores dominated by Ck,∆

return the span-cores retained by M

same running time as the algorithm for finding all the span-cores
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Properties of maximal span-cores

Lemma

Given a temporal graph G = (V ,T , τ), let CM be the set of all maximal span-cores of G , and
Cinner = {Ck∗ [G∆] | ∆ ⊑ T} be the set of innermost cores of all graphs G∆. It holds that CM ⊆ Cinner.

∆ = [ts , te ] yields a maximal span-core it suffices to start from a subgraph, which is
composed of all the vertices whose temporal degree is larger than the maximum between
the orders of the innermost cores of intervals ∆′ = [ts−1, te ] and ∆′′ = [ts , te+1]

Top-down strategy: start from larger temporal intervals

This also allows us to skip the computation of complete core decompositions of the whole
“singleton-interval” graphs {G

[t,t]
}t∈T
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Properties of maximal span-cores

Lemma

Given a temporal graph G = (V ,T , τ), and three temporal intervals ∆ = [ts , te ] ⊑ T , ∆′ = [ts−1, te ] ⊑ T , and
∆′′ = [ts , te+1] ⊑ T . The innermost core Ck∗ [G∆] is a maximal span-core of G if and only if
k∗ > max{k ′, k ′′} where k ′ and k ′′ are the orders of the innermost cores of G∆′ and G∆′′ , respectively.

Lemma

Given G , ∆, ∆′, ∆′′, k ′, and k ′′ as in previous Lemma, let Ṽ = {u ∈ V | deg∆(V , u) > max{k ′, k ′′}}, and let

Ck∗ [G∆[Ṽ ]] be the innermost core of G∆[Ṽ ]. If k∗ > max{k ′, k ′′}, then Ck∗ [G∆[Ṽ ]] is a maximal span-core;
otherwise, no maximal span-core exists for ∆.
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Efficient maximal-span-core finding

Algorithm

consider intervals ∆ = [ts , te ] ⊑ T , for increasing values of ts and decreasing values of te
e.g., with tmax = 10, {[0, 10], [0, 9], . . . , [0, 0], [1, 10], [1, 9], . . . , [1, 1], [2, 10], [2, 9], . . .}
this guarantees that once we consider ∆, no ∆′ ⊒ ∆ will be considered at later stage

compute the lower bound lb on the order of a span-core in ∆ to be recognized as
maximal

build the sets of vertices Vlb that have degree in ∆ larger than lb

extract the innermost core of the subgraph (Vlb,E∆[Vlb])

identify such a core as maximal if its order is actually larger than lb

running time much faster in practice than the filtering-based algorithm
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Datasets

window
dataset |V | |E | |T | size (days) domain

ProsperLoans 89k 3M 307 7 economic
Last.fm 992 4M 77 21 co-listening
WikiTalk 2M 10M 192 28 communication
DBLP 1M 11M 80 366 co-authorship

StackOverflow 2M 16M 51 56 question-and-answer
Wikipedia 343k 18M 101 56 co-editing
Amazon 2M 22M 115 28 co-rating
Epinions 120k 33M 25 21 co-rating
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Evaluation

# output time memory # processed
dataset method span-cores (s) (GB) vertices

WikiTalk

Näıve-span-cores
19 693

322 302 36 25B
Span-cores 1 084 36 555M

Näıve-maximal-span-cores
632

1 194 36 555M
Maximal-span-cores 126 35 2M

Wikipedia

Näıve-span-cores
125 191

17 155 4 1B
Span-cores 522 4 35M

Näıve-maximal-span-cores
2 147

537 4 35M
Maximal-span-cores 201 4 320k

Amazon

Näıve-span-cores
29 318

10 415 18 2B
Span-cores 409 18 247M

Näıve-maximal-span-cores
303

580 18 247M
Maximal-span-cores 123 18 688k
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Datasets

face-to-face interaction networks gathered by a proximity-sensing infrastructure in
schools

PrimarySchool (242 individuals, 2 days)
HighSchool (327 individuals, 5 days)
HongKong (774 individuals, 11 days)

window size of 5 minutes

discarded span-cores of |∆| = 1
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Anomaly detection
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Anomaly detection

1 find a set of anomalously long temporal intervals supporting maximal span-cores

find the set of temporal intervals I = {∆ ⊑ T | Ck,∆ ∈ CM ∧ |∆| > tr} that are the span of
a maximal span-core Ck,∆ with size longer than a certain threshold tr

we use tr = 22 (110 minutes)

2 identify anomalous vertices

for each timestamp t ∈ T , select as anomalous all those vertices that appear in the
span-cores {C1,∆ | ∆ ∈ I ∧ t ∈ ∆}, i.e., the span-cores of k = 1 whose span is in I and
contains t

3 filter out anomalous contacts

at each timestamp t ∈ T , filter out the contacts having at least an anomalous endpoint at
time t.
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Anomaly detection
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0.91 precision, 0.64 recall
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Anomaly detection
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0.93 precision, 0.99 recall
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Conclusions

introduced a notion of dense pattern in temporal networks that

takes into account the sequentiality of connections
is assigned with a clear temporal collocation

developed efficient algorithms for computing all the span-cores, and only the maximal ones

future work:

spreading processes analysis
temporal community search and temporal densest subgraph
network finger-printing
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