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Our Research Activity since 2007 on Dynamic Graphs

General Goal: Study of Self-Organization in Population Systems

Local Interaction Rules in Population Systems:
Natural Dynamics = Simple Distributed Algorithms

Main Properties of Dynamics:

Homogenous: All agents run the same rule at every time
Local Communication: Few, short messages with few neighbors

Node Interactions: Opportunistic/random interactions among the
nodes

Natural: See “Natural Algorithms” (Chazelle - Comm. ACM 2012)
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A Fundamental Task: Network Formation and Maintenaince

The Algorithmic Goal:
A finite set V of nodes (peers), interacting via a fixed communication graph H, wants
to construct and keep a dynamic subgraph G = {G; = (N, E;), t > 0} of H such
that:

> At every time t > 1, G; is sparse

> At every time t > 1, G; has good connectivity properties (with high probability,
i.e., w.h.p.) and/or Information Spreading over G is Fast
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Our Research Activity on Graph Dynamics

Figure: Distributed Graph Sparsification: Connection Requests
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Our Research Activity on Graph Dynamics

Figure: Distributed Graph Sparsification: Sparse Spanning Subgraph
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Our Research Activity on Graph Dynamics in 2019

Network Formation and Maintenance via Natural Graph Dynamics
Crucial Model Assumption: fixed, time-invariant set V of nodes

» Our paper in ACM-SIAM SODA'20 (Francesco Pasquale’'s Talk at AATG'19)
» Our paper in ACM SPAA'20
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Our Research Activity for 2020

Network Formation and Maintenance via Graph Dynamics

» New Challenging Issue: Introducing Node Churn

Technical Question:

» Consider a Graph Dynamics in the presence of Node Churn that yields a
sparse dynamic graph and analyze its Connectivity Properties and
Information Spreading
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A Key Connectivity Property: Vertex Expansion

Outer boundary

Let G = (V, E) be a graph of n nodes. For each S C V, 05,t(S) is the outer boundary
of S, i.e. the set of nodes in V — S with at least one neighbor in S.
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A Key Connectivity Property: Vertex Expansion

Outer boundary

Let G = (V, E) be a graph of n nodes. For each S C V, 05,t(S) is the outer boundary
of S, i.e. the set of nodes in V — S with at least one neighbor in S.

Vertex isoperimetric number

The vertex isoperimetric number is

- 0out(S)]
hout (G) = —_— 1
+(6) 0<|S|<n2 |5 W)

Vertex expansion
Let € > 0 be an arbitrary constant. Then, G is a e-expander if hout(G) > €.
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A Key Connectivity Property: Vertex Expansion

Figure: The Vertex Expansion of a Subset of Vertices
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A Key Epidemic Process: Flooding

The Flooding Process

Consider a dynamic graph G = {G; = (N¢, E;), t > 0}. Let s be the (first) infected
node joining the graph at round tp and let [y = {s} C V4,

Then, at each round t > ty, the Flooding Process is defined by the following sequence
of subsets of infected nodes:

= (/t_1 U /{) Vi, where I} = {v € Ne_1|Fu € Iy : (u,v) € Eer)
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A Key Epidemic Process: Flooding

The Flooding Process

Consider a dynamic graph G = {G; = (N¢, E;), t > 0}. Let s be the (first) infected
node joining the graph at round tp and let [y = {s} C V4,

Then, at each round t > ty, the Flooding Process is defined by the following sequence
of subsets of infected nodes:

= (/t_1 U /{) Vi, where I} = {v € Ne_1|Fu € Iy : (u,v) € Eer)

Remark.
In the case of Static Graphs:

Flooding Time = Diameter
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Network Formation and Maintenance with Node Churn

Previous Analytical Work

» Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles:
[Pandurangan et al. - IEEE FOCS'03], [Duchon et al. - LATIN'14]
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Network Formation and Maintenance with Node Churn

Previous Analytical Work
» Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles:
[Pandurangan et al. - IEEE FOCS'03], [Duchon et al. - LATIN'14]

» Dynamic-Graph Protocols based on Random Walks:
[Cooper et Al - Combinatorics, Probability and Computing 2007],
[Law and Siu - IEEE INFOCOM'03], [Augustine et al - IEEE FOCS'15]

SHARED FEATURE of Previous Work: NO NATURAL DYNAMICS

Protocols are carefully designed to get the desired properties
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Our Contribution: The Starting Point

The Static Framework: No node churn; No edge changes
The simplest fully-random Graph Dynamics over the complete communication graph:
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Our Contribution: The Starting Point

The Static Framework: No node churn; No edge changes
The simplest fully-random Graph Dynamics over the complete communication graph:

The d-Random Choice Protocol

» Time t = 0: a set of n nodes/ agents Vo = V; an empty edge set Ey = 0.

» Time t =1 V; := V; Each node u selects independently, u.a.r. d
(out-)neighbors from V and connects to each of them. Add each selected link to
Et - E

Random Oracle
The d-Random Choice Protocol requires a simple PULL mechanism that each node

can call to select one random node in the graph.
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Our “Static” Starting Model

THEOREM (Popular Result :):))

For sufficiently large n, for any d > 3, at every step t > 1, the random graph
G¢(V4, Et) is a ©(1)-Expander, with high probability (for short, w.h.p.).
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Our “Static” Starting Model

THEOREM (Popular Result :):))

For sufficiently large n, for any d > 3, at every step t > 1, the random graph
G¢(V4, Et) is a ©(1)-Expander, with high probability (for short, w.h.p.).

COROLLARY
The diameter of G and, so, its Flooding Time is O(log n), w.h.p..
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Our Basic Dynamic Model: Informal Definition

Node Churn via (deterministic) Streaming
We adapt the d-Random Choice Dynamics to the simplest and unrealistic
dynamic-graph model with Node Churn:

» nodes join/leave the network according to a discrete-time streaming process.

> edges of the leaving node disappear; active nodes replace their dying edges

Remark

Our Streaming Model is unrealistic , however,....

it allows to investigate Key Technical Issues that surely appear in more realistic and
complex models.

14/ 35
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Our Streaming Model: Definition

A Streaming Dynamic Graph with edge Regeneration SDGR G(n, d) is a stochastic
process { Gy = (N, E;), t > 1} defined as follows.

» Node Churn Events. Ny = (). At each round t > 1, a new node joins N; and it
stays alive up to round t + n, then it leaves the game. So, at every t > n, the
oldest node v leaves the network and a new node u joins it, i.e.,
N := (Ne—1 \ {v}) U {u}.

» Topology: The d-Random Choice Dynamics. E; evolves as follows:
i) All the edges incident to the leaving node v disappear.
ii) The new node u selects independently, u.a.r. d (out-)neighbors from N;.
iii) The nodes in N; that lose some of their d (out-)edges (since v died), send
new requests (independently, u.a.r from N;) to keep (out-)degree d.
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Our Streaming Model: SDGR G(n, d)

Figure: Streaming Model

S
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Figure: Streaming Model
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Our Streaming Model: SDGR G(n, d)

Figure: Streaming Model
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Our Streaming Model: SDGR G(n, d)

Figure: Streaming Model
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OUR CONTRIBUTION I: Vertex Expansion

(Main) THEOREM 1.

» Streaming Model SDGR G(n, d). For any sufficiently large d (i.e. d > 14), and
for any t > Q(n), the snapshot G:(N¢, E;) is a (1/10)-expander, with probability
1—1/n®d),
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OUR CONTRIBUTION II: Flooding Time

The Flooding Process in the Streaming Model.

Consider a SDGR G(n,d) = {G; = (N, E;), t > 0}. Let s be the infected node joining
the graph at round tp and let Iy = {s} C V4,

Then, at each round t > ty, after applying the d-Random Choice Dynamics, attach
the Epidemic Process defined by Flooding, i.e., by the time sequence of subsets of
infected nodes:

Iy = (/t,1 U /;) (M Ve, where I} = {v € Ne_1|3u € ley : (u,v) € Ec1}

25/ 35



July 7, 2020
Flooding Time

(Main) THEOREM 2.

» Streaming Model SDGR G(n, d). For any sufficiently large d (i.e. d > 14), and
for any t > Q(n). Then, if an infected node is inserted at time step t, after
O(log n) time steps, all nodes of the network will be infected, w.h.p.
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Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of G; = (N, E;)

» Main Technical Issue. The different life times of the nodes in N; make
correlation among edges in E; and a non uniform edge probability
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Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of G; = (N, E;)
» Main Technical Issue. The different life times of the nodes in N; make
correlation among edges in E; and a non uniform edge probability

> A good Intuition:
Edges incident to older nodes have more chances to belong to E;

» Ok, ..... but how large can this probability-gap be 7

27/ 35
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Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of G; = (N, E;)

» LEMMA 1. Let k<t —1 and let u be the node having age k + 1. Then, if
another node v in N; is born before u, the probability that a single request of u

has destination v is
1 1+ 71 ‘ (2)
n—1 n—-1) "’

while, if v is born after u, the probability that a single slot of u has destination v
is always < ﬁ

» Good News. Since k < n, Eq. (2) is < O(1/n)

28/ 35
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Highlights of the Proof of THEOREM I : Vertex Expansion

THEOREM
Let n be sufficiently large and d > 21. Then, for any t > n, the snapshot G; of a
SDGR G(n, d) is a vertex expander with parameter ¢ > 0.1, w.h.p.

Proof Strategy

We split the analysis in two cases:

Case 1. Small subsets, i.e., |S| < n/4,

Case 2. Large subsets, i.e., n/4 < |S| < n/2,

Remark
In both cases, the S expansion is obtained by only looking at the out-going edges of
set S, i.e., those edges determined by the d random slots of each node of S.
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Highlights of the Proof of THEOREM I : Vertex Expansion

LEMMA (Case 1)

For every pair of vertex subsets (S, T) with |S| < n/4 and | T| = 0.1|S]|, such that
SN T =0, the event “all the out-neighbors of S are in T", i.e. Oout(S) C T, does

happen with negligible probability, i.e., with probability O(l/ne(l)).
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Highlights of the Proof of THEOREM I : Vertex Expansion

LEMMA (Case 1)

For every pair of vertex subsets (S, T) with |S| < n/4 and | T| = 0.1|S]|, such that
SN T =0, the event “all the out-neighbors of S are in T", i.e. Oout(S) C T, does
happen with negligible probability, i.e., with probability O(l/ne(l)).

Proof
For any S and any T C N; — S, we define the event As 7 = {0out(S) C T} So, we
have that
Pr < min ’8‘)“;(5)‘ < o.1> < ) Pr(Asy). (3)
n/4<|S|<n/2 S| o
| T|=0.1]S|

The next step is to upper bound Pr(As 7).

30/ 35



Streaming Model SDGR Technical proofs

LEMMA (Case 1)

Pr (As 1) is upper bounded by the probability that each request of the nodes in S has
destination in SU T.

From Lemma 1 (the bound on the edge probability), since k < n — 1, the probability
that any request of u has destination any node v is at most e/(n — 1).

Since to have 0o,:(S) C T, each request of u € S must have destination in SU T, it

holds
o d|s|
Pr(As ) < <n—1 -|Su T]> . (4)
So, from (3) and (4), for any d > 21, and standard calculus,
n/4

. |Oout(S)] n\ /n—s\ [11ls-e\* 1
—=<0. < < —.
Pr <1<r;1||<nn/4 S| — 01) < Sz_: s/ \ 0.1s n—1 - nt (5)

=1
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Further Results |: The Poisson Dynamic model with edge Regeneration -

PDGR

A PDGR G(\, i, d) is a stochastic process { Gy = (Ng, E¢) : t € RT}, where:

- Node Churn Process [Pandurangan et al. - IEEE FOCS’03]. Initially Np =0
and the node insertions in N; are modelled by a sequential Poisson process with mean
A. Moreover, once a node is activated, its /ife time has exponential distribution of
parameter .

- Topology: The d-Random Choice Dynamics.
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Further Results |: The Poisson Dynamic model with edge Regeneration -

PDGR

THEOREM (Poisson Model)

» PDGR G(\, p,d) - Expansion. Let A\ =1 and n=1/y, and let d > 35. Then,
for any t > Q(nlog n), the snapshot G¢(N;, E;) is a (1/10)-expander, with
probability 1 — 1/n®1).

» Poisson Model PDGR G(A, i, d) - Flooding. Let A=1and n=1/y, and let
d > 35. Then, for any t > Q(nlog n), if an infected node is inserted at time t,
after O(log n) flooding rounds, all nodes of the network will be infected, w.h.p.

33/ 35



July 7, 2020

Further Results II: Dynamic Models with No Edge Regeneration

A “parsimonious” version of the d-Random Choice Dynamics over the Streaming
and Poisson models with no Edge Regeneration.

Our Results:
» Negative Results:

a There can be ©(n) isolated nodes at every time
b There is constant probability that a joining infected nodes fails to
infect more than few nodes...
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Further Results II: Dynamic Models with No Edge Regeneration

A “parsimonious” version of the d-Random Choice Dynamics over the Streaming
and Poisson models with no Edge Regeneration.

Our Results:
» Negative Results:

a There can be ©(n) isolated nodes at every time
b There is constant probability that a joining infected nodes fails to
infect more than few nodes...

» Positive Results:

a For d = Q(1), at every time step t, every vertex subset of size
> n/10, of the snapshot G; has ©(1)-expansion, w.h.p..

b For some d = Q(1), a joining infected node infects 0.9 - n nodes
within log time, with Prob. > 0.9
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Open Question and the End

Major Open Question:

Design and Analysis of Natural Graph Dynamics in the presence of Node Churn that
yield Bounded-Degree Topologies with good connectivity properties, w.h.p.

35/ 35



Open Question and the End

Major Open Question:
Design and Analysis of Natural Graph Dynamics in the presence of Node Churn that
yield Bounded-Degree Topologies with good connectivity properties, w.h.p.

35/ 35



	Our Starting Point
	Dynamic graph models with node churn
	Highlights of the Proof of THEOREM I : Vertex Expansion

