
Non-Strict Temporal Exploration

Thomas Erlebach and Jakob T. Spooner

School of Informatics, University of Leicester

(Slides mostly prepared by Jakob)

Algorithmic Aspects of Temporal Graphs III
(Satellite Workshop of ICALP 2020)

July 7, 2020

Previous Work: Strict Temporal Exploration

Definition (Temporal graph G)

Temporal graph G = 〈G1, ...,GL〉:
I underlying graph G with N vertices

I sequence of static graphs Gi ⊆ G with V (Gi) = V (G) and
E (Gi) ⊆ E (G)

I time steps 1 ≤ i ≤ L, lifetime L

Strict temporal walk: Traverse at most one edge per time step.

Strict exploration schedule:

I Strict temporal walk W through G that visits all v ∈ V (G).

I Arrival time of W : time step when last vertex is reached.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 2

Strict Temporal Exploration Problem (TEXP)

Problem (Strict Temporal Exploration)

Input: Temporal graph G, start vertex s ∈ V (G).
Output: A strict exploration schedule starting from vertex s with
earliest arrival time.

Typical assumptions:

I Full dynamic behaviour of G is known in advance

I Each Gi is connected, lifetime L ≥ N2.
(Otherwise, NP-complete to decide if exploration schedule
exists (Michail and Spirakis, 2014).)

AATG 2020 Thomas Erlebach and Jakob T. Spooner 3

Strict TEXP: Some Known Results

I Introduced as TEXP by Michail and Spirakis (2014):
I TEXP is NP-complete
I TEXP admits an O(D)-approximation, where D is the

temporal diameter (D ≤ N)

I E, Hoffmann and Kammer (2015):
I Worst-case exploration time is Θ(N2)
I TEXP is O(N1−ε)-inapproximable.

I E, Kammer, Luo, Sajenko and Spooner (2019):
I O(d · N1.75) steps suffice if each Gi has max degree ≤ d

I The exploration time of various special classes of temporal
graphs has also been studied.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 4

Non-Strict Temporal Exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 5

Non-Strict Temporal Graphs

I Allow an arbitrary number of edges to be crossed in the same
time step.

I Observation: Only the connected components in each time
step matter (for the exploration problem).

Definition (Non-strict temporal graph G)

I G = 〈G1, ...,GL〉 with vertex set V (|V | = N) and lifetime L

I Each Gi is a partition {Ci ,1, ...,Ci ,si} of V

AATG 2020 Thomas Erlebach and Jakob T. Spooner 6

Non-Strict Temporal Walks

Definition (Non-strict temporal walk W)

A non-strict temporal walk W through a graph G = 〈G1, ...,GL〉 is
a length k-sequence of components W = C1,j1 ,C2,j2 , ...,Ck,jk with
k ∈ [L], satisfying the following properties:

I For all Ci ,ji ∈W we have Ci ,ji ∈ Gi .

I Additionally, Ci ,ji ∩ Ci+1,ji+1
6= ∅ for all i ∈ [k − 1].

I A walk W visits all v ∈
⋃k

i=1 Ci ,ji .

I If
⋃k

i=1 Ci ,ji = V then W is a non-strict exploration
schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 7

Example: Non-Strict Exploration Schedule

t = 2t = 1

C1,2

C3,2

C2,3

C2,2

C2,1

C1,3

C3,1C1,1

t = 3

b

c

e

f

g h

i

d

a

h

i

b e

f

c d

g

a

d

e

g

i

fc

h

b
a

AATG 2020 Thomas Erlebach and Jakob T. Spooner 8

Example: Non-Strict Exploration Schedule

t = 2t = 1

C1,2

C3,2

C2,3

C2,2

C2,1

C1,3

C3,1C1,1

t = 3

b

c

e

f

g h

i

d

a

h

i

b e

f

c d

g

a

d

e

g

i

fc

h

b
a

AATG 2020 Thomas Erlebach and Jakob T. Spooner 8

Example: Non-Strict Exploration Schedule

t = 2t = 1

C1,2

C3,2

C2,3

C2,2

C2,1

C1,3

C3,1C1,1

t = 3

b

c

e

f

g h

i

d

a

h

i

b e

f

d

g

a

d

e

g

i

fc

h

b
a

c

AATG 2020 Thomas Erlebach and Jakob T. Spooner 8

Example: Non-Strict Exploration Schedule

t = 2t = 1

C1,2

C3,2

C2,3

C2,2

C2,1

C1,3

C3,1C1,1

t = 3

b

c

e

f

g h

i

d

a

h

i

b e

f

d

g

a

d

e

g

i

fc

h

b
a

c

AATG 2020 Thomas Erlebach and Jakob T. Spooner 8

Example: Non-Strict Exploration Schedule

t = 2t = 1

C1,2

C3,2

C2,3

C2,2

C2,1

C1,3

C3,1C1,1

t = 3

b

c

e

f

g h

i

d

a

h

i

b e

f

d

g

a

d

e

i

fc

h

b
a

c

g

AATG 2020 Thomas Erlebach and Jakob T. Spooner 8

Example: Non-Strict Exploration Schedule

t = 2t = 1

C1,2

C3,2

C2,3

C2,2

C2,1

C1,3

C3,1C1,1

t = 3

b

c

e

f

g h

i

d

a

h

i

b e

f

d

g

a

d

e

i

fc

h

b
a

c

g

AATG 2020 Thomas Erlebach and Jakob T. Spooner 8

Previous work on non-strict temporal graphs

I Casteigts, Chaumette and Ferreira (2009) distinguish between
strict/non-strict temporal journeys in the context of
distributed algorithms.

I Barjon, Casteigts, Chaumette, Johnen and Neggaz (2014)
describe algorithms for testing strict/non-strict temporal
connectivity in sparse temporal graphs.

I Zschoche, Fluschnik, Molter and Niedermeier (2017) consider
temporal (v , u)-separators in non-strict and strict setting.

I E, Kammer, Luo, Sajenko and Spooner (2019) prove arbitrary
temporal graphs can be explored in O(N1.75) time steps when
up to 2 moves per step are allowed.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 9

Deciding Non-Strict Temporal Exploration

I A non-strict temporal graph G does not necessarily admit
an exploration schedule

Problem (Non-Strict TEXP Decision)

Input: A non-strict temporal graph G with lifetime L, and start
vertex s.
Output: YES if G admits a non-strict exploration schedule W
starting from s, and NO otherwise.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 10

Deciding Non-Strict Temporal Exploration (cont.)

Theorem

Deciding Non-Strict TEXP is NP-complete.

Proof sketch.

I Take arbitrary instance I of 3SAT with n variables xi
(i ∈ [n]) and m = O(n) clauses cj .

I W.l.o.g., assume that no cj contains both xi and ¬xi .

I Reduction: Construct non-strict temporal graph G such
that:
G admits exploration schedule ⇐⇒ I is satisfiable
I For all i ∈ [n], create 2 vertices vT

i and vF
i for variable xi of I ,

m clause vertices cj (one for each clause of I), and an
additional vertex s.

I Let the lifetime of G be L = 2n.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 11

Deciding Non-Strict Temporal Exploration (cont.)

Theorem

Deciding Non-Strict TEXP is NP-complete.

Proof sketch.

I Take arbitrary instance I of 3SAT with n variables xi
(i ∈ [n]) and m = O(n) clauses cj .

I W.l.o.g., assume that no cj contains both xi and ¬xi .

I Reduction: Construct non-strict temporal graph G such
that:
G admits exploration schedule ⇐⇒ I is satisfiable
I For all i ∈ [n], create 2 vertices vT

i and vF
i for variable xi of I ,

m clause vertices cj (one for each clause of I), and an
additional vertex s.

I Let the lifetime of G be L = 2n.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 11

Proof of Theorem: Reducing 3SAT to NS-TEXP

Arrange vertices in components as follows (all unmentioned
vertices in any step t are disconnected in that step):

{s, vT
1 , vF

1 }

{vT
1 } ∪ {cj : x1 = 1 satisfies cj} {vF

1 } ∪ {cj : x1 = 0 satisfies cj}

{vF
i } ∪ {cj : xi = 0 satisfies cj}

{vT
i−1, v

F
i−1, v

T
i , vF

i }

{vT
i } ∪ {cj : xi = 1 satisfies cj}

...

t = 1:

t = 2:

(i ∈ [2, n])

t = 2i − 1:
(i ∈ [2, n])

t = 2i :

AATG 2020 Thomas Erlebach and Jakob T. Spooner 12

Proof of Theorem: I satisfiable ⇐⇒ G explorable

I satisfiable =⇒ G admits exploration schedule W

Given satisfying assignment α, move in step 2i − 1 to vTi if
α(xi) = 1 or to vFi otherwise. In step 2i , explore all clause vertices
satisfied by xi in α.

G admits exploration schedule W =⇒ I is satisfiable

Each cj can only be reached in a step 2i if it is contained in the
true/false component of xi . Since W visits all cj , we can set
α(xi) = 1 or α(xi) = 0 depending on the component visited in
step 2i and obtain a satisfying assignment.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 13

Proof of Theorem: I satisfiable ⇐⇒ G explorable

I satisfiable =⇒ G admits exploration schedule W

Given satisfying assignment α, move in step 2i − 1 to vTi if
α(xi) = 1 or to vFi otherwise. In step 2i , explore all clause vertices
satisfied by xi in α.

G admits exploration schedule W =⇒ I is satisfiable

Each cj can only be reached in a step 2i if it is contained in the
true/false component of xi . Since W visits all cj , we can set
α(xi) = 1 or α(xi) = 0 depending on the component visited in
step 2i and obtain a satisfying assignment.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 13

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zF

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zF

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zFxF

xT

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zFxF

xT

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zFxF

xT

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

yT

yF

yT

yF zT

zF

yT

yF

zT

zFxF

xT

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

yT

yT

yF zT

zF

yT

yF

zT

zFxF

xT

yF

There is a direct correspondence between the satisfying assignment
x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Proof of Theorem: Example

Consider the following 3CNF formula:

φ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

Our reduction produces the following NS-TEXP instance:

t = 2 t = 3 t = 4 t = 5 t = 6t = 1 t = 6t = 5t = 4t = 3t = 1 t = 2

c2

c3
c2
c1

c4
c4

c1

c3

c2

c4
c3
c1

s

xT

xF

xT

xF

yT

yT

yF zT

zF

yT

yF

zT

zFxF

xT

yF

There is a direct correspondence between the satisfying
assignment x = 1, y = 0, z = 0 and the above exploration schedule.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 14

Foremost NS-TEXP

I We are interested in assumptions that (together with large
enough lifetime) guarantee that non-strict exploration is
possible.

I We consider the optimisation problem Foremost
NS-TEXP for such instances: Find a foremost exploration
schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices u, v ∈ V (G) are contained in the same
component at least once every |V (G)| = N steps.

Observation: Under Assumption 1, any non-strict temporal graph
G can be explored in N steps.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 15

Foremost NS-TEXP

I We are interested in assumptions that (together with large
enough lifetime) guarantee that non-strict exploration is
possible.

I We consider the optimisation problem Foremost
NS-TEXP for such instances: Find a foremost exploration
schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices u, v ∈ V (G) are contained in the same
component at least once every |V (G)| = N steps.

Observation: Under Assumption 1, any non-strict temporal graph
G can be explored in N steps.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 15

Foremost NS-TEXP

I We are interested in assumptions that (together with large
enough lifetime) guarantee that non-strict exploration is
possible.

I We consider the optimisation problem Foremost
NS-TEXP for such instances: Find a foremost exploration
schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices u, v ∈ V (G) are contained in the same
component at least once every |V (G)| = N steps.

Observation: Under Assumption 1, any non-strict temporal graph
G can be explored in N steps.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 15

Foremost NS-TEXP

I We are interested in assumptions that (together with large
enough lifetime) guarantee that non-strict exploration is
possible.

I We consider the optimisation problem Foremost
NS-TEXP for such instances: Find a foremost exploration
schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices u, v ∈ V (G) are contained in the same
component at least once every |V (G)| = N steps.

Observation: Under Assumption 1, any non-strict temporal graph
G can be explored in N steps.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 15

Approximation Hardness for Assumption 1

Theorem

Foremost NS-TEXP is O(N1−ε)-inapproximable (unless
P=NP) for input graphs satisfying the pairwise vertex-togetherness
assumption

Proof sketch.

I Take instance of NS-TEXP obtained via the earlier reduction from
3SAT

I Add to the resulting graph G nc dummy vertices dk (k ∈ [nc]), for
some constant c ≥ 2.

I G has lifetime L = N = O(nc).

I Components in steps t ∈ [1, 2n] are arranged as in the earlier
construction, with dummy vertices disconnected in all steps but
t = 1, during which they are in the component containing s.

I During steps t ∈ [2n + 1,N − 1], all vertices lie disconnected in G;
in step N all vertices lie in a single component.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 16

Approximation Hardness for Assumption 1

Theorem

Foremost NS-TEXP is O(N1−ε)-inapproximable (unless
P=NP) for input graphs satisfying the pairwise vertex-togetherness
assumption

Proof sketch.

I Take instance of NS-TEXP obtained via the earlier reduction from
3SAT

I Add to the resulting graph G nc dummy vertices dk (k ∈ [nc]), for
some constant c ≥ 2.

I G has lifetime L = N = O(nc).

I Components in steps t ∈ [1, 2n] are arranged as in the earlier
construction, with dummy vertices disconnected in all steps but
t = 1, during which they are in the component containing s.

I During steps t ∈ [2n + 1,N − 1], all vertices lie disconnected in G;
in step N all vertices lie in a single component.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 16

Approximation Hardness for Assumption 1

Notice that if G cannot be explored by the end of t = 2n, then N = Θ(nc)
steps are required:

t = 2i :
(i ∈ [2, n])

t = 2i − 1:
(i ∈ [2, n])

t = 2:

{v : v ∈ V (G)}

... all vertices disconnected ...

...

{vT
i−1, v

F
i−1, v

T
i , vF

i }

{s, vT
1 , vF

1 , d1, ..., dnc }

t = N:

t ∈ [2n + 1,N − 1]:

t = 1:

{vT
1 } ∪ {cj : x1 = 1 satisfies cj} {vF

1 } ∪ {cj : x1 = 0 satisfies cj}

{vT
i } ∪ {cj : xi = 1 satisfies cj} {vF

i } ∪ {cj : xi = 0 satisfies cj}

Analysis: G can be explored in 2n steps iff I has a satisfying assignment, so
deciding whether ≤ 2n or ≥ N are needed decides 3SAT instance I ; the
theorem follows for ratio O(nc/n) = O(N1−ε) where ε = 1

c
.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 17

Approximation Hardness for Assumption 1

Notice that if G cannot be explored by the end of t = 2n, then N = Θ(nc)
steps are required:

t = 2i :
(i ∈ [2, n])

t = 2i − 1:
(i ∈ [2, n])

t = 2:

{v : v ∈ V (G)}

... all vertices disconnected ...

...

{vT
i−1, v

F
i−1, v

T
i , vF

i }

{s, vT
1 , vF

1 , d1, ..., dnc }

t = N:

t ∈ [2n + 1,N − 1]:

t = 1:

{vT
1 } ∪ {cj : x1 = 1 satisfies cj} {vF

1 } ∪ {cj : x1 = 0 satisfies cj}

{vT
i } ∪ {cj : xi = 1 satisfies cj} {vF

i } ∪ {cj : xi = 0 satisfies cj}

Analysis: G can be explored in 2n steps iff I has a satisfying assignment, so
deciding whether ≤ 2n or ≥ N are needed decides 3SAT instance I ; the
theorem follows for ratio O(nc/n) = O(N1−ε) where ε = 1

c
.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 17

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of G)

If every vertex can reach every other vertex within D steps
(starting at any time ≤ L− D), then G has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph G has temporal diameter bounded by a constant c .

I Under Assumption 2, we can visit all vertices in arbitrary order
in cN steps (actually, in 1 + (N − 1)(c − 1) steps).

We prove:

I Worst-case exploration time is Θ(N) when c ≥ 3.

I Lower bound Ω(
√
N) and upper bound O(

√
N logN) on

worst-case exploration time when c = 2.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 18

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of G)

If every vertex can reach every other vertex within D steps
(starting at any time ≤ L− D), then G has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph G has temporal diameter bounded by a constant c .

I Under Assumption 2, we can visit all vertices in arbitrary order
in cN steps (actually, in 1 + (N − 1)(c − 1) steps).

We prove:

I Worst-case exploration time is Θ(N) when c ≥ 3.

I Lower bound Ω(
√
N) and upper bound O(

√
N logN) on

worst-case exploration time when c = 2.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 18

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of G)

If every vertex can reach every other vertex within D steps
(starting at any time ≤ L− D), then G has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph G has temporal diameter bounded by a constant c .

I Under Assumption 2, we can visit all vertices in arbitrary order
in cN steps (actually, in 1 + (N − 1)(c − 1) steps).

We prove:

I Worst-case exploration time is Θ(N) when c ≥ 3.

I Lower bound Ω(
√
N) and upper bound O(

√
N logN) on

worst-case exploration time when c = 2.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 18

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of G)

If every vertex can reach every other vertex within D steps
(starting at any time ≤ L− D), then G has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph G has temporal diameter bounded by a constant c .

I Under Assumption 2, we can visit all vertices in arbitrary order
in cN steps (actually, in 1 + (N − 1)(c − 1) steps).

We prove:

I Worst-case exploration time is Θ(N) when c ≥ 3.

I Lower bound Ω(
√
N) and upper bound O(

√
N logN) on

worst-case exploration time when c = 2.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 18

Lower Bound for Temporal Diameter c = 3

I Take N = 3m + 1 for some m ≥ 3 and form 3 disjoint subsets X , Y
and Z , each of size m. Arrange vertices as follows (red dashed lines
indicate components):

v

YX Z

v

Z X Y

I Can check that ≤ 3 steps enough to reach any w from any u

I The vertices in Z need 3 steps to reach each other; repeating for all
m gives Ω(N) time bound.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 19

Odd
steps:

Even
steps:

Lower Bound for Temporal Diameter c = 3

I Take N = 3m + 1 for some m ≥ 3 and form 3 disjoint subsets X , Y
and Z , each of size m. Arrange vertices as follows (red dashed lines
indicate components):

v

YX Z

v

Z X Y

I Can check that ≤ 3 steps enough to reach any w from any u

I The vertices in Z need 3 steps to reach each other; repeating for all
m gives Ω(N) time bound.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 19

Odd
steps:

Even
steps:

Lower Bound for Temporal Diameter c = 3

I Take N = 3m + 1 for some m ≥ 3 and form 3 disjoint subsets X , Y
and Z , each of size m. Arrange vertices as follows (red dashed lines
indicate components):

v

YX Z

v

Z X Y

I Can check that ≤ 3 steps enough to reach any w from any u

I The vertices in Z need 3 steps to reach each other; repeating for all
m gives Ω(N) time bound.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 19

Odd
steps:

Even
steps:

Lower Bound for Temporal Diameter c = 2

I Take N = x2 for x ≥ 3 and arrange vertices in x-by-x grid

I In odd steps, the components are rows of the grid, in even steps the
components are columns:

1 2 3 4

8765

9 10 11 12

16151413

1 2 3 4

8765

9 10 11 12

16151413

I In any pair of steps we can use one step to choose column, one to
choose row =⇒ G satisfies assumption

I Any component contains exactly
√
N vertices =⇒ Ω(

√
N) steps

required for exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 20

Odd: Even:

Lower Bound for Temporal Diameter c = 2

I Take N = x2 for x ≥ 3 and arrange vertices in x-by-x grid

I In odd steps, the components are rows of the grid, in even steps the
components are columns:

1 2 3 4

8765

9 10 11 12

16151413

1 2 3 4

8765

9 10 11 12

16151413

I In any pair of steps we can use one step to choose column, one to
choose row =⇒ G satisfies assumption

I Any component contains exactly
√
N vertices =⇒ Ω(

√
N) steps

required for exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 20

Odd: Even:

Lower Bound for Temporal Diameter c = 2

I Take N = x2 for x ≥ 3 and arrange vertices in x-by-x grid

I In odd steps, the components are rows of the grid, in even steps the
components are columns:

1 2 3 4

8765

9 10 11 12

16151413

1 2 3 4

8765

9 10 11 12

16151413

I In any pair of steps we can use one step to choose column, one to
choose row =⇒ G satisfies assumption

I Any component contains exactly
√
N vertices =⇒ Ω(

√
N) steps

required for exploration

AATG 2020 Thomas Erlebach and Jakob T. Spooner 20

Odd: Even:

Inapproximability for Bounded Temporal Diameter

Remark
These two lower bound constructions can be adapted to
provide O(N1−ε) and O(N

1
2
−ε)-inapproximability results in the

c ≥ 3 and c = 2 cases, respectively.

AATG 2020 Thomas Erlebach and Jakob T. Spooner 21

Upper Bound for Temporal Diameter c = 2

Theorem

Any temporal graph G that has temporal diameter c = 2 can be
explored in O(

√
N logN) steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has ≤
√
N

components

I Construct walk in blocks of 3 steps; using Claim we are able
to visit ≥ 1√

N
fraction of unvisited vertices in either 2nd or

3rd step of each block

I After k blocks the number of unvisited vertices is
≤ N · (1− 1√

N
)k

I Thus, k ≤
√
N log n blocks are enough to explore G

AATG 2020 Thomas Erlebach and Jakob T. Spooner 22

Upper Bound for Temporal Diameter c = 2

Theorem

Any temporal graph G that has temporal diameter c = 2 can be
explored in O(

√
N logN) steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has ≤
√
N

components

I Construct walk in blocks of 3 steps; using Claim we are able
to visit ≥ 1√

N
fraction of unvisited vertices in either 2nd or

3rd step of each block

I After k blocks the number of unvisited vertices is
≤ N · (1− 1√

N
)k

I Thus, k ≤
√
N log n blocks are enough to explore G

AATG 2020 Thomas Erlebach and Jakob T. Spooner 22

Upper Bound for Temporal Diameter c = 2

Theorem

Any temporal graph G that has temporal diameter c = 2 can be
explored in O(

√
N logN) steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has ≤
√
N

components

I Construct walk in blocks of 3 steps; using Claim we are able
to visit ≥ 1√

N
fraction of unvisited vertices in either 2nd or

3rd step of each block

I After k blocks the number of unvisited vertices is
≤ N · (1− 1√

N
)k

I Thus, k ≤
√
N log n blocks are enough to explore G

AATG 2020 Thomas Erlebach and Jakob T. Spooner 22

Upper Bound for Temporal Diameter c = 2

Theorem

Any temporal graph G that has temporal diameter c = 2 can be
explored in O(

√
N logN) steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has ≤
√
N

components

I Construct walk in blocks of 3 steps; using Claim we are able
to visit ≥ 1√

N
fraction of unvisited vertices in either 2nd or

3rd step of each block

I After k blocks the number of unvisited vertices is
≤ N · (1− 1√

N
)k

I Thus, k ≤
√
N log n blocks are enough to explore G

AATG 2020 Thomas Erlebach and Jakob T. Spooner 22

Upper Bound for Temporal Diameter c = 2

Theorem

Any temporal graph G that has temporal diameter c = 2 can be
explored in O(

√
N logN) steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has ≤
√
N

components

I Construct walk in blocks of 3 steps; using Claim we are able
to visit ≥ 1√

N
fraction of unvisited vertices in either 2nd or

3rd step of each block

I After k blocks the number of unvisited vertices is
≤ N · (1− 1√

N
)k

I Thus, k ≤
√
N log n blocks are enough to explore G

AATG 2020 Thomas Erlebach and Jakob T. Spooner 22

Proof of Claim for Steps t, t + 1

I If all components have size >
√
N in step t, we are done.

Otherwise, use this observation:

Observation
The number of components in step t + 1 is upper bounded by the size of
the smallest component in step t.

Proof sketch.

t = 2

t = 1
a b c

ca b

AATG 2020 Thomas Erlebach and Jakob T. Spooner 23

Proof of Claim for Steps t, t + 1

I If all components have size >
√
N in step t, we are done.

Otherwise, use this observation:

Observation
The number of components in step t + 1 is upper bounded by the size of
the smallest component in step t.

Proof sketch.

t = 2

t = 1
a b c

ca b

AATG 2020 Thomas Erlebach and Jakob T. Spooner 23

Proof of Claim for Steps t, t + 1

I If all components have size >
√
N in step t, we are done.

Otherwise, use this observation:

Observation
The number of components in step t + 1 is upper bounded by the size of
the smallest component in step t.

Proof sketch.

t = 2

t = 1
a b c

ca b

AATG 2020 Thomas Erlebach and Jakob T. Spooner 23

Conclusion

Our Results:

I Deciding if a temporal graph admits a non-strict exploration
schedule is NP-complete

I Upper/lower bounds on worst-case exploration time under two
assumptions (pairwise vertex-togetherness, bounded temporal
diameter)

I Foremost Non-Strict TEXP is hard to approximate
under both assumptions

Open Questions:

I Close the Θ(log n) gap for temporal diameter c = 2

I Analyse complexity/exploration time of Foremost
NS-TEXP when the graph satisfies other assumptions that
guarantee explorability

AATG 2020 Thomas Erlebach and Jakob T. Spooner 24

Conclusion

Our Results:

I Deciding if a temporal graph admits a non-strict exploration
schedule is NP-complete

I Upper/lower bounds on worst-case exploration time under two
assumptions (pairwise vertex-togetherness, bounded temporal
diameter)

I Foremost Non-Strict TEXP is hard to approximate
under both assumptions

Open Questions:

I Close the Θ(log n) gap for temporal diameter c = 2

I Analyse complexity/exploration time of Foremost
NS-TEXP when the graph satisfies other assumptions that
guarantee explorability

AATG 2020 Thomas Erlebach and Jakob T. Spooner 24

Thank you!

Any questions?

AATG 2020 Thomas Erlebach and Jakob T. Spooner 25

