AATG'20
 Simple Graph Dynamics with Churn

Andrea Clementi*
joint work with
L. Becchetti", F. Pasquale*, L. Trevisan*, and I. Ziccardi* ${ }^{*}$
「Sapienza Università di Roma, "Tor Vergata Università di Roma,
*Bocconi University, ©Universitá dell'Aquila

Our Research Activity since 2007 on Dynamic Graphs

General Goal: Study of Self-Organization in Population Systems

Our Research Activity since 2007 on Dynamic Graphs

General Goal: Study of Self-Organization in Population Systems

Local Interaction Rules in Population Systems:

Natural Dynamics $=$ Simple Distributed Algorithms
Main Properties of Dynamics:
Homogenous: All agents run the same rule at every time
Local Communication: Few, short messages with few neighbors
Node Interactions: Opportunistic/random interactions among the nodes
Natural: See "Natural Algorithms" (Chazelle - Comm. ACM 2012)

A Fundamental Task: Network Formation and Maintenaince

The Algorithmic Goal:

A finite set V of nodes (peers), interacting via a fixed communication graph H, wants to construct and keep a dynamic subgraph $\mathcal{G}=\left\{G_{t}=\left(N_{t}, E_{t}\right), t \geq 0\right\}$ of H such that:

- At every time $t \geq 1, G_{t}$ is sparse
- At every time $t \geq 1, G_{t}$ has good connectivity properties (with high probability, i.e., w.h.p.) and/or Information Spreading over \mathcal{G} is Fast

Our Research Activity on Graph Dynamics

Figure: Distributed Graph Sparsification: Connection Requests

Our Research Activity on Graph Dynamics

Figure: Distributed Graph Sparsification: Sparse Spanning Subgraph

Our Research Activity on Graph Dynamics in 2019

Network Formation and Maintenance via Natural Graph Dynamics Crucial Model Assumption: fixed, time-invariant set V of nodes

- Our paper in ACM-SIAM SODA'20 (Francesco Pasquale's Talk at AATG'19)
- Our paper in ACM SPAA'20

Our Research Activity for 2020

Network Formation and Maintenance via Graph Dynamics

- New Challenging Issue: Introducing Node Churn

Our Research Activity for 2020

Network Formation and Maintenance via Graph Dynamics

- New Challenging Issue: Introducing Node Churn

Technical Question:

- Consider a Graph Dynamics in the presence of Node Churn that yields a sparse dynamic graph and analyze its Connectivity Properties and Information Spreading

A Key Connectivity Property: Vertex Expansion

Outer boundary
Let $G=(V, E)$ be a graph of n nodes. For each $S \subseteq V, \partial_{\text {out }}(S)$ is the outer boundary of S, i.e. the set of nodes in $V-S$ with at least one neighbor in S.

A Key Connectivity Property: Vertex Expansion

Outer boundary
Let $G=(V, E)$ be a graph of n nodes. For each $S \subseteq V, \partial_{\text {out }}(S)$ is the outer boundary of S, i.e. the set of nodes in $V-S$ with at least one neighbor in S.

Vertex isoperimetric number
The vertex isoperimetric number is

$$
\begin{equation*}
h_{\text {out }}(G)=\min _{0 \leq|S| \leq n / 2} \frac{\left|\partial_{\text {out }}(S)\right|}{|S|} \tag{1}
\end{equation*}
$$

A Key Connectivity Property: Vertex Expansion

Outer boundary

Let $G=(V, E)$ be a graph of n nodes. For each $S \subseteq V, \partial_{\text {out }}(S)$ is the outer boundary of S, i.e. the set of nodes in $V-S$ with at least one neighbor in S.

Vertex isoperimetric number
The vertex isoperimetric number is

$$
\begin{equation*}
h_{\text {out }}(G)=\min _{0 \leq|S| \leq n / 2} \frac{\left|\partial_{\text {out }}(S)\right|}{|S|} \tag{1}
\end{equation*}
$$

Vertex expansion
Let $\varepsilon>0$ be an arbitrary constant. Then, G is a ε-expander if $h_{\text {out }}(G) \geq \varepsilon$.

A Key Connectivity Property: Vertex Expansion

Figure: The Vertex Expansion of a Subset of Vertices

A Key Epidemic Process: Flooding

The Flooding Process

Consider a dynamic graph $\mathcal{G}=\left\{G_{t}=\left(N_{t}, E_{t}\right), t \geq 0\right\}$. Let s be the (first) infected node joining the graph at round t_{0} and let $I_{0}=\{s\} \subseteq V_{t_{0}}$
Then, at each round $t \geq t_{0}$, the Flooding Process is defined by the following sequence of subsets of infected nodes:

$$
I_{t}=\left(I_{t-1} \bigcup I_{t}^{\prime}\right) \bigcap V_{t}, \text { where } I_{t}^{\prime}=\left\{v \in N_{t-1} \mid \exists u \in I_{t-1}:(u, v) \in E_{t-1}\right\}
$$

A Key Epidemic Process: Flooding

The Flooding Process

Consider a dynamic graph $\mathcal{G}=\left\{G_{t}=\left(N_{t}, E_{t}\right), t \geq 0\right\}$. Let s be the (first) infected node joining the graph at round t_{0} and let $I_{0}=\{s\} \subseteq V_{t_{0}}$
Then, at each round $t \geq t_{0}$, the Flooding Process is defined by the following sequence of subsets of infected nodes:

$$
I_{t}=\left(I_{t-1} \bigcup I_{t}^{\prime}\right) \bigcap V_{t}, \text { where } I_{t}^{\prime}=\left\{v \in N_{t-1} \mid \exists u \in I_{t-1}:(u, v) \in E_{t-1}\right\}
$$

Remark.
In the case of Static Graphs:

$$
\text { Flooding Time }=\text { Diameter }
$$

Network Formation and Maintenance with Node Churn

Previous Analytical Work

- Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles: [Pandurangan et al. - IEEE FOCS'03], [Duchon et al. - LATIN'14]

Network Formation and Maintenance with Node Churn

Previous Analytical Work

- Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles: [Pandurangan et al. - IEEE FOCS'03], [Duchon et al. - LATIN'14]
- Dynamic-Graph Protocols based on Random Walks:
[Cooper et AI - Combinatorics, Probability and Computing 2007], [Law and Siu - IEEE INFOCOM'03], [Augustine et al - IEEE FOCS'15]

SHARED FEATURE of Previous Work: NO NATURAL DYNAMICS

Protocols are carefully designed to get the desired properties

Our Contribution: The Starting Point

The Static Framework: No node churn; No edge changes
The simplest fully-random Graph Dynamics over the complete communication graph:

Our Contribution: The Starting Point

The Static Framework: No node churn; No edge changes
The simplest fully-random Graph Dynamics over the complete communication graph:
The d-Random Choice Protocol

- Time $t=0$: a set of n nodes/ agents $V_{0}=V$; an empty edge set $E_{0}=\emptyset$.
- Time $t=1 \quad V_{t}:=V$; Each node u selects independently, u.a.r. d (out-)neighbors from V and connects to each of them. Add each selected link to $E_{t}=E$

Random Oracle
The d-Random Choice Protocol requires a simple PULL mechanism that each node can call to select one random node in the graph.

Our "Static" Starting Model

THEOREM (Popular Result :):))

For sufficiently large n, for any $d \geq 3$, at every step $t \geq 1$, the random graph $G_{t}\left(V_{t}, E_{t}\right)$ is a $\Theta(1)$-Expander, with high probability (for short, w.h.p.).

Our "Static" Starting Model

THEOREM (Popular Result :):))

For sufficiently large n, for any $d \geq 3$, at every step $t \geq 1$, the random graph $G_{t}\left(V_{t}, E_{t}\right)$ is a $\Theta(1)$-Expander, with high probability (for short, w.h.p.).

COROLLARY

The diameter of G and, so, its Flooding Time is $O(\log n)$, w.h.p..

Our Basic Dynamic Model: Informal Definition

Node Churn via (deterministic) Streaming
We adapt the d-Random Choice Dynamics to the simplest and unrealistic dynamic-graph model with Node Churn:

- nodes join/leave the network according to a discrete-time streaming process.
- edges of the leaving node disappear; active nodes replace their dying edges

Remark

Our Streaming Model is unrealistic, however,....
it allows to investigate Key Technical Issues that surely appear in more realistic and complex models.

Our Streaming Model: Definition

A Streaming Dynamic Graph with edge Regeneration SDGR $\mathcal{G}(n, d)$ is a stochastic process $\left\{G_{t}=\left(N_{t}, E_{t}\right), t \geq 1\right\}$ defined as follows.

- Node Churn Events. $N_{0}=\emptyset$. At each round $t \geq 1$, a new node joins N_{t} and it stays alive up to round $t+n$, then it leaves the game. So, at every $t \geq n$, the oldest node v leaves the network and a new node u joins it, i.e., $N_{t}:=\left(N_{t-1} \backslash\{v\}\right) \cup\{u\}$.
- Topology: The d-Random Choice Dynamics. E_{t} evolves as follows:
i) All the edges incident to the leaving node v disappear.
ii) The new node u selects independently, u.a.r. d (out-)neighbors from N_{t}.
iii) The nodes in N_{t} that lose some of their d (out-)edges (since v died), send new requests (independently, u.a.r from N_{t}) to keep (out-)degree d.

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

Our Streaming Model: SDGR $\mathcal{G}(n, d)$

Figure: Streaming Model

OUR CONTRIBUTION I: Vertex Expansion

(Main) THEOREM 1.

- Streaming Model SDGR $\mathcal{G}(n, d)$. For any sufficiently large d (i.e. $d \geq 14$), and for any $t \geq \Omega(n)$, the snapshot $G_{t}\left(N_{t}, E_{t}\right)$ is a (1/10)-expander, with probability $1-1 / n^{\Theta(d)}$.

OUR CONTRIBUTION II: Flooding Time

The Flooding Process in the Streaming Model.
Consider a SDGR $\mathcal{G}(n, d)=\left\{G_{t}=\left(N_{t}, E_{t}\right), t \geq 0\right\}$. Let s be the infected node joining the graph at round t_{0} and let $I_{0}=\{s\} \subseteq V_{t_{0}}$
Then, at each round $t \geq t_{0}$, after applying the d-Random Choice Dynamics, attach the Epidemic Process defined by Flooding, i.e., by the time sequence of subsets of infected nodes:

$$
I_{t}=\left(I_{t-1} \bigcup I_{t}^{\prime}\right) \bigcap V_{t}, \text { where } I_{t}^{\prime}=\left\{v \in N_{t-1} \mid \exists u \in I_{t-1}:(u, v) \in E_{t-1}\right\}
$$

Flooding Time

(Main) THEOREM 2.

- Streaming Model SDGR $\mathcal{G}(n, d)$. For any sufficiently large d (i.e. $d \geq 14$), and for any $t \geq \Omega(n)$. Then, if an infected node is inserted at time step t, after $O(\log n)$ time steps, all nodes of the network will be infected, w.h.p.

Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of $G_{t}=\left(N_{t}, E_{t}\right)$

- Main Technical Issue. The different life times of the nodes in N_{t} make correlation among edges in E_{t} and a non uniform edge probability

Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of $G_{t}=\left(N_{t}, E_{t}\right)$

- Main Technical Issue. The different life times of the nodes in N_{t} make correlation among edges in E_{t} and a non uniform edge probability
- A good Intuition:

Edges incident to older nodes have more chances to belong to E_{t}

Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of $G_{t}=\left(N_{t}, E_{t}\right)$

- Main Technical Issue. The different life times of the nodes in N_{t} make correlation among edges in E_{t} and a non uniform edge probability
- A good Intuition:

Edges incident to older nodes have more chances to belong to E_{t}

- Ok,but how large can this probability-gap be ?

Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of $G_{t}=\left(N_{t}, E_{t}\right)$

- LEMMA 1. Let $k \leq t-1$ and let u be the node having age $k+1$. Then, if another node v in N_{t} is born before u, the probability that a single request of u has destination v is

$$
\begin{equation*}
\frac{1}{n-1}\left(1+\frac{1}{n-1}\right)^{k} \tag{2}
\end{equation*}
$$

while, if v is born after u, the probability that a single slot of u has destination v is always $\leq \frac{1}{n-1}$

- Good News. Since $k \leq n$, Eq. (2) is $\leq \boldsymbol{\Theta}(\mathbf{1} / \mathbf{n})$

Highlights of the Proof of THEOREM I : Vertex Expansion

THEOREM

Let n be sufficiently large and $d \geq 21$. Then, for any $t \geq n$, the snapshot G_{t} of a $\operatorname{SDGR} \mathcal{G}(n, d)$ is a vertex expander with parameter $\varepsilon \geq 0.1$, w.h.p.

Proof Strategy

We split the analysis in two cases:
Case 1. Small subsets, i.e., $|S| \leq n / 4$,
Case 2. Large subsets, i.e., $n / 4 \leq|S| \leq n / 2$,
Remark
In both cases, the S expansion is obtained by only looking at the out-going edges of set S, i.e., those edges determined by the d random slots of each node of S.

Highlights of the Proof of THEOREM I : Vertex Expansion

LEMMA (Case 1)
For every pair of vertex subsets (S, T) with $|S| \leq n / 4$ and $|T|=0.1|S|$, such that $S \cap T=\emptyset$, the event "all the out-neighbors of S are in T ", i.e. $\partial_{\text {out }}(S) \subseteq T$, does happen with negligible probability, i.e., with probability $O\left(1 / n^{\Theta(1)}\right)$.

Highlights of the Proof of THEOREM I : Vertex Expansion

LEMMA (Case 1)
For every pair of vertex subsets (S, T) with $|S| \leq n / 4$ and $|T|=0.1|S|$, such that $S \cap T=\emptyset$, the event "all the out-neighbors of S are in T ", i.e. $\partial_{\text {out }}(S) \subseteq T$, does happen with negligible probability, i.e., with probability $O\left(1 / n^{\Theta(1)}\right)$.

Proof

For any S and any $T \subseteq N_{t}-S$, we define the event $A_{S, T}=\left\{\partial_{\text {out }}(S) \subseteq T\right\}$ So, we have that

$$
\begin{equation*}
\operatorname{Pr}\left(\min _{n / 4 \leq|S| \leq n / 2} \frac{\left|\partial_{\text {out }}(S)\right|}{|S|} \leq 0.1\right) \leq \sum_{\substack{n / 4 \leq|S| \leq n / 2 \\|T|=0.1|S|}} \operatorname{Pr}\left(A_{S, T}\right) \tag{3}
\end{equation*}
$$

The next step is to upper bound $\operatorname{Pr}\left(A_{S, T}\right)$.

Streaming Model SDGR Technical proofs

LEMMA (Case 1)

$\operatorname{Pr}\left(A_{S, T}\right)$ is upper bounded by the probability that each request of the nodes in S has destination in $S \cup T$.
From Lemma 1 (the bound on the edge probability), since $k \leq n-1$, the probability that any request of u has destination any node v is at most $\mathbf{e} /(\mathbf{n}-\mathbf{1})$.
Since to have $\partial_{\text {out }}(S) \subseteq T$, each request of $u \in S$ must have destination in $S \cup T$, it holds

$$
\begin{equation*}
\operatorname{Pr}\left(A_{S, T}\right) \leq\left(\frac{\mathbf{e}}{\mathbf{n}-\mathbf{1}} \cdot|S \cup T|\right)^{d|S|} \tag{4}
\end{equation*}
$$

So, from (3) and (4), for any $d \geq 21$, and standard calculus,

$$
\begin{equation*}
\operatorname{Pr}\left(\min _{1 \leq|S| \leq n / 4} \frac{\left|\partial_{\text {out }}(S)\right|}{|S|} \leq 0.1\right) \leq \sum_{s=1}^{n / 4}\binom{n}{s}\binom{n-s}{0.1 s}\left(\frac{1.1 s \cdot e}{n-1}\right)^{d s} \leq \frac{1}{n^{4}} \tag{5}
\end{equation*}
$$

Further Results I: The Poisson Dynamic model with edge Regeneration PDGR

A PDGR $\mathcal{G}(\lambda, \mu, d)$ is a stochastic process $\left\{G_{t}=\left(N_{t}, E_{t}\right): t \in \mathbb{R}^{+}\right\}$, where:

- Node Churn Process [Pandurangan et al. - IEEE FOCS’03]. Initially $N_{0}=\emptyset$ and the node insertions in N_{t} are modelled by a sequential Poisson process with mean λ. Moreover, once a node is activated, its life time has exponential distribution of parameter μ.
- Topology: The d-Random Choice Dynamics.

Further Results I: The Poisson Dynamic model with edge Regeneration PDGR

THEOREM (Poisson Model)

- PDGR $\mathcal{G}(\lambda, \mu, d)$ - Expansion. Let $\lambda=1$ and $n=1 / \mu$, and let $d \geq 35$. Then, for any $t \geq \Omega(n \log n)$, the snapshot $G_{t}\left(N_{t}, E_{t}\right)$ is a (1/10)-expander, with probability $1-1 / n^{\Theta(1)}$
- Poisson Model PDGR $\mathcal{G}(\lambda, \mu, d)$ - Flooding. Let $\lambda=1$ and $n=1 / \mu$, and let $d \geq 35$. Then, for any $t \geq \Omega(n \log n)$, if an infected node is inserted at time t, after $O(\log n)$ flooding rounds, all nodes of the network will be infected, w.h.p.

Further Results II: Dynamic Models with No Edge Regeneration

A "parsimonious" version of the d-Random Choice Dynamics over the Streaming and Poisson models with no Edge Regeneration.

Our Results:

- Negative Results:
a There can be $\Theta(n)$ isolated nodes at every time
b There is constant probability that a joining infected nodes fails to infect more than few nodes...

Further Results II: Dynamic Models with No Edge Regeneration

A "parsimonious" version of the d-Random Choice Dynamics over the Streaming and Poisson models with no Edge Regeneration.

Our Results:

- Negative Results:
a There can be $\Theta(n)$ isolated nodes at every time
b There is constant probability that a joining infected nodes fails to infect more than few nodes...
- Positive Results:
a For $d=\Omega(1)$, at every time step t, every vertex subset of size $\geq n / 10$, of the snapshot G_{t} has $\Theta(1)$-expansion, w.h.p..
b For some $d=\Omega(1)$, a joining infected node infects $0.9 \cdot \mathbf{n}$ nodes within \log time, with Prob. ≥ 0.9

Open Question and the End

Major Open Question:
Design and Analysis of Natural Graph Dynamics in the presence of Node Churn that yield Bounded-Degree Topologies with good connectivity properties, w.h.p.

Open Question and the End

Major Open Question:
Design and Analysis of Natural Graph Dynamics in the presence of Node Churn that yield Bounded-Degree Topologies with good connectivity properties, w.h.p.

THANKS!!!!!!

