Non-Strict Temporal Exploration

Thomas Erlebach and Jakob T. Spooner
School of Informatics, University of Leicester
(Slides mostly prepared by Jakob)

Algorithmic Aspects of Temporal Graphs III
(Satellite Workshop of ICALP 2020)

$$
\text { July 7, } 2020
$$

Previous Work: Strict Temporal Exploration

Definition (Temporal graph \mathcal{G})

Temporal graph $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$:

- underlying graph G with N vertices
- sequence of static graphs $G_{i} \subseteq G$ with $V\left(G_{i}\right)=V(G)$ and $E\left(G_{i}\right) \subseteq E(G)$
- time steps $1 \leq i \leq L$, lifetime L

Strict temporal walk: Traverse at most one edge per time step.
Strict exploration schedule:

- Strict temporal walk W through \mathcal{G} that visits all $v \in V(\mathcal{G})$.
- Arrival time of W : time step when last vertex is reached.

Strict Temporal Exploration Problem (TEXP)

Problem (Strict Temporal Exploration)

Input: Temporal graph \mathcal{G}, start vertex $s \in V(G)$.
Output: A strict exploration schedule starting from vertex s with earliest arrival time.

Typical assumptions:

- Full dynamic behaviour of \mathcal{G} is known in advance
- Each G_{i} is connected, lifetime $L \geq N^{2}$. (Otherwise, NP-complete to decide if exploration schedule exists (Michail and Spirakis, 2014).)

Strict TEXP: Some Known Results

- Introduced as TEXP by Michail and Spirakis (2014):
- TEXP is NP-complete
- TEXP admits an $O(D)$-approximation, where D is the temporal diameter ($D \leq N$)
- E, Hoffmann and Kammer (2015):
- Worst-case exploration time is $\Theta\left(N^{2}\right)$
- TEXP is $O\left(N^{1-\varepsilon}\right)$-inapproximable.
- E, Kammer, Luo, Sajenko and Spooner (2019):
- $O\left(d \cdot N^{1.75}\right)$ steps suffice if each G_{i} has max degree $\leq d$
- The exploration time of various special classes of temporal graphs has also been studied.

Non-Strict Temporal Exploration

Non-Strict Temporal Graphs

- Allow an arbitrary number of edges to be crossed in the same time step.
- Observation: Only the connected components in each time step matter (for the exploration problem).

Definition (Non-strict temporal graph \mathcal{G})

- $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ with vertex set $V(|V|=N)$ and lifetime L
- Each G_{i} is a partition $\left\{C_{i, 1}, \ldots, C_{i, s_{i}}\right\}$ of V

Non-Strict Temporal Walks

Definition (Non-strict temporal walk W)

A non-strict temporal walk W through a graph $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ is a length k-sequence of components $W=C_{1, j_{1}}, C_{2, j_{2}}, \ldots, C_{k, j_{k}}$ with $k \in[L]$, satisfying the following properties:
\Rightarrow For all $C_{i, j_{i}} \in W$ we have $C_{i, j_{i}} \in G_{i}$.

- Additionally, $C_{i, j_{i}} \cap C_{i+1, j_{i+1}} \neq \emptyset$ for all $i \in[k-1]$.
- A walk W visits all $v \in \bigcup_{i=1}^{k} C_{i, j_{i}}$.
- If $\bigcup_{i=1}^{k} C_{i, j_{i}}=V$ then W is a non-strict exploration schedule.

Example: Non-Strict Exploration Schedule

$$
t=3
$$

-

$C_{3,2}$

(h)

Example: Non-Strict Exploration Schedule

$$
t=3
$$

-

$C_{3,2}$

(h)

Example: Non-Strict Exploration Schedule

$t=3$

$C_{3,2}$
(h)

Example: Non-Strict Exploration Schedule

$t=3$

-

$C_{3,2}$

(h)

Example: Non-Strict Exploration Schedule

Example: Non-Strict Exploration Schedule

Previous work on non-strict temporal graphs

- Casteigts, Chaumette and Ferreira (2009) distinguish between strict/non-strict temporal journeys in the context of distributed algorithms.
- Barjon, Casteigts, Chaumette, Johnen and Neggaz (2014) describe algorithms for testing strict/non-strict temporal connectivity in sparse temporal graphs.
- Zschoche, Fluschnik, Molter and Niedermeier (2017) consider temporal (v, u)-separators in non-strict and strict setting.
- E, Kammer, Luo, Sajenko and Spooner (2019) prove arbitrary temporal graphs can be explored in $O\left(N^{1.75}\right)$ time steps when up to 2 moves per step are allowed.

Deciding Non-Strict Temporal Exploration

- A non-strict temporal graph \mathcal{G} does not necessarily admit an exploration schedule

Problem (NON-STRICT TEXP Decision)

Input: A non-strict temporal graph \mathcal{G} with lifetime L, and start vertex s.
Output: YES if \mathcal{G} admits a non-strict exploration schedule W starting from s, and NO otherwise.

Deciding Non-Strict Temporal Exploration (cont.)

Theorem
 Deciding Non-Strict TEXP is NP-complete.

Deciding Non-Strict Temporal Exploration (cont.)

Theorem

Deciding Non-Strict TEXP is NP-complete.

Proof sketch.

- Take arbitrary instance I of 3 SAT with n variables x_{i} $(i \in[n])$ and $m=O(n)$ clauses c_{j}.
- W.l.o.g., assume that no c_{j} contains both x_{i} and $\neg x_{i}$.
- Reduction: Construct non-strict temporal graph \mathcal{G} such that:
\mathcal{G} admits exploration schedule $\Longleftrightarrow I$ is satisfiable
- For all $i \in[n]$, create 2 vertices v_{i}^{T} and v_{i}^{F} for variable x_{i} of I, m clause vertices c_{j} (one for each clause of I), and an additional vertex s.
- Let the lifetime of \mathcal{G} be $L=2 n$.

Proof of Theorem: Reducing 3SAT to NS-TEXP

Arrange vertices in components as follows (all unmentioned vertices in any step t are disconnected in that step):

$$
\begin{aligned}
& t=1: \\
& t=2: \underbrace{\left.t v_{1}^{T}\right\} \cup\left\{c_{j}: x_{1}=1 \text { satisfies } c_{j}\right\}} \underbrace{\left\{s, v_{1}^{T}, v_{1}^{F}\right\}}\} \\
& \begin{array}{l}
t=2 i-1: \\
(i \in[2, n])
\end{array} \\
& \begin{array}{l}
t=2 i: \\
(i \in[2, n])
\end{array} \\
& \left.\left.\left\{v_{1}^{F}\right\} \cup\left\{c_{j}: x_{i}^{T}\right\}, v_{i-1}^{F}, v_{i}^{T}, v_{i}^{F}\right\} \text { satisfies } c_{j}\right\}
\end{aligned}
$$

Proof of Theorem: I satisfiable $\Longleftrightarrow \mathcal{G}$ explorable

I satisfiable $\Longrightarrow \mathcal{G}$ admits exploration schedule W

Given satisfying assignment α, move in step $2 i-1$ to v_{i}^{T} if $\alpha\left(x_{i}\right)=1$ or to v_{i}^{F} otherwise. In step $2 i$, explore all clause vertices satisfied by x_{i} in α.

Proof of Theorem: I satisfiable $\Longleftrightarrow \mathcal{G}$ explorable

I satisfiable $\Longrightarrow \mathcal{G}$ admits exploration schedule W

Given satisfying assignment α, move in step $2 i-1$ to $v_{i}{ }^{\top}$ if $\alpha\left(x_{i}\right)=1$ or to v_{i}^{F} otherwise. In step $2 i$, explore all clause vertices satisfied by x_{i} in α.

\mathcal{G} admits exploration schedule $W \Longrightarrow I$ is satisfiable

Each c_{j} can only be reached in a step $2 i$ if it is contained in the true/false component of x_{i}. Since W visits all c_{j}, we can set $\alpha\left(x_{i}\right)=1$ or $\alpha\left(x_{i}\right)=0$ depending on the component visited in step $2 i$ and obtain a satisfying assignment.

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

Proof of Theorem: Example

Consider the following 3CNF formula:

$$
\phi=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Our reduction produces the following NS-TEXP instance:

There is a direct correspondence between the satisfying assignment $x=1, y=0, z=0$ and the above exploration schedule.

Foremost NS-TEXP

- We are interested in assumptions that (together with large enough lifetime) guarantee that non-strict exploration is possible.

Foremost NS-TEXP

- We are interested in assumptions that (together with large enough lifetime) guarantee that non-strict exploration is possible.
- We consider the optimisation problem Foremost NS-TEXP for such instances: Find a foremost exploration schedule, i.e., one with earliest arrival time.

Foremost NS-TEXP

- We are interested in assumptions that (together with large enough lifetime) guarantee that non-strict exploration is possible.
- We consider the optimisation problem Foremost NS-TEXP for such instances: Find a foremost exploration schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices $u, v \in V(\mathcal{G})$ are contained in the same component at least once every $|V(\mathcal{G})|=N$ steps.

Foremost NS-TEXP

- We are interested in assumptions that (together with large enough lifetime) guarantee that non-strict exploration is possible.
- We consider the optimisation problem Foremost NS-TEXP for such instances: Find a foremost exploration schedule, i.e., one with earliest arrival time.

Assumption 1: Pairwise vertex-togetherness (PVT)

Every pair of vertices $u, v \in V(\mathcal{G})$ are contained in the same component at least once every $|V(\mathcal{G})|=N$ steps.

Observation: Under Assumption 1, any non-strict temporal graph \mathcal{G} can be explored in N steps.

Approximation Hardness for Assumption 1

Theorem

Foremost NS-TEXP is $O\left(N^{1-\varepsilon}\right)$-inapproximable (unless $P=N P$) for input graphs satisfying the pairwise vertex-togetherness assumption

Approximation Hardness for Assumption 1

Theorem

Foremost NS-TEXP is $O\left(N^{1-\varepsilon}\right)$-inapproximable (unless
$P=N P$) for input graphs satisfying the pairwise vertex-togetherness assumption

Proof sketch.

- Take instance of NS-TEXP obtained via the earlier reduction from 3SAT
- Add to the resulting graph $\mathcal{G} n^{c}$ dummy vertices $d_{k}\left(k \in\left[n^{c}\right]\right)$, for some constant $c \geq 2$.
- \mathcal{G} has lifetime $L=N=O\left(n^{c}\right)$.
- Components in steps $t \in[1,2 n]$ are arranged as in the earlier construction, with dummy vertices disconnected in all steps but $t=1$, during which they are in the component containing s.
- During steps $t \in[2 n+1, N-1]$, all vertices lie disconnected in \mathcal{G}; in step N all vertices lie in a single component.

Approximation Hardness for Assumption 1

Notice that if \mathcal{G} cannot be explored by the end of $t=2 n$, then $N=\Theta\left(n^{c}\right)$ steps are required:

$$
t=1
$$

$$
\left\{s, v_{1}^{T}, v_{1}^{F}, d_{1}, \ldots, d_{n} c\right\}
$$

$$
t=2
$$

$$
\left\{v_{1}^{T}\right\} \cup\left\{c_{j}: x_{1}=1 \text { satisfies } c_{j}\right\} \quad\left\{v_{1}^{F}\right\} \cup\left\{c_{j}: x_{1}=0 \text { satisfies } c_{j}\right\}
$$

$t=2 i-1:$
$(i \in[2, n])$
$t=2 i:$
$(i \in[2, n])$

$$
\left\{v_{i}^{T}\right\} \cup\left\{c_{j}: x_{i}=1 \text { satisfies } c_{j}\right\} \quad\left\{v_{i}^{F}\right\} \cup\left\{c_{j}: x_{i}=0 \text { satisfies } c_{j}\right\}
$$

$t \in[2 n+1, N-1]:$
... all vertices disconnected ...
$t=N:$

$$
\{v: v \in V(\mathcal{G})\}
$$

Approximation Hardness for Assumption 1

Notice that if \mathcal{G} cannot be explored by the end of $t=2 n$, then $N=\Theta\left(n^{c}\right)$ steps are required:

$$
t=1:
$$

$$
\left.\left\{s, v_{1}^{\top}, v_{1}^{F}, d_{1}, \ldots, d_{n} c\right\}\right)
$$

$t=2$:

$$
\left(\left\{v_{1}^{T}\right\} \cup\left\{c_{j}: x_{1}=1 \text { satisfies } c_{j}\right\}\right) \quad\left(\left\{v_{1}^{F}\right\} \cup\left\{c_{j}: x_{1}=0 \text { satisfies } c_{j}\right\}\right)
$$

$t=2 i-1$:
$(i \in[2, n])$
$t=2 i$:
$(i \in[2, n])$

$$
\left\{v_{i}^{T}\right\} \cup\left\{c_{j}: x_{i}=1 \text { satisfies } c_{j}\right\}
$$

$$
\left\{v_{i}^{F}\right\} \cup\left\{c_{j}: x_{i}=0 \text { satisfies } c_{j}\right\}
$$

$t \in[2 n+1, N-1]:$
... all vertices disconnected ...

$$
\{v: v \in V(\mathcal{G})\}
$$

Analysis: \mathcal{G} can be explored in $2 n$ steps iff $/$ has a satisfying assignment, so deciding whether $\leq 2 n$ or $\geq N$ are needed decides 3SAT instance l; the theorem follows for ratio $O\left(n^{c} / n\right)=O\left(N^{1-\varepsilon}\right)$ where $\varepsilon=\frac{1}{c}$.

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of \mathcal{G})

If every vertex can reach every other vertex within D steps (starting at any time $\leq L-D$), then \mathcal{G} has temporal diameter D.

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of \mathcal{G})

If every vertex can reach every other vertex within D steps (starting at any time $\leq L-D$), then \mathcal{G} has temporal diameter D.

Assumption 2: Bounded temporal diameter
Input graph \mathcal{G} has temporal diameter bounded by a constant c.

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of \mathcal{G})

If every vertex can reach every other vertex within D steps (starting at any time $\leq L-D$), then \mathcal{G} has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph \mathcal{G} has temporal diameter bounded by a constant c.

- Under Assumption 2, we can visit all vertices in arbitrary order in $c N$ steps (actually, in $1+(N-1)(c-1)$ steps).

Assumption 2: Bounded Temporal Diameter

Definition (Temporal diameter of \mathcal{G})

If every vertex can reach every other vertex within D steps (starting at any time $\leq L-D$), then \mathcal{G} has temporal diameter D.

Assumption 2: Bounded temporal diameter

Input graph \mathcal{G} has temporal diameter bounded by a constant c.

- Under Assumption 2, we can visit all vertices in arbitrary order in $c N$ steps (actually, in $1+(N-1)(c-1)$ steps).
We prove:
- Worst-case exploration time is $\Theta(N)$ when $c \geq 3$.
- Lower bound $\Omega(\sqrt{N})$ and upper bound $O(\sqrt{N} \log N)$ on worst-case exploration time when $c=2$.

Lower Bound for Temporal Diameter $c=3$

- Take $N=3 m+1$ for some $m \geq 3$ and form 3 disjoint subsets X, Y and Z, each of size m. Arrange vertices as follows (red dashed lines indicate components):

Lower Bound for Temporal Diameter $c=3$

- Take $N=3 m+1$ for some $m \geq 3$ and form 3 disjoint subsets X, Y and Z, each of size m. Arrange vertices as follows (red dashed lines indicate components):

- Can check that ≤ 3 steps enough to reach any w from any u

Lower Bound for Temporal Diameter $c=3$

- Take $N=3 m+1$ for some $m \geq 3$ and form 3 disjoint subsets X, Y and Z, each of size m. Arrange vertices as follows (red dashed lines indicate components):

Odd steps:

- Can check that ≤ 3 steps enough to reach any w from any u
- The vertices in Z need 3 steps to reach each other; repeating for all m gives $\Omega(N)$ time bound.

Lower Bound for Temporal Diameter $c=2$

- Take $N=x^{2}$ for $x \geq 3$ and arrange vertices in x-by- x grid
- In odd steps, the components are rows of the grid, in even steps the components are columns:

Lower Bound for Temporal Diameter $c=2$

- Take $N=x^{2}$ for $x \geq 3$ and arrange vertices in x-by- x grid
- In odd steps, the components are rows of the grid, in even steps the components are columns:

- In any pair of steps we can use one step to choose column, one to choose row $\Longrightarrow \mathcal{G}$ satisfies assumption

Lower Bound for Temporal Diameter $c=2$

- Take $N=x^{2}$ for $x \geq 3$ and arrange vertices in x-by- x grid
- In odd steps, the components are rows of the grid, in even steps the components are columns:

- In any pair of steps we can use one step to choose column, one to choose row $\Longrightarrow \mathcal{G}$ satisfies assumption
- Any component contains exactly \sqrt{N} vertices $\Longrightarrow \Omega(\sqrt{N})$ steps required for exploration

Inapproximability for Bounded Temporal Diameter

Remark

These two lower bound constructions can be adapted to provide $O\left(N^{1-\varepsilon}\right)$ and $O\left(N^{\frac{1}{2}-\varepsilon}\right)$-inapproximability results in the $c \geq 3$ and $c=2$ cases, respectively.

Upper Bound for Temporal Diameter $c=2$

Theorem

Any temporal graph \mathcal{G} that has temporal diameter $c=2$ can be explored in $O(\sqrt{N} \log N)$ steps.

Upper Bound for Temporal Diameter $c=2$

Theorem

Any temporal graph \mathcal{G} that has temporal diameter $c=2$ can be explored in $O(\sqrt{N} \log N)$ steps.

Proof outline.

Upper Bound for Temporal Diameter $c=2$

Theorem

Any temporal graph \mathcal{G} that has temporal diameter $c=2$ can be explored in $O(\sqrt{N} \log N)$ steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has $\leq \sqrt{N}$ components

Upper Bound for Temporal Diameter $c=2$

Theorem

Any temporal graph \mathcal{G} that has temporal diameter $c=2$ can be explored in $O(\sqrt{N} \log N)$ steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has $\leq \sqrt{N}$ components

- Construct walk in blocks of 3 steps; using Claim we are able to visit $\geq \frac{1}{\sqrt{N}}$ fraction of unvisited vertices in either 2 nd or 3rd step of each block
- After k blocks the number of unvisited vertices is $\leq N \cdot\left(1-\frac{1}{\sqrt{N}}\right)^{k}$

Upper Bound for Temporal Diameter $c=2$

Theorem

Any temporal graph \mathcal{G} that has temporal diameter $c=2$ can be explored in $O(\sqrt{N} \log N)$ steps.

Proof outline.

Claim In any pair of consecutive steps, at least one step has $\leq \sqrt{N}$ components

- Construct walk in blocks of 3 steps; using Claim we are able to visit $\geq \frac{1}{\sqrt{N}}$ fraction of unvisited vertices in either 2 nd or 3rd step of each block
- After k blocks the number of unvisited vertices is $\leq N \cdot\left(1-\frac{1}{\sqrt{N}}\right)^{k}$
- Thus, $k \leq \sqrt{N} \log n$ blocks are enough to explore \mathcal{G}

Proof of Claim for Steps $t, t+1$

- If all components have size $>\sqrt{N}$ in step t, we are done. Otherwise, use this observation:

Proof of Claim for Steps $t, t+1$

- If all components have size $>\sqrt{N}$ in step t, we are done. Otherwise, use this observation:

Observation

The number of components in step $t+1$ is upper bounded by the size of the smallest component in step t.

Proof of Claim for Steps $t, t+1$

- If all components have size $>\sqrt{N}$ in step t, we are done. Otherwise, use this observation:

Observation

The number of components in step $t+1$ is upper bounded by the size of the smallest component in step t.

Proof sketch.

Conclusion

Our Results:

- Deciding if a temporal graph admits a non-strict exploration schedule is NP-complete
- Upper/lower bounds on worst-case exploration time under two assumptions (pairwise vertex-togetherness, bounded temporal diameter)
- Foremost Non-Strict TEXP is hard to approximate under both assumptions

Conclusion

Our Results:

- Deciding if a temporal graph admits a non-strict exploration schedule is NP-complete
- Upper/lower bounds on worst-case exploration time under two assumptions (pairwise vertex-togetherness, bounded temporal diameter)
- Foremost Non-Strict TEXP is hard to approximate under both assumptions

Open Questions:

- Close the $\Theta(\log n)$ gap for temporal diameter $c=2$
- Analyse complexity/exploration time of Foremost NS-TEXP when the graph satisfies other assumptions that guarantee explorability

Thank you!

Any questions?

