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Our Research Activity since 2007 on Dynamic Graphs

General Goal: Study of Self-Organization in Population Systems

Local Interaction Rules in Population Systems:

Natural Dynamics = Simple Distributed Algorithms

Main Properties of Dynamics:

Homogenous: All agents run the same rule at every time

Local Communication: Few, short messages with few neighbors

Node Interactions: Opportunistic/random interactions among the
nodes

Natural: See “Natural Algorithms” (Chazelle - Comm. ACM 2012)
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A Fundamental Task: Network Formation and Maintenaince

The Algorithmic Goal:

A finite set V of nodes (peers), interacting via a fixed communication graph H, wants
to construct and keep a dynamic subgraph G = {Gt = (Nt ,Et), t ≥ 0} of H such
that:

I At every time t ≥ 1, Gt is sparse

I At every time t ≥ 1, Gt has good connectivity properties (with high probability,
i.e., w.h.p.) and/or Information Spreading over G is Fast
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Our Research Activity on Graph Dynamics

Figure: Distributed Graph Sparsification: Connection Requests
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Our Research Activity on Graph Dynamics

Figure: Distributed Graph Sparsification: Sparse Spanning Subgraph
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Our Research Activity on Graph Dynamics in 2019

Network Formation and Maintenance via Natural Graph Dynamics

Crucial Model Assumption: fixed, time-invariant set V of nodes

I Our paper in ACM-SIAM SODA’20 (Francesco Pasquale’s Talk at AATG’19)

I Our paper in ACM SPAA’20
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Our Research Activity for 2020

Network Formation and Maintenance via Graph Dynamics

I New Challenging Issue: Introducing Node Churn

Technical Question:

I Consider a Graph Dynamics in the presence of Node Churn that yields a
sparse dynamic graph and analyze its Connectivity Properties and
Information Spreading
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A Key Connectivity Property: Vertex Expansion

Outer boundary

Let G = (V ,E ) be a graph of n nodes. For each S ⊆ V , ∂out(S) is the outer boundary
of S , i.e. the set of nodes in V − S with at least one neighbor in S .

Vertex isoperimetric number

The vertex isoperimetric number is

hout(G ) = min
0≤|S |≤n/2

|∂out(S)|
|S |

(1)

Vertex expansion

Let ε > 0 be an arbitrary constant. Then, G is a ε-expander if hout(G ) ≥ ε.
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A Key Connectivity Property: Vertex Expansion

Figure: The Vertex Expansion of a Subset of Vertices

S

∂out(S)
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A Key Epidemic Process: Flooding

The Flooding Process

Consider a dynamic graph G = {Gt = (Nt ,Et), t ≥ 0}. Let s be the (first) infected
node joining the graph at round t0 and let I0 = {s} ⊆ Vt0

Then, at each round t ≥ t0, the Flooding Process is defined by the following sequence
of subsets of infected nodes:

It =
(
It−1

⋃
I ′t

)⋂
Vt , where I ′t = {v ∈ Nt−1|∃u ∈ It−1 : (u, v) ∈ Et−1}

Remark.
In the case of Static Graphs:

Flooding Time = Diameter
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Network Formation and Maintenance with Node Churn

Previous Analytical Work

I Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles:
[Pandurangan et al. - IEEE FOCS’03], [Duchon et al. - LATIN’14]

I Dynamic-Graph Protocols based on Random Walks:
[Cooper et Al - Combinatorics, Probability and Computing 2007],
[Law and Siu - IEEE INFOCOM’03], [Augustine et al - IEEE FOCS’15]

SHARED FEATURE of Previous Work: NO NATURAL DYNAMICS
Protocols are carefully designed to get the desired properties
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Our Contribution: The Starting Point

The Static Framework: No node churn; No edge changes

The simplest fully-random Graph Dynamics over the complete communication graph:

The d-Random Choice Protocol

I Time t = 0: a set of n nodes/ agents V0 = V ; an empty edge set E0 = ∅.
I Time t = 1 Vt := V ; Each node u selects independently, u.a.r. d

(out-)neighbors from V and connects to each of them. Add each selected link to
Et = E

Random Oracle
The d-Random Choice Protocol requires a simple PULL mechanism that each node
can call to select one random node in the graph.

12/ 35



July 7, 2020

Our Contribution: The Starting Point

The Static Framework: No node churn; No edge changes

The simplest fully-random Graph Dynamics over the complete communication graph:

The d-Random Choice Protocol

I Time t = 0: a set of n nodes/ agents V0 = V ; an empty edge set E0 = ∅.
I Time t = 1 Vt := V ; Each node u selects independently, u.a.r. d

(out-)neighbors from V and connects to each of them. Add each selected link to
Et = E

Random Oracle
The d-Random Choice Protocol requires a simple PULL mechanism that each node
can call to select one random node in the graph.

12/ 35



July 7, 2020

Our “Static” Starting Model

THEOREM (Popular Result :):))

For sufficiently large n, for any d ≥ 3, at every step t ≥ 1, the random graph
Gt(Vt ,Et) is a Θ(1)-Expander, with high probability (for short, w.h.p.).

COROLLARY
The diameter of G and, so, its Flooding Time is O(log n), w.h.p..
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Our Basic Dynamic Model: Informal Definition

Node Churn via (deterministic) Streaming

We adapt the d-Random Choice Dynamics to the simplest and unrealistic
dynamic-graph model with Node Churn:

I nodes join/leave the network according to a discrete-time streaming process.

I edges of the leaving node disappear; active nodes replace their dying edges

Remark
Our Streaming Model is unrealistic , however,....
it allows to investigate Key Technical Issues that surely appear in more realistic and
complex models.
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Our Streaming Model: Definition

A Streaming Dynamic Graph with edge Regeneration SDGR G(n, d) is a stochastic
process {Gt = (Nt ,Et), t ≥ 1} defined as follows.

I Node Churn Events. N0 = ∅. At each round t ≥ 1, a new node joins Nt and it
stays alive up to round t + n, then it leaves the game. So, at every t ≥ n, the
oldest node v leaves the network and a new node u joins it, i.e.,
Nt := (Nt−1 \ {v}) ∪ {u}.

I Topology: The d-Random Choice Dynamics. Et evolves as follows:
i) All the edges incident to the leaving node v disappear.
ii) The new node u selects independently, u.a.r. d (out-)neighbors from Nt .
iii) The nodes in Nt that lose some of their d (out-)edges (since v died), send
new requests (independently, u.a.r from Nt) to keep (out-)degree d .
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Our Streaming Model: SDGR G(n, d)

Figure: Streaming Model

t
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OUR CONTRIBUTION I: Vertex Expansion

(Main) THEOREM 1.

I Streaming Model SDGR G(n, d). For any sufficiently large d (i.e. d ≥ 14), and
for any t ≥ Ω(n), the snapshot Gt(Nt ,Et) is a (1/10)-expander, with probability
1− 1/nΘ(d).
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OUR CONTRIBUTION II: Flooding Time

The Flooding Process in the Streaming Model.

Consider a SDGR G(n, d) = {Gt = (Nt ,Et), t ≥ 0}. Let s be the infected node joining
the graph at round t0 and let I0 = {s} ⊆ Vt0

Then, at each round t ≥ t0, after applying the d-Random Choice Dynamics, attach
the Epidemic Process defined by Flooding, i.e., by the time sequence of subsets of
infected nodes:

It =
(
It−1

⋃
I ′t

)⋂
Vt , where I ′t = {v ∈ Nt−1|∃u ∈ It−1 : (u, v) ∈ Et−1}
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Flooding Time

(Main) THEOREM 2.

I Streaming Model SDGR G(n, d). For any sufficiently large d (i.e. d ≥ 14), and
for any t ≥ Ω(n). Then, if an infected node is inserted at time step t, after
O(log n) time steps, all nodes of the network will be infected, w.h.p.
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Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of Gt = (Nt ,Et)

I Main Technical Issue. The different life times of the nodes in Nt make
correlation among edges in Et and a non uniform edge probability

I A good Intuition:
Edges incident to older nodes have more chances to belong to Et

I Ok, .....but how large can this probability-gap be ?
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Highlights of the Proof of THEOREM I : Vertex Expansion

Expansion of Gt = (Nt ,Et)

I LEMMA 1. Let k ≤ t − 1 and let u be the node having age k + 1. Then, if
another node v in Nt is born before u, the probability that a single request of u
has destination v is

1

n− 1

(
1 +

1

n− 1

)k

, (2)

while, if v is born after u, the probability that a single slot of u has destination v
is always ≤ 1

n−1

I Good News. Since k ≤ n, Eq. (2) is ≤ Θ(1/n)
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Highlights of the Proof of THEOREM I : Vertex Expansion

THEOREM
Let n be sufficiently large and d ≥ 21. Then, for any t ≥ n, the snapshot Gt of a
SDGR G(n, d) is a vertex expander with parameter ε ≥ 0.1, w.h.p.

Proof Strategy

We split the analysis in two cases:
Case 1. Small subsets, i.e., |S | ≤ n/4 ,
Case 2. Large subsets, i.e., n/4 ≤ |S | ≤ n/2 ,

Remark
In both cases, the S expansion is obtained by only looking at the out-going edges of
set S , i.e., those edges determined by the d random slots of each node of S .
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Highlights of the Proof of THEOREM I : Vertex Expansion

LEMMA (Case 1)

For every pair of vertex subsets (S ,T ) with |S | ≤ n/4 and |T | = 0.1|S |, such that
S ∩ T = ∅, the event “all the out-neighbors of S are in T”, i.e. ∂out(S) ⊆ T , does
happen with negligible probability, i.e., with probability O(1/nΘ(1)).

Proof
For any S and any T ⊆ Nt − S , we define the event AS ,T = {∂out(S) ⊆ T} So, we
have that

Pr

(
min

n/4≤|S |≤n/2

|∂out(S)|
|S |

≤ 0.1

)
≤

∑
n/4≤|S|≤n/2
|T |=0.1|S |

Pr (AS,T ) . (3)

The next step is to upper bound Pr (AS ,T ).
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Streaming Model SDGR Technical proofs

LEMMA (Case 1)

Pr (AS,T ) is upper bounded by the probability that each request of the nodes in S has
destination in S ∪ T .
From Lemma 1 (the bound on the edge probability), since k ≤ n − 1, the probability
that any request of u has destination any node v is at most e/(n− 1).
Since to have ∂out(S) ⊆ T , each request of u ∈ S must have destination in S ∪ T , it
holds

Pr (AS ,T ) ≤
(

e

n− 1
· |S ∪ T |

)d |S|
. (4)

So, from (3) and (4), for any d ≥ 21, and standard calculus,

Pr

(
min

1≤|S |≤n/4

|∂out(S)|
|S |

≤ 0.1

)
≤

n/4∑
s=1

(
n

s

)(
n − s

0.1s

)(
1.1s · e
n − 1

)ds

≤ 1

n4
. (5)
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Further Results I: The Poisson Dynamic model with edge Regeneration -
PDGR

A PDGR G(λ, µ, d) is a stochastic process {Gt = (Nt ,Et) : t ∈ R+}, where:
- Node Churn Process [Pandurangan et al. - IEEE FOCS’03]. Initially N0 = ∅
and the node insertions in Nt are modelled by a sequential Poisson process with mean
λ. Moreover, once a node is activated, its life time has exponential distribution of
parameter µ.

- Topology: The d-Random Choice Dynamics.
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Further Results I: The Poisson Dynamic model with edge Regeneration -
PDGR

THEOREM (Poisson Model)

I PDGR G(λ, µ, d) - Expansion. Let λ = 1 and n = 1/µ, and let d ≥ 35. Then,
for any t ≥ Ω(n log n), the snapshot Gt(Nt ,Et) is a (1/10)-expander, with
probability 1− 1/nΘ(1).

I Poisson Model PDGR G(λ, µ, d) - Flooding. Let λ = 1 and n = 1/µ, and let
d ≥ 35. Then, for any t ≥ Ω(n log n), if an infected node is inserted at time t,
after O(log n) flooding rounds, all nodes of the network will be infected, w.h.p.
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Further Results II: Dynamic Models with No Edge Regeneration

A “parsimonious” version of the d-Random Choice Dynamics over the Streaming
and Poisson models with no Edge Regeneration.

Our Results:

I Negative Results:

a There can be Θ(n) isolated nodes at every time
b There is constant probability that a joining infected nodes fails to

infect more than few nodes...

I Positive Results:

a For d = Ω(1), at every time step t, every vertex subset of size
≥ n/10, of the snapshot Gt has Θ(1)-expansion, w.h.p..

b For some d = Ω(1), a joining infected node infects 0.9 · n nodes
within log time, with Prob. ≥ 0.9
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Open Question and the End

Major Open Question:

Design and Analysis of Natural Graph Dynamics in the presence of Node Churn that
yield Bounded-Degree Topologies with good connectivity properties, w.h.p.

THANKS!!!!!!
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