Algorithmic Aspects of Temporal Betweenness

Sebastian Buß

Hendrik Molter

Rolf Niedermeier

Maciej Rymar

Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany

Algorithmic Aspects of Temporal Graphs III

Betweenness Centrality: Motivation I

"How important is Berlin main station as a hub for the public transportation network?"

Betweenness Centrality: Motivation II

Transportation Networks

Protein Networks

Routing Networks

Social Networks

Algorithmic Aspects of Temporal Betweenness

Betweenness Centrality: Definition

Betweenness of a vertex v in a graph G = (V, E):

"How likely is a shortest path to pass through vertex v?"

Betweenness Centrality

$$\mathcal{C}_{\mathcal{B}}(v) = \sum_{s
eq v
eq z} rac{\sigma_{sz}(v)}{\sigma_{sz}}$$

 σ_{sz} : # shortest paths from s to z $\sigma_{sz}(v)$: # shortest paths from s to z via v

A remark on motivation:

Betweenness assumes information travels along optimal paths!

In many scenarious unrealistic \rightarrow Random walk based centralities (e.g. PageRank).

Hendrik Molter, TU Berlin

Betweenness Centrality: Example

Darker colors indicate higher betweenness centrality.

$$C_B(v) = \sum_{s \neq v \neq z} \frac{\sigma_{sz}(v)}{\sigma_{sz}} = 42.$$

Betweenness Centrality: Background

- First formally described by Linton Freeman in 1977
- Freeman was Prof. for Sociology at UC Irvine and founder of the journal "Social Networks"
- Measure for quantifying the control on the communication in a social network

- Ulrik Brandes, Prof. for Social Networks at ETH Zürich
- Published "blueprint" for all modern betweenness algorithms in 2001 (J. Math. Sociol.): Brandes' algorithm
- Main achievement: improved running time for sparse graphs, linear space requirement

Hendrik Molter, TU Berlin

Temporal Graphs and Temporal Paths: Definition

Temporal Graph

A **temporal graph** $\mathscr{G} = (V, (E_i)_{i \in [\tau]})$ is a vertex set *V* with a list of edge sets E_1, \ldots, E_{τ} over *V*, where τ is the lifetime of \mathscr{G} .

Temporal (s, z)-Path

Sequence of time edges forming a path from *s* to *z* that have:

- increasing time stamps (strict).
- non-decreasing time stamps (non-strict).

Not a temporal path.

Non-strict temporal path. (Not strict.)

Temporal path (both strict and non-strict).

Optimal Temporal Paths

Method: Replace **shortest path** by "**optimal**" **temporal path**. **Problem:** Which temporal path from *s* to *z* is optimal?

- **Shortest** temporal paths use the minimum number of edges.
- **Foremost** temporal paths have a minimum arrival time.
- **Fastest** temporal paths have a minimum difference between starting and arrival time.

Most well-motivated: **Foremost** temporal paths.

Hendrik Molter, TU Berlin

Algorithmic Aspects of Temporal Betweenness

Temporal Betweenness Centrality

Temporal Betweenness Variants:

(strict vs. non-strict $) \times ($ # optimality criteria) = six temporal betweenness variants

{Strict, Non-Strict} {Shortest, Foremost, Fastest} Temporal Betweeness

What is known:

- Temporal Betweenness has been already been studied extensively.
- Many more combinations and considerations are possible and have been made.
- Most approaches use static expansions and use known algorithms for static betweenness.

Question: Which variants are computable with a "temporal version" of Brandes' algorithm?

Main Ideas of Brandes' Algorithm

Recall: $C_B(v) = \sum_{s \neq v \neq t} \sigma_{st}(v) / \sigma_{st}$

Main Idea: Cleverly sum up "dependencies" $\delta_{so}(v)$ in a modified BFS without calculating them explicitly.

$$\mathcal{C}_{B}(v) = \sum_{s \in V \setminus \{v\}} \delta_{s ullet}(v)$$
, where $\delta_{s ullet}(v) = \sum_{t \in V \setminus \{v\}} \sigma_{st}(v) / \sigma_{st}$

Use a recursive formula for $\delta_{so}(v)$ based on "successors" in shortest paths starting at s.

Vertex w is a "successor" of v (with respect to s).

(Presumably) Necessary conditions for this approach:

Counting shortest/optimal paths is easy.

"Successor relation" is acyclic.

Obstacles for Tractability I: Hard Counting

Observation

Computing betweenness values is at least as hard as counting optimal paths.

Static case:

Known facts

- Counting shortest paths from *s* to *z* can be done in poly time.
- Counting **all** paths from *s* to *z* is #P-hard [Valiant 79].

Corollary

Counting non-strict foremost or fastest temporal paths is #P-hard.

Obstacles for Tractability II: Cyclic Successors

Foremost / Fastest temporal paths:

Observations:

- w is a successor of v
- *v* is a successor of *w*

Shortest Temporal Paths:

- w is a successor of v
- v is a successor of w

Cyclic Successors: Solution

Main idea: Consider "vertex appearances" instead of vertices.

Define: Vertex appearance (v, t) is "visited" by a temporal path if the path **arrives** in vertex v at time t.

$$\underbrace{S \longrightarrow t}_{t} \underbrace{V \longrightarrow Z}_{t}$$

Temporal Betweenness Centrality of Vertex Appearances

$$C_B^{(\star)}(v,t) = \sum_{s
eq v
eq z} \delta_{sz}^{(\star)}(v,t)$$
, where $\delta_{sz}^{(\star)}(v,t) = egin{cases} 0 & \nexists ext{ temp.}(s,z) ext{-path} \ rac{\sigma_{sz}^{(\star)}(v,t)}{\sigma_{sz}^{(\star)}} & ext{ otherwise} \end{cases}$

 $\sigma_{sz}^{(\star)}: \text{# } \star\text{-temp. paths from } s \text{ to } z \qquad \sigma_{sz}^{(\star)}(v,t): \text{# } \star\text{-temp. paths from } s \text{ to } z \text{ via } (v,t) \\ \star \in \{\text{foremost, fastest, shortest}\}$

Brandes Algorithm for Temporal Betweenness

Main recipe to transfer Brandes algorithm to the temporal setting:

- Define dependencies in an analogous way.
- Show a recursive formula for the dependencies similar to the static case.

Main differences to the static setting:

- Counting optimal paths can be #P-hard in the temporal setting (foremost & fastest).
 - ~ Presumably impossible to adapt Brandes for these optimality criteria.
- Successors can behave "cyclicly".
 - ~ Necessary to consider vertex appearances.
- Walks can be optimal.

Shortest Foremost Temporal Paths

Shortest temporal paths among all foremost temporal paths.

Techniques for shortest temporal paths directly adaptable.

Strict **Prefix-Foremost** Temporal Paths

Foremost temporal paths where every **prefix** is also a foremost temporal paths.

Lemma [Wu et al. 16]

A prefix foremost temporal path always exists.

Techniques for shortest temporal paths adaptable with some modifications.

Temporal Betweenness: Prefix Foremost Temporal Paths

Observation

Counting **non-strict** prefix foremost temporal paths is #P-hard.

Observation

Time steps at which vertices are visited by prefix foremost temporal paths (starting from *s*) are unique.

For temporal betweenness based on strict prefix foremost temporal paths, we can consider vertices (instead of vertex appearances). ~>> Faster and more space efficient algorithm.

Our Results

Table of theoretical results:

	strict	non-strict			
Shortest	$O(n^3 \cdot au^2)$ time, $O(n \cdot au + M)$ space				
Foremost	#P-hard				
Fastest	#P-hard				
Prefix-foremost	$O(n \cdot M \cdot \log M)$ time, $O(n+M)$ space	#P-hard			
Shortest foremost	$O(n^3 \cdot au^2)$ time, $O(n \cdot au + M)$ sp	ace			
r : #vertices M : #time edges τ : lifetime					

n: # vertices *M*: # time edges τ : lifetime

Main Messages from Empirical Evaluation:

- Two prefix-foremost and shortest foremost variants produce similar vertex rankings based on betweenness score.
- Prefix-foremost betweenness can be computed much faster.

Temporal Betweenness Experiments I: Running Time

- Blue: non-strict shortest (foremost) betweenness.
- Green: strict shortest (foremost) betweenness.
- Red: strict prefix foremost betweenness.

- Time is on a log-scale, ranges from few minutes up to three hours.
- "infectious" and "karlsruhe" not solved for (non-)strict shortest (foremost) betweenness within three hours.

Temporal Betweenness Experiments II: Top 10 Vertices

Strict vs. non-strict			Comparison of strict variants			
Data Set	shortest	sh. foremost	Data Set	sh vs. sh fm	sh vs. p fm	sh fm vs. p fm
highschool-2011	10	8	highschool-2011	5	4	9
highschool-2012	10	9	highschool-2012	4	3	8
highschool-2013	10	8	highschool-2013	4	3	7
primaryschool	9	9	primaryschool	0	0	8
hospital-ward	10	9	hospital-ward	7	7	9
hypertext	10	10	hypertext	4	4	9
facebook-like	10	10	facebook-like	9	6	7

Insights:

- Strict vs. non-strict makes not much difference.
- Shortest behaves quite differently to foremost variants.
- Foremost variants are very similar.

Conclusion

Summary:

- Several betweenness variants in the temporal setting.
- Foremost & fastest are #P-hard.
- Shortest, shortest foremost, and strict prefix foremost polynomial-time computable.

Insights from Experiments:

- Strict vs. non-strict makes not much difference.
- Shortest behaves quite differently to foremost variants while foremost variants are very similar.
- Strict prefix foremost is fastest to compute.

Link to arXiv.

Thank you!

Data Set	# Vtc's <i>n</i>	# Edges M	Lifetime T	NStr. Sh (Fm)	Str. Sh (Fm)	Str. P Fm
highschool-2011	126	28,560	272,330	$6.08 \cdot 10^{1}$	$6.05 \cdot 10^{1}$	$7.04 \cdot 10^{-1}$
highschool-2012	180	45,047	729,500	1.82 · 10 ²	1.81 · 10 ²	1.74 · 10 ⁰
highschool-2013	327	188,508	363,560	$2.44 \cdot 10^{3}$	2.43 · 10 ³	$2.1 \cdot 10^{1}$
primaryschool	242	125,773	116,900	$8.94 \cdot 10^{2}$	8.89 · 10 ²	8.86 · 10 ⁰
hospital-ward	75	32,424	347,500	$9.82 \cdot 10^{1}$	$9.79 \cdot 10^{1}$	$4.31 \cdot 10^{-1}$
infectious	10,972	415,912	6,946,340	—1	—1	6.52 · 10 ⁰
hypertext	113	20,818	212,340	$3.74 \cdot 10^1$	$3.72 \cdot 10^1$	$4.65 \cdot 10^{-1}$
karlsruhe	1,870	461,661	123,837,267	—1	-1	2.88 · 10 ²
facebook-like	1,899	59,835	16,736,181	1.3 · 10 ³	1.3 · 10 ³	$2.49 \cdot 10^1$

Running time given in seconds, a -1 indicates that the instance was not solved within three hours.

Temporal Betweenness Experiments Backup II: Betweenness Histograms

Histogram of betweenness values

- Data sets "highschool-2013", "facebook-like", "primaryschool" (top to bottom).
- Vertices are collected in 10 evenly distributed buckets between 0 and the highest temporal betweenness value.
- The temporal betweenness types from left to right: non-strict shortest, non-strict shortest foremost, strict shortest, strict shortest foremost, strict prefix foremost.

Red-ish: shortest variants.

Blue-ish: foremost variants.