Multistage Graph Problems on a Global Budget

K. Heeger, A. S. Himmel, F. Kammer, R. Niedermeier, M. Renken, and A. Sajenko

THM, University of Applied Sciences Mittelhessen

July 2021

Temporal Graphs

temporal graph

A graph in which the edge set can change in every (time) step. $n:=\#$ vertices and $\tau:=$ maximum number of steps (lifetime)

Temporal Graphs

temporal graph

A graph in which the edge set can change in every (time) step. $n:=\#$ vertices and $\tau:=$ maximum number of steps (lifetime)

Temporal Graphs

temporal graph

A graph in which the edge set can change in every (time) step. $n:=\#$ vertices and $\tau:=$ maximum number of steps (lifetime)

Temporal Graphs

temporal graph

A graph in which the edge set can change in every (time) step. $n:=\#$ vertices and $\tau:=$ maximum number of steps (lifetime)

underlying graph

The graph with all edges that are present in at least one step.

Multistage Graph Problems

VErtex Cover (steps are independent) $k:=$ solution size

Multistage Graph Problems

Vertex Cover (steps are independent) $k:=$ solution size

multistage problems on temporal graphs
Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

Multistage Graph Problems

Vertex Cover (steps are independent) $k:=$ solution size

Multistage Vertex Cover with local budget $r:=1$ (changes from one step to the next)

Multistage Graph Problems

VErtex Cover (steps are independent) $k:=$ solution size

Multistage Vertex Cover with local budget $r:=1$ (changes from one step to the next)

$k:=4$
$n:=12, \tau:=5$

Multistage Graph Problems

Vertex Cover (steps are independent) $k:=$ solution size

Multistage Vertex Cover with local budget $r:=1$ (changes from one step to the next)

$k:=4$

$$
n:=12, \tau:=5
$$

Multistage Graph Problems

Vertex Cover (steps are independent) $k:=$ solution size

Multistage Vertex Cover with local budget $r:=1$ (changes from one step to the next)

Step $1 \xrightarrow{ }$ Step 2

Step 3

Step 4

Step 5
$k:=4$
$n:=12, \tau:=5$

Recent Results

multistage problems on temporal graphs
Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

- Fluschnik, Niedermeier, Rohm, and Zschoche - IPEC 2019 Multistage vertex cover
- Fluschnik, Niedermeier, Schubert, and Zschoche — ISAAC 2020 Multistage s-t path

Recent Results

classical multistage problems on temporal graphs
Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

- Fluschnik, Niedermeier, Rohm, and Zschoche - IPEC 2019 Multistage vertex cover
- Fluschnik, Niedermeier, Schubert, and Zschoche - ISAAC 2020 Multistage s-t path

Recent Results

classical multistage problems on temporal graphs
Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

- Fluschnik, Niedermeier, Rohm, and Zschoche - IPEC 2019 Multistage vertex cover
- Fluschnik, Niedermeier, Schubert, and Zschoche - ISAAC 2020 Multistage s-t path
Further kinds of multistage problems
- Bampis, Escoffier, Lampis, and Paschos - SWAT 2018 Multistage matchings
- Bampis, Escoffier, and Teiller — MFCS 2019 Multistage knapsack
- Bredereck, Fluschnik, and Kaczmarczyk — arXiv 2020 Multistage committee election

New Perspective

classical multistage graph problems

 bounding changes between solution sets for subsequent layers
global multistage graph problems

bounding total number ℓ of changes between subsequent solutions

New Perspective

classical multistage graph problems

 bounding changes between solution sets for subsequent layers
global multistage graph problems

bounding total number ℓ of changes between subsequent solutions
Global Multistage Vertex Cover with $\ell:=5$ and $k:=3$

New Perspective

classical multistage graph problems

bounding changes between solution sets for subsequent layers

global multistage graph problems

bounding total number ℓ of changes between subsequent solutions
Global Multistage Vertex Cover with $\ell:=5$ and $k:=3$

- Rohm - Bachelor Thesis 2018

Poly-sized Kernel parameterized by $k+\tau$

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

Februar 2009

Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

März 2009

Construction of BER airport.
Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

April 2009

Construction of BER airport.
Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

Mai 2009

Construction of BER airport.
Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

Juni 2009

Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

Juli 2009

Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

August 2009

Construction of BER airport.
Source: youtube.com

Some Motivation for Global Multistage Problems

- Placement of supply units, e.g., cranes, containers for employees.
- $k:=$ number of supply units $\quad \ell:=$ relocation costs

September 2009

Construction of BER airport.
Source: youtube.com

New Results—TCS 2021

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge DeL.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
MAtching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

all problems: NP-hard w.r.t. parameter ℓ even if $\ell=O(1)$
$n:=$ \#vertices and $\tau:=$ lifetime of the temporal graph
$k:=$ solution size, $\ell:=$ global budget
working space of all algorithms: $\operatorname{poly}(k+\ell)+k \log n+\log \tau$ bits
${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage

New Results—TCS 2021

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge DeL.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
MAtching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

all problems: NP-hard w.r.t. parameter ℓ even if $\ell=O(1)$
$n:=$ \#vertices and $\tau:=$ lifetime of the temporal graph
$k:=$ solution size, $\ell:=$ global budget Optimal for $k, \ell=O(1)$.
working space of all algorithms: $\operatorname{poly}(k+\ell)+k \log n+\log \tau$ bits
${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage

Some Definitions

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

$\mid\left\{S \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

Some Definitions

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

$\mid\left\{S \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F :

$$
\mid\left\{S \supseteq F \mid S \text { minimal solution of size } \leq k \text { satisfying } \mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)
$$

Some Definitions

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

$\mid\left\{S \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F:

$$
\mid\left\{S \supseteq F \mid S \text { minimal solution of size } \leq k \text { satisfying } \mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)
$$

graph property $\mathcal{P}_{\mathcal{X}}$ is monotone

S satisfies $\mathcal{P}_{\mathcal{X}} \Rightarrow$ any superset of S satisfies $\mathcal{P}_{\mathcal{X}}$

Some Definitions

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

$\left\{S \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F :
$\mid\left\{S \supseteq F \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is monotone

S satisfies $\mathcal{P}_{\mathcal{X}} \Rightarrow$ any superset of S satisfies $\mathcal{P}_{\mathcal{X}}$

full kernel

kernel contains all minimal solutions of the original instance

Some Definitions

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

$\left\{S \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F :
$\mid\left\{S \supseteq F \mid S\right.$ minimal solution of size $\leq k$ satisfying $\left.\mathcal{P}_{\mathcal{X}}\right\} \mid \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is monotone

S satisfies $\mathcal{P}_{\mathcal{X}} \Rightarrow$ any superset of S satisfies $\mathcal{P}_{\mathcal{X}}$

full kernel

kernel contains all minimal solutions of the original instance
monotone \& full kernel of size $f(k) \Rightarrow$ (superset-)enum. with size $2^{f(k)}$

New Framework

\mathcal{G} : n-vertex temporal graph with τ time steps parameters k : solution size, ℓ : global budget

global multistage problem for property \mathcal{P}_{X} on \mathcal{G}

\mathcal{P}_{X} : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2 \ell+k+1}$
space: $O((k+\ell) \log f(k)+k \log n+\log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps

New Framework

\mathcal{G} : n-vertex temporal graph with τ time steps parameters k : solution size, ℓ : global budget

global multistage problem for property \mathcal{P}_{X} on \mathcal{G}

\mathcal{P}_{X} : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2 \ell+k+1}$
space: $O((k+\ell) \log f(k)+k \log n+\log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps
(monotone \& full kernel \Rightarrow (superset-)enumerable $) \Rightarrow$
global multistage problem for property \mathcal{P}_{X} on \mathcal{G}
\mathcal{P}_{X} : monotone graph property with full kernel $\Rightarrow \exists$ function f^{\prime} : time: $\operatorname{poly}(n) \tau \ell f^{\prime}(k+\ell)$
space: $O\left(f^{\prime}(k+\ell)+k \log n+\log \tau\right)$ bits
+ time/space needed to enumerate the solutions of the time steps

New Framework

\mathcal{G} : n-vertex temporal graph with τ time steps parameters k : solution size, ℓ : global budget

global multistage problem for property \mathcal{P}_{X} on \mathcal{G}

$\mathcal{P}_{X}:$ graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2 \ell+k+1}$
space: $O((k+\ell) \log f(k)+k \log n+\log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps
(monotone \& full kernel \Rightarrow (superset-)enumerable) \Rightarrow global multistage problem for property \mathcal{P}_{X} on \mathcal{G}
\mathcal{P}_{X} : monotone graph property with full kernel $\Rightarrow \exists$ function f^{\prime} : time: $\operatorname{poly}(n) \tau \ell f^{\prime}(k+\ell)$
space: $O\left(f^{\prime}(k+\ell)+k \log n+\log \tau\right)$ bits
+ time/space needed to enumerate the solutions of the time steps
Second framework: We can solve \mathcal{P}_{X} with better bounds.

New Framework

global multistage problem for property \mathcal{P}_{X} on \mathcal{G}

\mathcal{P}_{X} : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2 \ell+k+1}$
space: $O((k+\ell) \log f(k)+k \log n+\log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps

New Framework

global multistage problem for property \mathcal{P}_{X} on \mathcal{G}

\mathcal{P}_{X} : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2 \ell+k+1}$
space: $O((k+\ell) \log f(k)+k \log n+\log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps

key observation

\exists optimal solution where the solution S_{i} in every Step i : S_{i} is the union of a minimal solution for Step i and vertices of S_{i-1}

New Framework

algorithm sketch:

for step $i:=1$ to τ do

(1) Restart loop with $i+1$ if solution S_{i-1} is solution for Step i

key observation

\exists optimal solution where the solution S_{i} in every Step i : S_{i} is the union of a minimal solution for Step i and vertices of S_{i-1}

New Framework

algorithm sketch:

for step $i:=1$ to τ do

(1) Restart loop with $i+1$ if solution S_{i-1} is solution for Step i
(2) Number the minimal solutions $S_{i}^{1}, \ldots, S_{i}^{f(k)}$ in Step i

key observation

\exists optimal solution where the solution S_{i} in every Step i: S_{i} is the union of a minimal solution for Step i and vertices of S_{i-1}

New Framework

algorithm sketch:

for step $i:=1$ to τ do

(1) Restart loop with $i+1$ if solution S_{i-1} is solution for Step i
(2) Number the minimal solutions $S_{i}^{1}, \ldots, S_{i}^{f(k)}$ in Step i
(3) Guess: Solution S_{i}^{j} for Step i and take-over vertices of S_{i-1}

key observation

\exists optimal solution where the solution S_{i} in every Step i : S_{i} is the union of a minimal solution for Step i and vertices of S_{i-1}

New Framework

algorithm sketch:

for step $i:=1$ to τ do
(1) Restart loop with $i+1$ if solution S_{i-1} is solution for Step i
(2) Number the minimal solutions $S_{i}^{1}, \ldots, S_{i}^{f(k)}$ in Step i
(3) Guess: Solution S_{i}^{j} for Step i and take-over vertices of S_{i-1}

run time and space bounds - sketch

ℓ times we have to guess a number between $1, \ldots, f(k)$ $(k+\ell)$ such numbers \& some numbers of size $O(n)$ and $O(\tau)$

New Framework

algorithm sketch:

for step $i:=1$ to τ do

(1) Restart loop with $i+1$ if solution S_{i-1} is solution for Step i
(2) Number the minimal solutions $S_{i}^{1}, \ldots, S_{i}^{f(k)}$ in Step i
(3) Guess: Solution S_{i}^{j} for Step i and take-over vertices of S_{i-1}

run time and space bounds - sketch

ℓ times we have to guess a number between $1, \ldots, f(k)$ $(k+\ell)$ such numbers \& some numbers of size $O(n)$ and $O(\tau)$

global multistage problem for property \mathcal{P}_{X} on \mathcal{G}

$\mathcal{P}_{X}:$ graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2 \ell+k+1}$
space: $O((k+\ell) \log f(k)+k \log n+\log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k})$.

Layer: | | 1 | 2 | 3 | \cdots | $8 \tilde{k}^{2} n$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\cdot\|\tilde{E}\|$ | | | | |

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{V}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{V}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$ $\forall \tilde{e}_{\{1,3\}}, \ldots \in \tilde{E}: 8 \tilde{k}^{2} n \quad$ vertices v_{e}^{i} connected to $V_{i \bmod n}$

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{V}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$ $\forall \tilde{e}_{\{1,3\}}, \ldots \in \tilde{E}: 8 \tilde{k}^{2} n+1$ vertices v_{e}^{i} connected to $V_{i \bmod n}$

Layer: 1 | | 1 | 2 | 3 | \cdots |
| :--- | :--- | :--- | :--- | :--- |

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{v}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$ $\forall \tilde{e}_{\{1,3\}}, \ldots \in \tilde{E}: 8 \tilde{k}^{2} n+1$ vertices v_{e}^{i} connected to $V_{i \bmod n}$

Layer: | | 1 | 2 | 3 | \cdots |
| :--- | :--- | :--- | :--- | :--- |

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{v}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$ $\forall \tilde{e}_{\{1,3\}}, \ldots \in \tilde{E}: 8 \tilde{k}^{2} n+1$ vertices v_{e}^{i} connected to $V_{i \bmod n}$

Layer: | | 1 | 2 | 3 | \cdots |
| :--- | :--- | :--- | :--- | :--- |

$\tilde{v}_{i} \in$ clique solution \Rightarrow Take all V_{i}. Choose k
s.t. one jumping vertex: must visit all except $\binom{\tilde{k}}{2}$ vertices w^{*}.

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{V}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$ $\forall \tilde{e}_{\{1,3\}}, \ldots \in \tilde{E}: 8 \tilde{k}^{2} n+1$ vertices v_{e}^{i} connected to $V_{i \bmod n}$

Layer: 1 | | 1 | 2 | 3 | \cdots |
| :--- | :--- | :--- | :--- | :--- |

GM Vertex Cover is W[1]-hard w.r.t. k

Red. to Clique-instance $((\tilde{V}, \tilde{E}), \tilde{k}) . \forall \tilde{V}_{1}, \tilde{V}_{2}, \ldots \in \tilde{V}: V_{1}, V_{2}, \ldots$ $\forall \tilde{e}_{\{1,3\}}, \ldots \in \tilde{E}: 8 \tilde{k}^{2} n+1$ vertices v_{e}^{i} connected to $V_{i \bmod n}$

Layer: 1 | | 1 | 2 | 3 | \cdots |
| :--- | :--- | :--- | :--- | :--- |

$v_{3: v_{3}^{3}} v_{3}^{1} \bullet \vdots \quad w_{\{1,3\}}^{3}$ Similar proofs for
all other problems
$\tilde{v}_{i} \in$ clique solution \Rightarrow Take all V_{i}. Choose k
s.t. one jumping vertex: must visit all except $\binom{k}{2}$ vertices w^{*}.

New Results and Open Problems

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge Del.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Matching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage Open Problems

- Parameter $k+\tau$?

New Results and Open Problems

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge Del.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Matching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage

Open Problems

- Parameter $k+\tau$? tw(underl.graph)+??

New Results and Open Problems

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge Del.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Matching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage

Open Problems

- Parameter $k+\tau$? tw(underl.graph)+??
- Weighted versions?

New Results and Open Problems

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge Del.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Matching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage

Open Problems

- Parameter $k+\tau$? tw(underl.graph)+??
- Weighted versions? Solve problems as Independent Set, Feedback Vertex Set, Colourability, etc.?

New Results and Open Problems

problem	k	$k+\ell$	$k+\tau$
Vertex Cover	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell \log k)}$	poly. kernel
Path Contraction	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) \log k)}$	poly. kernel
Cluster Editing	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Cluster Edge Del.	$\mathrm{W}[1]$	poly $(n) \tau \ell 2^{O((k+\ell) k)}$	$?$
Planar Dom. SEt	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Edge Dom. Set	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
s - t-Path	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$\mathrm{W}[1]^{\dagger}$
s - t-Cut	$\mathrm{W}[2]$	$\mathrm{W}[2]^{\dagger}$	$?$
Matching	$\mathrm{W}[1]$	$\mathrm{W}[1]^{\dagger}$	$?$

${ }^{\dagger}$) hardness even for $\ell=0$, i.e., also for the classical multistage

Open Problems

- Parameter $k+\tau$? tw(underl.graph)+??
- Weighted versions? Solve problems as Independent Set, Feedback Vertex Set, Colourability, etc.?
- Modify algorithms above to run in para-L?

