
Algorithmic Aspects of Temporal Betweenness

Sebastian Buß Hendrik Molter Rolf Niedermeier Maciej Rymar

Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany

Algorithmic Aspects of Temporal Graphs III

Betweenness Centrality: Motivation I

“How important is Berlin main station as a hub for the public transportation network?”
Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 2 / 20

Betweenness Centrality: Motivation II

Transportation Networks

Protein Networks

Routing Networks

Social Networks
Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 3 / 20

Betweenness Centrality: Definition

Betweenness of a vertex v in a graph G = (V ,E):

“How likely is a shortest path to pass through vertex v?”

Betweenness Centrality

CB(v) = ∑
s 6=v 6=z

σsz(v)
σsz

σsz : # shortest paths from s to z σsz(v): # shortest paths from s to z via v

A remark on motivation:
Betweenness assumes information travels along optimal paths!
In many scenarious unrealistic→ Random walk based centralities (e.g. PageRank).

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 4 / 20

Betweenness Centrality: Example

v

Darker colors indicate higher betweenness centrality.

CB(v) = ∑
s 6=v 6=z

σsz(v)
σsz

= 42.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 5 / 20

Betweenness Centrality: Background

First formally described by Linton Freeman
in 1977

Freeman was Prof. for Sociology at UC
Irvine and founder of the journal “Social
Networks”

Measure for quantifying the control on the
communication in a social network

Ulrik Brandes, Prof. for Social Networks at
ETH Zürich

Published “blueprint” for all modern
betweenness algorithms in 2001 (J. Math.
Sociol.): Brandes’ algorithm

Main achievement: improved running time
for sparse graphs, linear space requirement

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 6 / 20

Temporal Graphs and Temporal Paths: Definition

Temporal Graph

A temporal graph G = (V ,(Ei)i∈[τ]) is a
vertex set V with a list of edge sets E1, . . . ,Eτ

over V , where τ is the lifetime of G .

G :
2

1 1

1, 2

2

3

3

G1: G2: G3:

Temporal (s,z)-Path

Sequence of time edges forming a path from
s to z that have:

increasing time stamps (strict).

non-decreasing time stamps (non-strict).

s z
1 3 2 4

Not a temporal path.

s z
1 1 3 4

Non-strict temporal path. (Not strict.)

s z
1 2 3 4

Temporal path (both strict and non-strict).
Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 7 / 20

Optimal Temporal Paths

Method: Replace shortest path by “optimal” temporal path.
Problem: Which temporal path from s to z is optimal?

s z

1

1

3

2 3

4

4

5

5

Shortest temporal paths use the minimum number of edges.

Foremost temporal paths have a minimum arrival time.

Fastest temporal paths have a minimum difference between starting and arrival time.

Most well-motivated: Foremost temporal paths.
Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 8 / 20

Temporal Betweenness Centrality

Temporal Betweenness Variants:

(strict vs. non-strict) × (# optimality criteria) =
six temporal betweenness variants

{Strict, Non-Strict} {Shortest, Foremost, Fastest} Temporal Betweeness

What is known:

Temporal Betweenness has been already been studied extensively.

Many more combinations and considerations are possible and have been made.

Most approaches use static expansions and use known algorithms for static betweenness.

Question: Which variants are computable with a “temporal version” of Brandes’ algorithm?

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 9 / 20

Main Ideas of Brandes’ Algorithm

Recall: CB(v) = ∑s 6=v 6=t σst(v)/σst

Main Idea: Cleverly sum up “dependencies” δs•(v) in a modified BFS without calculating
them explicitly.

CB(v) = ∑
s∈V\{v}

δs•(v), where δs•(v) = ∑
t∈V\{v}

σst(v)/σst .

Use a recursive formula for δs•(v) based on “successors” in shortest paths starting at s.

s v w z

Vertex w is a “successor” of v (with respect to s).

(Presumably) Necessary conditions for this approach:

Counting shortest/optimal paths is easy. “Successor relation” is acyclic.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 10 / 20

Obstacles for Tractability I: Hard Counting

Observation

Computing betweenness values is at least as hard as counting optimal paths.

Static case:

Known facts

Counting shortest paths from s to z can be done in poly time.

Counting all paths from s to z is #P-hard [Valiant 79].

ts

11
1

1

1

1

1

1

1

1

Corollary

Counting non-strict foremost or fastest temporal paths is #P-hard.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 11 / 20

Obstacles for Tractability II: Cyclic Successors

Foremost / Fastest temporal paths:

s

v

w

z

2

2

2

3

3 Observations:

w is a successor of v

v is a successor of w

Shortest Temporal Paths:

s

v

w

z

5

1

2

3,6

4

7

8 w is a successor of v

v is a successor of w

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 12 / 20

Cyclic Successors: Solution

Main idea: Consider “vertex appearances” instead of vertices.

Define: Vertex appearance (v , t) is “visited” by a temporal path if the path arrives in
vertex v at time t .

s v z
t

Temporal Betweenness Centrality of Vertex Appearances

C(?)
B (v , t) = ∑

s 6=v 6=z

δ
(?)
sz (v , t), where δ

(?)
sz (v , t) =

0 @ temp.(s,z)-path
σ
(?)
sz (v ,t)

σ
(?)
sz

otherwise

σ
(?)
sz : # ?-temp. paths from s to z σ

(?)
sz (v , t): # ?-temp. paths from s to z via (v , t)

? ∈ {foremost, fastest, shortest}
Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 13 / 20

Brandes Algorithm for Temporal Betweenness

Main recipe to transfer Brandes algorithm to the temporal setting:

Define dependencies in an analogous way.

Show a recursive formula for the dependencies similar to the static case.

Main differences to the static setting:

Counting optimal paths can be #P-hard in the temporal setting (foremost & fastest).

 Presumably impossible to adapt Brandes for these optimality criteria.

Successors can behave “cyclicly”.

 Necessary to consider vertex appearances.

Walks can be optimal.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 14 / 20

Temporal Betweenness: Tractable Variants for Foremost Temp. Paths

Shortest Foremost Temporal Paths

Shortest temporal paths among all foremost
temporal paths.

Techniques for shortest temporal paths
directly adaptable.

s

v

w

z

3

1

2

4

4

Strict Prefix-Foremost Temporal Paths

Foremost temporal paths where every prefix
is also a foremost temporal paths.

Lemma [Wu et al. 16]

A prefix foremost temporal path always exists.

Techniques for shortest temporal paths
adaptable with some modifications.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 15 / 20

Temporal Betweenness: Prefix Foremost Temporal Paths

Observation

Counting non-strict prefix foremost temporal paths is #P-hard.

Observation

Time steps at which vertices are visited by prefix foremost temporal paths (starting from s)
are unique.

s

v

w

z

3

1

2

4

4

For temporal betweenness based on strict prefix foremost temporal paths, we can consider
vertices (instead of vertex appearances). Faster and more space efficient algorithm.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 16 / 20

Our Results

Table of theoretical results:

strict non-strict

Shortest O(n3 · τ2) time, O(n · τ +M) space
Foremost #P-hard
Fastest #P-hard
Prefix-foremost O(n ·M · logM) time, O(n+M) space #P-hard
Shortest foremost O(n3 · τ2) time, O(n · τ +M) space

n: # vertices M: # time edges τ : lifetime

Main Messages from Empirical Evaluation:

Two prefix-foremost and shortest foremost variants produce similar vertex rankings based on
betweenness score.

Prefix-foremost betweenness can be computed much faster.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 17 / 20

Temporal Betweenness Experiments I: Running Time

hig
hs

ch
oo

l-2
01

1

hig
hs

ch
oo

l-2
01

2

hig
hs

ch
oo

l-2
01

3

pr
im

ar
ys

ch
oo

l

ho
sp

ita
l-w

ar
d

inf
ec

tio
us

hy
pe

rte
xt

ka
rls

ru
he

fac
eb

oo
k-l

ike

Blue: non-strict shortest (foremost)
betweenness.

Green: strict shortest (foremost)
betweenness.

Red: strict prefix foremost betweenness.

Time is on a log-scale, ranges from few
minutes up to three hours.

“infectious” and “karlsruhe” not solved for
(non-)strict shortest (foremost)
betweenness within three hours.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 18 / 20

Temporal Betweenness Experiments II: Top 10 Vertices

Strict vs. non-strict

Data Set shortest sh. foremost
highschool-2011 10 8
highschool-2012 10 9
highschool-2013 10 8
primaryschool 9 9
hospital-ward 10 9
hypertext 10 10
facebook-like 10 10

Comparison of strict variants

Data Set sh vs. sh fm sh vs. p fm sh fm vs. p fm
highschool-2011 5 4 9
highschool-2012 4 3 8
highschool-2013 4 3 7
primaryschool 0 0 8
hospital-ward 7 7 9
hypertext 4 4 9
facebook-like 9 6 7

Insights:

Strict vs. non-strict makes not much difference.

Shortest behaves quite differently to foremost variants.

Foremost variants are very similar.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 19 / 20

Conclusion

Summary:

Several betweenness variants in the temporal setting.

Foremost & fastest are #P-hard.

Shortest, shortest foremost, and strict prefix foremost
polynomial-time computable.

Insights from Experiments:

Strict vs. non-strict makes not much difference.

Shortest behaves quite differently to foremost variants while
foremost variants are very similar.

Strict prefix foremost is fastest to compute.

Link to arXiv.

Thank you!

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 20 / 20

Temporal Betweenness Experiments Backup I: Running Time

Data Set # Vtc’s n # Edges M Lifetime T NStr. Sh (Fm) Str. Sh (Fm) Str. P Fm
highschool-2011 126 28,560 272,330 6.08 ·101 6.05 ·101 7.04 ·10−1

highschool-2012 180 45,047 729,500 1.82 ·102 1.81 ·102 1.74 ·100

highschool-2013 327 188,508 363,560 2.44 ·103 2.43 ·103 2.1 ·101

primaryschool 242 125,773 116,900 8.94 ·102 8.89 ·102 8.86 ·100

hospital-ward 75 32,424 347,500 9.82 ·101 9.79 ·101 4.31 ·10−1

infectious 10,972 415,912 6,946,340 −1 −1 6.52 ·100

hypertext 113 20,818 212,340 3.74 ·101 3.72 ·101 4.65 ·10−1

karlsruhe 1,870 461,661 123,837,267 −1 −1 2.88 ·102

facebook-like 1,899 59,835 16,736,181 1.3 ·103 1.3 ·103 2.49 ·101

Running time given in seconds, a -1 indicates that the instance was not solved within three hours.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 20 / 20

Temporal Betweenness Experiments Backup II: Betweenness Histograms

Histogram of betweenness values
Data sets “highschool-2013”,
“facebook-like”, “primaryschool” (top to
bottom).

Vertices are collected in 10 evenly
distributed buckets between 0 and the
highest temporal betweenness value.

The temporal betweenness types from left to
right: non-strict shortest, non-strict shortest
foremost, strict shortest, strict shortest
foremost, strict prefix foremost.

Red-ish: shortest variants.

Blue-ish: foremost variants.

Hendrik Molter, TU Berlin Algorithmic Aspects of Temporal Betweenness 20 / 20

