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Reminder: Perfect Matching
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Given: Compatibility graph.
Task: Find a unique compatible parrot for

each pirate.

Definition (Perfect Matching)
A perfect matching in a graph G = (V, E) is
a set M ⊆ E of edges, such that

◮ no two edges in M share an endpoint,
◮ each vertex in V is incident with an edge
in M.
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Motivation: Multistage Perfect Matching
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Task: Find a perfect matching in each year such that the sum of
common edges in consecutive years is maximized.
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Formal setting

Definition

◮ A multistage graph is a tuple G = (V, E1, . . . , Eτ ) consisting of a
set of vertices V and multiple sets of edges Ei ⊆

(V
2
)

.
◮ The graph induced by some Ei is called the i-th stage of G and
denoted Gi.
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Formal setting

Definition

◮ A multistage perfect matching in G is a sequence of matchings
M = (Mi)

τ
i=1 such that each Mi is a perfect matching in Gi. The

profit ofM is p(M) :=
∑τ−1

i=1 |Mi ∩Mi+1|.
◮ MIM is the problem of finding anM that maximizes p(M).

0 1 2 3

4

76

5G
0 1 2 3

4

76

5G1

0 1 2 3

4

76

5G2

4/14



Related work

◮ Deciding MIM is NP-hard...
...for ≥ 6 stages [Gupta et al. 2014],
...for ≥ 2 stages [Bampis et al. 2018],
...for ≥ 2 stages & each stage consists only of disjoint cycles

◮ Maximum Multistage Matching (with edge weights) is APX-hard,
but there is a 1/2-approximation [Bampis et al. 2018].
Task: Maximize p(M)+

∑τ
i=1 w(Mi).

Doesn’t this include our problem?
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Multistage Perfect✘✘✘✘✘Perfect Matching
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∑
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w(Mi) = (1+ 1) + (3+ 3+ 3) = 11
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Approximation under
hard constraints
for each stage
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Preficiency & Intertwinement

Perfect Matching is preficient (=preference efficient)

Given: Graph G = (V, E), edge set P ⊆ E.
Task: Compute a perfect matching M on G that maximizes |M ∩ P|.

prefPM(G, F)

foreach e ∈ E \ P do
w(e)← 1

foreach e ∈ P do
w(e)← 1+ ε

compute a maximum weight matching M on G
return M

Intertwinement: χ := maxi<τ |Ei ∩ Ei+1|
2 stages: E∩ := E1 ∩ E2, χ := |E∩|
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Approximation for two stages: “prefer-and-ignore”

2IM-Approx

P← E∩
while ...|P| > 0 do

M1 ← prefPM(G1,P)
M2 ← prefPM(G2,M1)

P← P \M1
return that (M1,M2) from above
with maximal p(M1,M2)
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Approximation for two stages: Proof sketch

Theorem
2IM-Approx is a (tight) 1/

√
2χ-approximation.

Proof sketch.
Let M∗

∩ = M∗
1 ∩M∗

2 be optimal. Assume p(M∗
1 ,M∗

2) = |M∗
∩| ≥ 1.

Case 1: |M∗
∩| ≤

√
2χ is “small”.

⇒ Any solution with profit |M1 ∩M2| ≥ 1 suffices.

Case 2: |M∗
∩| >

√
2χ is “large”.

◮ Suppose in each iteration only “few” edges in M1 ∩M∗
∩ ∩ P.

⇒ We need “many” iterations, but ...
... the number of remaining edges in M∗

∩ ∩ P decreases “slowly”.
⇒ M1 prefers M∗

∩ ∩ P.
⇒ Eventually, M1 ∩M∗

∩ ∩ P is “large”. �

◮ M2 maximizes |M1 ∩M2| ≥ |M1 ∩M∗
2 |.
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Further results for matchings

MIM

MUM

2IM
α = 1/

√
2χ

2UM
2− 1/

√
2χ

α/2

α(χ) 7→ α
(

(τ − 1)χ
)

α (if constant)

2− α

1+ α/2
◮ MIM is NP-hard already in
extremely restricted settings

◮ 1/
√
2χ-approximation for 2IM

◮ 1/
√
8χ-approximation for MIM

◮ natural ILP for 2IM has LP-gap of √χ
◮ If MIM is APX-hard, so is 2IM

◮ Approx. algorithms for MUM (=minimize unions) 11/14



Beyond matchings...

Subgraph Problem (SP): [Intuition] Given a graph, find a subset of its
graph elements that optimizes some measure.

Examples: Matching, Shortest Path, Vertex Cover, Independent Set,
Max. Planar Subgraph,...

Multistage Subgraph Problem (MSP): [Intuition] Given an SP, find
optimal solutions for each stage. Maximize transition profit.

Theorem
Consider a preficient MSP where we maximize the intersection
between consecutive stages.
On two stages, it allows a 1/

√

2|χ|-approximation.
On arbitrarily many stages, it allows a 1/

√

8|χ|-approximation.
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Preficiency?

Theorem
Consider a preficient MSP where we maximize the intersection
between consecutive stages.
On two stages, it allows a 1/

√

2|χ|-approximation.
On arbitrarily many stages, it allows a 1/

√

8|χ|-approximation.

Preficient MSP: underlying SP allows a polynomial algorithm that
prefers some graph elements over others.

Preficiency is typically trivial to show
(add some small ε > 0 to cost function)

=⇒ Theorem applicable to, e.g., the NP-hard multistage versions of:

◮ Shortest s-t-path, Minimum s-t-cut, Maximum s-t-cut on
weakly-bipartite graphs (superset of planar graphs),
Minimum-Weight Vertex Cover on bipartite graphs,
Maximum-Weight Independent Set on bipartite graphs,...
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Summary

Core question in all our investigations:
How well can be approximate a multistage problem if we require
optimal solutions in each stage.

Open questions:

◮ We always end up with approximation ratios Θ(1/√χ).
Is this best-possible for general MSPs? For matchings?

◮ What about optimal transitions but suboptimal per-stage
solutions?

Thank you!
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