Multistage Graph Problems on a Global Budget

K. Heeger, A. S. Himmel, <u>F. Kammer</u>, R. Niedermeier, M. Renken, and A. Sajenko

THM, University of Applied Sciences Mittelhessen

July 2021

temporal graph

A graph in which the edge set can change in every (time) step. n := # vertices and $\tau :=$ maximum number of steps (lifetime)

temporal graph

A graph in which the edge set can change in every (time) step. n := # vertices and $\tau :=$ maximum number of steps (lifetime)

temporal graph

A graph in which the edge set can change in every (time) step. n := # vertices and $\tau :=$ maximum number of steps (lifetime)

temporal graph

A graph in which the edge set can change in every (time) step. n := #vertices and $\tau := maximum$ number of steps (lifetime)

underlying graph

The graph with all edges that are present in at least one step.

тнм

multistage problems on temporal graphs

Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

MULTISTAGE VERTEX COVER with local budget r := 1 (changes from one step to the next)

MULTISTAGE VERTEX COVER with local budget r := 1 (changes from one step to the next)

$$k := 4$$
 $n := 12, \tau := 5$

Multistage Vertex Cover

with local budget r := 1 (changes from one step to the next)

k := 4 $n := 12, \tau := 5$

Multistage Vertex Cover

with local budget r := 1 (changes from one step to the next)

k := 4 $n := 12, \tau := 5$

multistage problems on temporal graphs

Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

- Fluschnik, Niedermeier, Rohm, and Zschoche IPEC 2019 Multistage vertex cover
- Fluschnik, Niedermeier, Schubert, and Zschoche ISAAC 2020 Multistage s-t path

Recent Results

classical multistage problems on temporal graphs

Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

- Fluschnik, Niedermeier, Rohm, and Zschoche IPEC 2019 Multistage vertex cover
- Fluschnik, Niedermeier, Schubert, and Zschoche ISAAC 2020 Multistage s-t path

Recent Results

classical multistage problems on temporal graphs

Find a small solution for each layer of the temporal graph such that the solutions of two subsequent layers differ not too much.

- Fluschnik, Niedermeier, Rohm, and Zschoche IPEC 2019 Multistage vertex cover
- Fluschnik, Niedermeier, Schubert, and Zschoche ISAAC 2020 Multistage s-t path

Further kinds of multistage problems

- Bampis, Escoffier, Lampis, and Paschos SWAT 2018
 Multistage matchings
- Bampis, Escoffier, and Teiller MFCS 2019
 Multistage knapsack
- Bredereck, Fluschnik, and Kaczmarczyk arXiv 2020 Multistage committee election

New Perspective

classical multistage graph problems

bounding changes between solution sets for subsequent layers

global multistage graph problems

bounding total number ℓ of changes between subsequent solutions

New Perspective

classical multistage graph problems

bounding changes between solution sets for subsequent layers

global multistage graph problems

bounding total number ℓ of changes between subsequent solutions

GLOBAL MULTISTAGE VERTEX COVER with $\ell := 5$ and k := 3

classical multistage graph problems

bounding changes between solution sets for subsequent layers

global multistage graph problems

bounding total number ℓ of changes between subsequent solutions

GLOBAL MULTISTAGE VERTEX COVER with $\ell := 5$ and k := 3

Rohm — Bachelor Thesis 2018 Poly-sized Kernel parameterized by $k + \tau$

Construction of BER airport.

Construction of BER airport.

• Placement of supply units, e.g., cranes, containers for employees.

Construction of BER airport.

Source: youtube.com

• Placement of supply units, e.g., cranes, containers for employees.

Construction of BER airport.

- Placement of supply units, e.g., cranes, containers for employees.
- k := number of supply units $\ell :=$ relocation costs

Source: youtube.com

• Placement of supply units, e.g., cranes, containers for employees.

Construction of BER airport.

Source: youtube.com

- Placement of supply units, e.g., cranes, containers for employees.
- k := number of supply units $\ell :=$ relocation costs

Construction of BER airport.

- Placement of supply units, e.g., cranes, containers for employees.
- k := number of supply units $\ell :=$ relocation costs

Construction of BER airport.

New Results—TCS 2021

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
Cluster Editing	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
<i>s-t-</i> Ратн	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	$W[1]^{\dagger}$?

all problems: NP-hard w.r.t. parameter ℓ even if $\ell = O(1)$

n := #vertices and $\tau :=$ lifetime of the temporal graph k := solution size, $\ell :=$ global budget

working space of all algorithms: $poly(k+\ell) + k \log n + \log \tau$ bits

^{†)} hardness even for $\ell = 0$, i.e., also for the classical multistage

New Results—TCS 2021

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
CLUSTER EDITING	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
s-t-Path	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	$W[1]^{\dagger}$?

all problems: NP-hard w.r.t. parameter ℓ even if $\ell = O(1)$

n := #vertices and $\tau :=$ lifetime of the temporal graph k := solution size, $\ell :=$ global budget Optimal for $k, \ell = O(1)$. working space of all algorithms: poly $(k+\ell) + k \log n + \log \tau$ bits ^{†)} hardness even for $\ell = 0$, i.e., also for the classical multistage Frank Kammer THM 6/11

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

 $|\{S \mid S \text{ minimal solution of size} \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is *enumerable with size f*

 $|\{S \mid S \text{ minimal solution of size} \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F: $|\{S \supseteq F \mid S \text{ minimal solution of size} \le k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \le f(k)$

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

 $|\{S \mid S \text{ minimal solution of size} \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F: $|\{S \supseteq F \mid S \text{ minimal solution of size} \le k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \le f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is *monotone*

S satisfies $\mathcal{P}_{\mathcal{X}} \Rightarrow$ any superset of S satisfies $\mathcal{P}_{\mathcal{X}}$

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is *enumerable with size f*

 $|\{S \mid S \text{ minimal solution of size} \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F: $|\{S \supseteq F \mid S \text{ minimal solution of size } \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is *monotone*

S satisfies $\mathcal{P}_{\mathcal{X}} \Rightarrow$ any superset of S satisfies $\mathcal{P}_{\mathcal{X}}$

full kernel

kernel contains all minimal solutions of the original instance

Let f be a computable function and k the solution size.

graph property $\mathcal{P}_{\mathcal{X}}$ is enumerable with size f

 $|\{S \mid S \text{ minimal solution of size} \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is superset-enumerable with size f

For any given set F: $|\{S \supseteq F \mid S \text{ minimal solution of size} \leq k \text{ satisfying } \mathcal{P}_{\mathcal{X}}\}| \leq f(k)$

graph property $\mathcal{P}_{\mathcal{X}}$ is *monotone*

S satisfies $\mathcal{P}_{\mathcal{X}} \Rightarrow$ any superset of S satisfies $\mathcal{P}_{\mathcal{X}}$

full kernel

kernel contains all minimal solutions of the original instance

monotone & full kernel of size $f(k) \Rightarrow$ (superset-)enum. with size $2^{f(k)}$

 \mathcal{G} : *n*-vertex temporal graph with τ time steps parameters k : solution size, ℓ : global budget

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n)\tau\ell(k+f(k))^{2\ell+k+1}$ space: $O((k+\ell)\log f(k) + k\log n + \log \tau)$ bits + time/space needed to enumerate the solutions of the time steps

 \mathcal{G} : *n*-vertex temporal graph with τ time steps parameters k : solution size, ℓ : global budget

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n)\tau\ell(k+f(k))^{2\ell+k+1}$ space: $O((k+\ell)\log f(k) + k\log n + \log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps

(monotone & full kernel \Rightarrow (superset-)enumerable) \Rightarrow

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 $\begin{aligned} \mathcal{P}_{X} &: \text{ monotone graph property with full kernel} \Rightarrow \exists \text{ function } f': \\ \text{time: } \operatorname{poly}(n)\tau\ell f'(k+\ell) \\ \text{space: } O(f'(k+\ell)+k\log n+\log \tau) \text{ bits} \\ + \text{ time/space needed to enumerate the solutions of the time steps} \end{aligned}$

 \mathcal{G} : *n*-vertex temporal graph with τ time steps parameters *k* : solution size, ℓ : global budget

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n)\tau\ell(k+f(k))^{2\ell+k+1}$ space: $O((k+\ell)\log f(k) + k\log n + \log \tau)$ bits

+ time/space needed to enumerate the solutions of the time steps

(monotone & full kernel \Rightarrow (superset-)enumerable) \Rightarrow

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : monotone graph property with full kernel $\Rightarrow \exists$ function f': time: $\operatorname{poly}(n)\tau\ell f'(k+\ell)$ space: $O(f'(k+\ell) + k\log n + \log \tau)$ bits + time/space needed to enumerate the solutions of the time steps

Second framework: We can solve \mathcal{P}_X with better bounds.

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n)\tau\ell(k+f(k))^{2\ell+k+1}$ space: $O((k+\ell)\log f(k) + k\log n + \log \tau)$ bits + time/space needed to enumerate the solutions of the time steps

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n)\tau\ell(k+f(k))^{2\ell+k+1}$ space: $O((k+\ell)\log f(k) + k\log n + \log \tau)$ bits + time/space needed to enumerate the solutions of the time steps

key observation

algorithm sketch:

for step i := 1 to τ do

Q Restart loop with i + 1 if solution S_{i-1} is solution for Step i

key observation

algorithm sketch:

for step i := 1 to τ do

- Restart loop with i + 1 if solution S_{i-1} is solution for Step i
- **2** Number the minimal solutions $S_i^1, \ldots, S_i^{f(k)}$ in Step i

key observation

algorithm sketch:

for step i := 1 to τ do

- **)** Restart loop with i + 1 if solution S_{i-1} is solution for Step i
- **2** Number the minimal solutions $S_i^1, \ldots, S_i^{f(k)}$ in Step i
 - **3** Guess: Solution S_i^j for Step i and take-over vertices of S_{i-1}

key observation

algorithm sketch:

for step i := 1 to τ do

- **)** Restart loop with i + 1 if solution S_{i-1} is solution for Step i
- **2** Number the minimal solutions $S_i^1, \ldots, S_i^{f(k)}$ in Step i
 - **3** Guess: Solution S_i^j for Step i and take-over vertices of S_{i-1}

run time and space bounds - sketch

 ℓ times we have to guess a number between $1, \ldots, f(k)$ ($k+\ell$) such numbers & some numbers of size O(n) and $O(\tau)$

algorithm sketch:

for step i := 1 to τ do

- Restart loop with i + 1 if solution S_{i-1} is solution for Step i
- **2** Number the minimal solutions $S_i^1, \ldots, S_i^{f(k)}$ in Step i
- **Q** Guess: Solution S_i^j for Step i and take-over vertices of S_{i-1}

run time and space bounds - sketch

 ℓ times we have to guess a number between $1, \ldots, f(k)$ $(k+\ell)$ such numbers & some numbers of size O(n) and $O(\tau)$

global multistage problem for property \mathcal{P}_X on \mathcal{G}

 \mathcal{P}_X : graph property that is superset-enumerable with size $f \Rightarrow$ time: $\operatorname{poly}(n) \tau \ell(k+f(k))^{2\ell+k+1}$ space: $O((k + \ell) \log f(k) + k \log n + \log \tau)$ bits + time/space needed to enumerate the solutions of the time steps

GM VERTEX COVER is W[1]-hard w.r.t. k

Red. to CLIQUE-instance $((\tilde{V}, \tilde{E}), \tilde{k})$.

Layer:	1	2	3	•••	8 <i>k</i> ²n	$\cdot ilde{E} $
			-			
		-				

GM VERTEX COVER is W[1]-hard w.r.t. k

Red. to CLIQUE-instance $((\tilde{V}, \tilde{E}), \tilde{k})$. $\forall \tilde{v}_1, \tilde{v}_2, \ldots \in \tilde{V}$: V_1, V_2, \ldots

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
CLUSTER EDITING	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
<i>s-t-</i> Ратн	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	W[1] [†]	?

 $^{\dagger)}$ hardness even for $\ell=$ 0, i.e., also for the classical multistage

Open Problems

• Parameter $k + \tau$?

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
CLUSTER EDITING	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$\operatorname{poly}(n) \tau \ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
<i>s-t-</i> Ратн	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	$W[1]^{\dagger}$?

 $^{\dagger)}$ hardness even for $\ell=$ 0, i.e., also for the classical multistage

Open Problems

• Parameter $k + \tau$? tw(underl.graph)+??

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
CLUSTER EDITING	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
<i>s-t-</i> Ратн	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	W[1] [†]	?

 $^{\dagger)}$ hardness even for $\ell=$ 0, i.e., also for the classical multistage

Open Problems

- Parameter k + τ? tw(underl.graph)+??
- Weighted versions?

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
Cluster Editing	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$poly(\mathit{n}) au\ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
<i>s-t-</i> Ратн	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	$W[1]^{\dagger}$?

 $^{\dagger)}$ hardness even for $\ell=$ 0, i.e., also for the classical multistage

Open Problems

- Parameter $k + \tau$? tw(underl.graph)+??
- Weighted versions? Solve problems as INDEPENDENT SET, FEEDBACK VERTEX SET, COLOURABILITY, etc.?

problem	k	$k + \ell$	$\mathbf{k} + \tau$
Vertex Cover	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)\log k)}$	poly. kernel
PATH CONTRACTION	W[1]	$poly(n) au \ell 2^{O((k+\ell)\log k)}$	poly. kernel
CLUSTER EDITING	W[1]	$poly(n) au \ell 2^{O((k+\ell)k)}$?
Cluster Edge Del.	W[1]	$poly(n) \tau \ell 2^{O((k+\ell)k)}$?
Planar Dom. Set	W[2]	$W[2]^{\dagger}$?
Edge Dom. Set	W[2]	$W[2]^{\dagger}$?
s-t-Path	W[1]	$W[1]^{\dagger}$	$W[1]^{\dagger}$
<i>s-t-</i> Cut	W[2]	$W[2]^{\dagger}$?
Matching	W[1]	$W[1]^{\dagger}$?

 $^{\dagger)}$ hardness even for $\ell=$ 0, i.e., also for the classical multistage

Open Problems

- Parameter k + τ? tw(underl.graph)+??
- Weighted versions? Solve problems as INDEPENDENT SET, FEEDBACK VERTEX SET, COLOURABILITY, etc.?
- Modify algorithms above to run in para-L?