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Previous Work: Strict Temporal Exploration

Definition (Temporal graph G)

Temporal graph G = 〈G1, ...,GL〉:
I underlying graph G with N vertices

I sequence of static graphs Gi ⊆ G with V (Gi ) = V (G ) and
E (Gi ) ⊆ E (G )

I time steps 1 ≤ i ≤ L, lifetime L

Strict temporal walk: Traverse at most one edge per time step.

Strict exploration schedule:

I Strict temporal walk W through G that visits all v ∈ V (G).

I Arrival time of W : time step when last vertex is reached.
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Strict Temporal Exploration Problem (TEXP)

Problem (Strict Temporal Exploration)

Input: Temporal graph G, start vertex s ∈ V (G ).
Output: A strict exploration schedule starting from vertex s with
earliest arrival time.

Typical assumptions:

I Full dynamic behaviour of G is known in advance

I Each Gi is connected, lifetime L ≥ N2.
(Otherwise, NP-complete to decide if exploration schedule
exists (Michail and Spirakis, 2014).)
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Strict TEXP: Some Known Results

I Introduced as TEXP by Michail and Spirakis (2014):
I TEXP is NP-complete
I TEXP admits an O(D)-approximation, where D is the

temporal diameter (D ≤ N)

I E, Hoffmann and Kammer (2015):
I Worst-case exploration time is Θ(N2)
I TEXP is O(N1−ε)-inapproximable.

I E, Kammer, Luo, Sajenko and Spooner (2019):
I O(d · N1.75) steps suffice if each Gi has max degree ≤ d

I The exploration time of various special classes of temporal
graphs has also been studied.
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Non-Strict Temporal Exploration
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Non-Strict Temporal Graphs

I Allow an arbitrary number of edges to be crossed in the same
time step.

I Observation: Only the connected components in each time
step matter (for the exploration problem).

Definition (Non-strict temporal graph G)

I G = 〈G1, ...,GL〉 with vertex set V (|V | = N) and lifetime L

I Each Gi is a partition {Ci ,1, ...,Ci ,si} of V
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Non-Strict Temporal Walks

Definition (Non-strict temporal walk W )

A non-strict temporal walk W through a graph G = 〈G1, ...,GL〉 is
a length k-sequence of components W = C1,j1 ,C2,j2 , ...,Ck,jk with
k ∈ [L], satisfying the following properties:

I For all Ci ,ji ∈W we have Ci ,ji ∈ Gi .

I Additionally, Ci ,ji ∩ Ci+1,ji+1
6= ∅ for all i ∈ [k − 1].

I A walk W visits all v ∈
⋃k

i=1 Ci ,ji .

I If
⋃k

i=1 Ci ,ji = V then W is a non-strict exploration
schedule.
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Example: Non-Strict Exploration Schedule
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Previous work on non-strict temporal graphs

I Casteigts, Chaumette and Ferreira (2009) distinguish between
strict/non-strict temporal journeys in the context of
distributed algorithms.

I Barjon, Casteigts, Chaumette, Johnen and Neggaz (2014)
describe algorithms for testing strict/non-strict temporal
connectivity in sparse temporal graphs.

I Zschoche, Fluschnik, Molter and Niedermeier (2017) consider
temporal (v , u)-separators in non-strict and strict setting.

I E, Kammer, Luo, Sajenko and Spooner (2019) prove arbitrary
temporal graphs can be explored in O(N1.75) time steps when
up to 2 moves per step are allowed.
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Deciding Non-Strict Temporal Exploration

I A non-strict temporal graph G does not necessarily admit
an exploration schedule

Problem (Non-Strict TEXP Decision)

Input: A non-strict temporal graph G with lifetime L, and start
vertex s.
Output: YES if G admits a non-strict exploration schedule W
starting from s, and NO otherwise.
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Deciding Non-Strict Temporal Exploration (cont.)

Theorem

Deciding Non-Strict TEXP is NP-complete.

Proof sketch.

I Take arbitrary instance I of 3SAT with n variables xi
(i ∈ [n]) and m = O(n) clauses cj .

I W.l.o.g., assume that no cj contains both xi and ¬xi .

I Reduction: Construct non-strict temporal graph G such
that:
G admits exploration schedule ⇐⇒ I is satisfiable
I For all i ∈ [n], create 2 vertices vT

i and vF
i for variable xi of I ,

m clause vertices cj (one for each clause of I ), and an
additional vertex s.

I Let the lifetime of G be L = 2n.
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Proof of Theorem: Reducing 3SAT to NS-TEXP

Arrange vertices in components as follows (all unmentioned
vertices in any step t are disconnected in that step):

{s, vT
1 , vF

1 }

{vT
1 } ∪ {cj : x1 = 1 satisfies cj} {vF

1 } ∪ {cj : x1 = 0 satisfies cj}

{vF
i } ∪ {cj : xi = 0 satisfies cj}

{vT
i−1, v

F
i−1, v

T
i , vF

i }

{vT
i } ∪ {cj : xi = 1 satisfies cj}

...

t = 1:

t = 2:

(i ∈ [2, n])

t = 2i − 1:
(i ∈ [2, n])

t = 2i :
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Proof of Theorem: I satisfiable ⇐⇒ G explorable

I satisfiable =⇒ G admits exploration schedule W

Given satisfying assignment α, move in step 2i − 1 to vTi if
α(xi ) = 1 or to vFi otherwise. In step 2i , explore all clause vertices
satisfied by xi in α.

G admits exploration schedule W =⇒ I is satisfiable

Each cj can only be reached in a step 2i if it is contained in the
true/false component of xi . Since W visits all cj , we can set
α(xi ) = 1 or α(xi ) = 0 depending on the component visited in
step 2i and obtain a satisfying assignment.
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Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zF

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.
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Foremost NS-TEXP

I We are interested in assumptions that (together with large
enough lifetime) guarantee that non-strict exploration is
possible.

I We consider the optimisation problem Foremost
NS-TEXP for such instances: Find a foremost exploration
schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices u, v ∈ V (G) are contained in the same
component at least once every |V (G)| = N steps.

Observation: Under Assumption 1, any non-strict temporal graph
G can be explored in N steps.
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Approximation Hardness for Assumption 1

Theorem

Foremost NS-TEXP is O(N1−ε)-inapproximable (unless
P=NP) for input graphs satisfying the pairwise vertex-togetherness
assumption

Proof sketch.

I Take instance of NS-TEXP obtained via the earlier reduction from
3SAT

I Add to the resulting graph G nc dummy vertices dk (k ∈ [nc ]), for
some constant c ≥ 2.

I G has lifetime L = N = O(nc).

I Components in steps t ∈ [1, 2n] are arranged as in the earlier
construction, with dummy vertices disconnected in all steps but
t = 1, during which they are in the component containing s.

I During steps t ∈ [2n + 1,N − 1], all vertices lie disconnected in G;
in step N all vertices lie in a single component.
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Approximation Hardness for Assumption 1

Notice that if G cannot be explored by the end of t = 2n, then N = Θ(nc)
steps are required:

t = 2i :
(i ∈ [2, n])

t = 2i − 1:
(i ∈ [2, n])

t = 2:

{v : v ∈ V (G)}

... all vertices disconnected ...

...

{vT
i−1, v

F
i−1, v

T
i , vF

i }

{s, vT
1 , vF

1 , d1, ..., dnc }

t = N:

t ∈ [2n + 1,N − 1]:

t = 1:

{vT
1 } ∪ {cj : x1 = 1 satisfies cj} {vF

1 } ∪ {cj : x1 = 0 satisfies cj}

{vT
i } ∪ {cj : xi = 1 satisfies cj} {vF

i } ∪ {cj : xi = 0 satisfies cj}

Analysis: G can be explored in 2n steps iff I has a satisfying assignment, so
deciding whether ≤ 2n or ≥ N are needed decides 3SAT instance I ; the
theorem follows for ratio O(nc/n) = O(N1−ε) where ε = 1

c
.
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Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of G)

If every vertex can reach every other vertex within D steps
(starting at any time ≤ L− D), then G has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph G has temporal diameter bounded by a constant c .

I Under Assumption 2, we can visit all vertices in arbitrary order
in cN steps (actually, in 1 + (N − 1)(c − 1) steps).

We prove:

I Worst-case exploration time is Θ(N) when c ≥ 3.

I Lower bound Ω(
√
N) and upper bound O(

√
N logN) on

worst-case exploration time when c = 2.
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I Worst-case exploration time is Θ(N) when c ≥ 3.

I Lower bound Ω(
√
N) and upper bound O(

√
N logN) on

worst-case exploration time when c = 2.
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Lower Bound for Temporal Diameter c = 3

I Take N = 3m + 1 for some m ≥ 3 and form 3 disjoint subsets X , Y
and Z , each of size m. Arrange vertices as follows (red dashed lines
indicate components):

v

YX Z

v

Z X Y

I Can check that ≤ 3 steps enough to reach any w from any u

I The vertices in Z need 3 steps to reach each other; repeating for all
m gives Ω(N) time bound.
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Lower Bound for Temporal Diameter c = 2

I Take N = x2 for x ≥ 3 and arrange vertices in x-by-x grid

I In odd steps, the components are rows of the grid, in even steps the
components are columns:

1 2 3 4

8765

9 10 11 12

16151413

1 2 3 4

8765

9 10 11 12

16151413

I In any pair of steps we can use one step to choose column, one to
choose row =⇒ G satisfies assumption

I Any component contains exactly
√
N vertices =⇒ Ω(

√
N) steps

required for exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 20

Odd: Even:



Lower Bound for Temporal Diameter c = 2

I Take N = x2 for x ≥ 3 and arrange vertices in x-by-x grid

I In odd steps, the components are rows of the grid, in even steps the
components are columns:

1 2 3 4

8765

9 10 11 12

16151413

1 2 3 4

8765

9 10 11 12

16151413

I In any pair of steps we can use one step to choose column, one to
choose row =⇒ G satisfies assumption

I Any component contains exactly
√
N vertices =⇒ Ω(

√
N) steps

required for exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 20

Odd: Even:



Lower Bound for Temporal Diameter c = 2

I Take N = x2 for x ≥ 3 and arrange vertices in x-by-x grid

I In odd steps, the components are rows of the grid, in even steps the
components are columns:

1 2 3 4

8765

9 10 11 12

16151413

1 2 3 4

8765

9 10 11 12

16151413

I In any pair of steps we can use one step to choose column, one to
choose row =⇒ G satisfies assumption

I Any component contains exactly
√
N vertices =⇒ Ω(

√
N) steps

required for exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 20

Odd: Even:



Inapproximability for Bounded Temporal Diameter

Remark
These two lower bound constructions can be adapted to
provide O(N1−ε) and O(N

1
2
−ε)-inapproximability results in the

c ≥ 3 and c = 2 cases, respectively.
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Upper Bound for Temporal Diameter c = 2

Theorem

Any temporal graph G that has temporal diameter c = 2 can be
explored in O(

√
N logN) steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has ≤
√
N

components

I Construct walk in blocks of 3 steps; using Claim we are able
to visit ≥ 1√

N
fraction of unvisited vertices in either 2nd or

3rd step of each block

I After k blocks the number of unvisited vertices is
≤ N · (1− 1√

N
)k

I Thus, k ≤
√
N log n blocks are enough to explore G
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Proof of Claim for Steps t, t + 1

I If all components have size >
√
N in step t, we are done.

Otherwise, use this observation:

Observation
The number of components in step t + 1 is upper bounded by the size of
the smallest component in step t.

Proof sketch.

t = 2

t = 1
a b c

ca b
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Conclusion

Our Results:

I Deciding if a temporal graph admits a non-strict exploration
schedule is NP-complete

I Upper/lower bounds on worst-case exploration time under two
assumptions (pairwise vertex-togetherness, bounded temporal
diameter)

I Foremost Non-Strict TEXP is hard to approximate
under both assumptions

Open Questions:

I Close the Θ(log n) gap for temporal diameter c = 2

I Analyse complexity/exploration time of Foremost
NS-TEXP when the graph satisfies other assumptions that
guarantee explorability
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Thank you!

Any questions?
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