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Temporal Graphs

temporal graph

A graph in which the edge set can change in every (time) step.
n := #vertices and τ := maximum number of steps (lifetime)

underlying graph

The graph with all edges that are present in at least one step.
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Find a small solution for each layer of the temporal graph such
that the solutions of two subsequent layers differ not too much.

Fluschnik, Niedermeier, Rohm, and Zschoche — IPEC 2019
Multistage vertex cover

Fluschnik, Niedermeier, Schubert, and Zschoche — ISAAC 2020
Multistage s-t path

Further kinds of multistage problems

Bampis, Escoffier, Lampis, and Paschos — SWAT 2018
Multistage matchings

Bampis, Escoffier, and Teiller — MFCS 2019
Multistage knapsack

Bredereck, Fluschnik, and Kaczmarczyk — arXiv 2020
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New Perspective

classical multistage graph problems

bounding changes between solution sets for subsequent layers

global multistage graph problems

bounding total number ℓ of changes between subsequent solutions

Global Multistage Vertex Cover with ℓ := 5 and k := 3
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Rohm — Bachelor Thesis 2018
Poly-sized Kernel parameterized by k + τ
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New Results—TCS 2021

problem k k + ℓ k + τ

Vertex Cover W[1] poly(n)τℓ2O((k+ℓ) log k) poly. kernel
Path Contraction W[1] poly(n)τℓ2O((k+ℓ) log k) poly. kernel
Cluster Editing W[1] poly(n)τℓ2O((k+ℓ)k) ?
Cluster Edge Del. W[1] poly(n)τℓ2O((k+ℓ)k) ?
Planar Dom. Set W[2] W[2]† ?
Edge Dom. Set W[2] W[2]† ?
s-t-Path W[1] W[1]† W[1]†

s-t-Cut W[2] W[2]† ?
Matching W[1] W[1]† ?

all problems: NP-hard w.r.t. parameter ℓ even if ℓ = O(1)

n := #vertices and τ := lifetime of the temporal graph
k := solution size, ℓ := global budget

working space of all algorithms: poly(k+ℓ) + k log n + log τ bits
†) hardness even for ℓ = 0, i.e., also for the classical multistage
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all problems: NP-hard w.r.t. parameter ℓ even if ℓ = O(1)

n := #vertices and τ := lifetime of the temporal graph
k := solution size, ℓ := global budget

working space of all algorithms: poly(k+ℓ) + k log n + log τ bits

Optimal for k, ℓ = O(1).

†) hardness even for ℓ = 0, i.e., also for the classical multistage
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∣

∣ ≤ f (k)

graph property PX is monotone

S satisfies PX ⇒ any superset of S satisfies PX

full kernel

kernel contains all minimal solutions of the original instance
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New Framework

G : n-vertex temporal graph with τ time steps
parameters k : solution size, ℓ : global budget

global multistage problem for property PX on G
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1 2 3 . . . 8k̃2n · |Ẽ |Layer:
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New Results and Open Problems
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