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Temporal networks

• Temporal graph ! = #, %

• # – set of entities (e.g. people, sensors, locations.. )

• Edges &, ', ( ∈ % – instantaneous interactions over entities 

• &, ' ∈ V

• ( is the time of interaction 

• tweets, emails, comments on social networks..



Problem setting

• consider a set of entities

• entities can become active or inactive

• entities interact over time, forming a temporal network

• each interaction is attributed to an active entity



Problem setting

• consider a set of entities

• entities can become active or inactive

• entities interact over time, forming a temporal network

• each interaction is attributed to an active entity

• can we reconstruct the activity timeline that explains best the 

observed temporal network? 

• assumption: being active is more costly, thus we want to 

minimize total activity time 



Motivating example

• analyze a discussion in twitter about a topic (e.g., brexit) 

• entities are hashtags

• two hashtags interact if they appear in the same tweet 

• summarize the discussion by reconstructing a timeline 

• pick a set of important hashtags and the time intervals they 

are active 
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Problem formulation

• given a temporal network ! = ($, &) with & = {(), *, +)}

• -. = /., 0. – activity interval of ) ∈ $ (starts at /. and ends 

at 0.)

• find a set of activity intervals for all nodes

• at most 2 per each node ) ∈ $



Problem formulation: preliminaries

• given a temporal network ! = ($, &) with & = {(), *, +)}

• -. = /., 0. – activity interval of ) ∈ $ (starts at /. and ends 

at 0.)

• find a set of activity intervals for all nodes

• at most 2 per each node ) ∈ $

• Activity timeline of ! is a set of activity intervals 3 =

-.4 .∈5,4∈[7,8]

• The timeline 3 covers temporal network !, if for each edge 

), *, + ∈ & we have + ∈ -.4 or + ∈ -:4 for some ; ∈ [1, 2].



Problem formulation

Problem 1. (Sum-Span)

• Find a timeline ! = #$% $∈',%∈[*,+]that covers - and 

minimizes total length of !.

Problem 2. (Max-Span)

• Find a timeline ! = #$% $∈',%∈[*,+]that covers - and 

minimizes maximum length of intervals in !.

• For the ease of analysis consider . = 1 and . > 1 separately



1-Sum-Span

Problem 1-Sum-Span is NP-hard

Consider subproblem Coalesce:

• Assume we are also given one active time point !" for each 

vertex # ∈ %.

• Find an optimal activity timeline &, which contains the 

corresponding active time points !" "∈'.



1-Sum-Span

• Coalesce can be solved in linear time with factor 2 

approximation, based on Binary LP-formulation.

• Define a variable !"# ∈ {0,1} for each vertex * ∈ + and time 

stamp , ∈ -(*) (moments of interactions of *).

• !"# = 1 indicates that , is either the beginning or end of the 

active interval of *.

• Binary LP:

– Cost function min∑",# |, − 7"| !"#

– Constraints to ensure feasibility



1-Sum-Span

• Relax the integrality and write the dual

• Maximal solution to the dual program is a 2-approximation for 

Coalesce

• Maximal solution can be found in one pass (! " , Alg. 

Maximal)

Iterate to solve 1-Sum-Span (Alg. Inner):

• Start with "$ = ("'( ) * +",- ) * )/2

• Run Maximal and update "$

• Repeat until no improvement.



k-Sum-Span

k-Sum-Span is are inapproximable

Consider subproblem k-Coalesce:

• Assume we are also given k active time points !"# for each 

vertex $ ∈ &

• One for each of activity intervals of $

• Find an optimal activity timeline ', which contains the 

corresponding active time points !"# "∈(,#∈[+,,].

• Similar BLP and Alg. k-Maximal, . !



k-Sum-Span

Iterate to solve k-Sum-Span (Alg. k-Inner):

• Start with !"# as centroids of a k-clustering algorithm

• Run k-Maximal and update !"

• Repeat until no improvement



1-Max-Span

1-Max-Span can be solved efficiently

Subproblem Budget:

• Assume we are also given a set of budgets !" "∈$ of interval 

durations for each vertex.

• Find an optimal activity timeline % = '" "∈$, such that 

length of each activity interval '" is at most !".



1-Max-Span

Budget can be solved optimally in linear time

Map Budget into 2-SAT:

• Variable !"# for each vertex $ and timestamp % ∈ '($).

• Clause (!"# ∨ !+#) – cover each edge ,, $, % .

• Clause (!"/ ∨ !"#) – ensure budget:

for each 0, % ∈ '($), such that 0 − % > 3"

• Solution for Budget : time intervals where all boolean

variables are True.



1-Max-Span

Linear time:

• 2-SAT is solved in linear-time of the number of clauses (Aspvall

et all [1]). We have ! "# clauses.

• Bottleneck: SCC decomposition !("# +")

• algorithm by Kosaraju [2] for SCC decomposition

• Use of temporal structure → perform DFS in !(").

Solve 1-Max-Span by binary search to find the optimal maximum 

length for intervals (Algorithm Budget, !(" log("))).



k-Max-Span

k-Max-Span inapproximable

• consider two nested subproblems

Subproblem k-Partition:

• Assume we are also given k-1 inactive time points !"# for 

each vertex $ ∈ &

• One for each of gap between the activity intervals of $

• Find an optimal activity timeline ', which interleaves with 

corresponding gap points !"( "∈),(+[-,./-]



k-Max-Span

• Problem k-Partition can be solved in polynomial time through 

iteration of Problem k-Budget, which sets a budget for each 

interval.

Subproblem k-Budget:

• Assume we are given a set of budgets !" "∈$ of interval durations 

for each vertex;

• k-1 inactive time points %"& for each vertex

• Find an optimal activity timeline ' = )" "∈$, such that length of 

each activity interval )"& is at most !"& and the gap points are 

interleaved

k-Budget can be solved *(,), similarly to Budget



k-Max-Span

Iterate to solve k-Sum-Span (Alg. k-Budget):

• Start with !"# as mean points of the largest intervals with no 

activity of node $

• Solve k-Partition:

– do binary search on budgets with solving k-Budget

– update !"#

• Repeat until no improvement



Summary

Problem 1: Sum-Span

• ! = 1 NP-hard

• ! > 1 inapproximable

• Subproblem (k-)Partition with inner points

• 2-approximation in linear time via BLP dual for (k-)Partition



Summary

Problem 2: Max-Span

• ! = 1 polynomially solvable

• ! > 1 inapproximable

• Subproblem (k-)Budget with budgets

• Exact solution in linear time via 2-SAT for (k-)Budget



Experiments: case study

• Tweets from Helsinki region, November 2013

• Inner algorithm (1-Sum-Span)
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Experiments: case study

• Helsinki Twitter, years 2011-2013 

• k-Inner algorithm with k = 3 (k-Max-S)
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Performance: Inner
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• Synthetic dataset, with planted ground truth

• overlap ! is set to 0.5

• values are averaged over 100 runs.



Performance : k-Inner
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• Synthetic dataset, k=10 intervals 



Performance : k-Budget
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• Synthetic dataset, k=10 intervals 



Baseline comparison
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• Baseline: greedily ’cover’ the 

longest activity intervals of the 

nodes.



Running time
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• k=10, synthetic dataset



Conclusions

• Novel problem of network untangling:

Discover activity time intervals for the network entities to 

explain the observed interactions.

• A possible Temporal extension of Vertex Cover Problem

• Two settings: (k-)Sum-Span (minimize sum of interval lengths) 

and (k-)Max-Span (minimize maximum length).

• Some hardness and inapproximability results

• Efficient algorithms



Future work

• Approximation for 1-Sum-Span?

• Consider different activity levels for each entity. 

• Consider hyperedges.
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Thank you!


