Aalto University
School of Science

The network-untangling problem: From interactions to activity timelines

Polina Rozenshtein (Nordea DS Lab, Finland)
Nikolaj Tatti (University of Helsinki, Finland)
Aristides Gionis (Aalto University, Finland)

Temporal networks

- Temporal graph $G=(V, E)$
- V - set of entities (e.g. people, sensors, locations..)
- Edges $(u, v, t) \in E$ - instantaneous interactions over entities
- $u, v \in \mathrm{~V}$
- t is the time of interaction
- tweets, emails, comments on social networks..

Problem setting

- consider a set of entities
- entities can become active or inactive
- entities interact over time, forming a temporal network
- each interaction is attributed to an active entity

Problem setting

- consider a set of entities
- entities can become active or inactive
- entities interact over time, forming a temporal network
- each interaction is attributed to an active entity
- can we reconstruct the activity timeline that explains best the observed temporal network?
- assumption: being active is more costly, thus we want to minimize total activity time

Motivating example

- analyze a discussion in twitter about a topic (e.g., brexit)
- entities are hashtags
- two hashtags interact if they appear in the same tweet
- summarize the discussion by reconstructing a timeline
- pick a set of important hashtags and the time intervals they are active

Motivating example

Motivating example

Problem formulation

- given a temporal network $G=(V, E)$ with $E=\{(u, v, t)\}$
- $I_{u}=\left[s_{u}, e_{u}\right]-$ activity interval of $u \in V$ (starts at s_{u} and ends at e_{u})
- find a set of activity intervals for all nodes
- at most k per each node $u \in V$

Problem formulation: preliminaries

- given a temporal network $G=(V, E)$ with $E=\{(u, v, t)\}$
- $I_{u}=\left[s_{u}, e_{u}\right]-$ activity interval of $u \in V$ (starts at s_{u} and ends at e_{u})
- find a set of activity intervals for all nodes
- at most k per each node $u \in V$
- Activity timeline of G is a set of activity intervals $\mathcal{T}=$ $\left\{I_{u i}\right\}_{u \in V, i \in[1, k]}$
- The timeline \mathcal{T} covers temporal network G, if for each edge $(u, v, t) \in E$ we have $t \in I_{u i}$ or $t \in I_{v i}$ for some $i \in[1, k]$.

Problem formulation

Problem 1. (Sum-Span)

- Find a timeline $\mathcal{T}=\left\{I_{u i}\right\}_{u \in V, i \in[1, k]}$ that covers G and minimizes total length of \mathcal{T}.

Problem 2. (Max-Span)

- Find a timeline $\mathcal{T}=\left\{I_{u i}\right\}_{u \in V, i \in[1, k]}$ that covers G and minimizes maximum length of intervals in \mathcal{T}.
- For the ease of analysis consider $k=1$ and $k>1$ separately

1-Sum-Span

Problem 1-Sum-Span is NP-hard

Consider subproblem Coalesce:

- Assume we are also given one active time point m_{v} for each vertex $v \in V$.
- Find an optimal activity timeline \mathcal{T}, which contains the corresponding active time points $\left\{m_{v}\right\}_{v \in V}$.

1-Sum-Span

- Coalesce can be solved in linear time with factor 2 approximation, based on Binary LP-formulation.
- Define a variable $x_{v t} \in\{0,1\}$ for each vertex $v \in V$ and time stamp $t \in T(v)$ (moments of interactions of v).
- $x_{v t}=1$ indicates that t is either the beginning or end of the active interval of v.
- Binary LP:
- Cost function $\min \sum_{v, t}\left|t-m_{v}\right| x_{v t}$
- Constraints to ensure feasibility

1-Sum-Span

- Relax the integrality and write the dual
- Maximal solution to the dual program is a 2-approximation for Coalesce
- Maximal solution can be found in one pass ($O(m)$, Alg. Maximal)

Iterate to solve 1-Sum-Span (Alg. Inner):

- Start with $m_{v}=(\min T(v)+\max T(v)) / 2$
- Run Maximal and update m_{v}
- Repeat until no improvement.

k-Sum-Span

k-Sum-Span is are inapproximable

Consider subproblem k-Coallesce:

- Assume we are also given k active time points $m_{v i}$ for each vertex $v \in V$
- One for each of activity intervals of v
- Find an optimal activity timeline \mathcal{T}, which contains the corresponding active time points $\left\{m_{v i}\right\}_{v \in V, i \in[1, k]}$.
- Similar BLP and Alg. k-Maximal, $O(m)$

k-Sum-Span

Iterate to solve k-Sum-Span (Alg. k-Inner):

- Start with $m_{v j}$ as centroids of a k-clustering algorithm
- Run k-Maximal and update m_{v}
- Repeat until no improvement

1-Max-Span

1-Max-Span can be solved efficiently

Subproblem Budget:

- Assume we are also given a set of budgets $\left\{b_{v}\right\}_{v \in V}$ of interval durations for each vertex.
- Find an optimal activity timeline $\mathcal{T}=\left\{I_{v}\right\}_{v \in V}$, such that length of each activity interval I_{v} is at most b_{v}.

1-Max-Span

Budget can be solved optimally in linear time

Map Budget into 2-SAT:

- Variable $x_{v t}$ for each vertex v and timestamp $t \in T(v)$.
- Clause $\left(x_{v t} \vee x_{u t}\right)$ - cover each edge (u, v, t).
- Clause $\left(\overline{x_{v s}} \vee \overline{x_{v t}}\right)$ - ensure budget: for each $s, t \in T(v)$, such that $|s-t|>b_{v}$
- Solution for Budget : time intervals where all boolean variables are True.

1-Max-Span

Linear time:

- 2-SAT is solved in linear-time of the number of clauses (Aspvall et all [1]). We have $O\left(\mathrm{~m}^{2}\right)$ clauses.
- Bottleneck: SCC decomposition $O\left(m^{2}+m\right)$
- algorithm by Kosaraju [2] for SCC decomposition
- Use of temporal structure \rightarrow perform DFS in $O(m)$.

Solve 1-Max-Span by binary search to find the optimal maximum length for intervals (Algorithm Budget, $O(m \log (m))$).

k-Max-Span

k-Max-Span inapproximable

- consider two nested subproblems

Subproblem k-Partition:

- Assume we are also given k-1 inactive time points $g_{v i}$ for each vertex $v \in V$
- One for each of gap between the activity intervals of v
- Find an optimal activity timeline \mathcal{T}, which interleaves with corresponding gap points $\left\{g_{v j}\right\}_{v \in V, j=[1, k-1]}$

k-Max-Span

- Problem k-Partition can be solved in polynomial time through iteration of Problem k-Budget, which sets a budget for each interval.

Subproblem k-Budget:

- Assume we are given a set of budgets $\left\{b_{v}\right\}_{v \in V}$ of interval durations for each vertex;
- k-1 inactive time points $g_{v j}$ for each vertex
- Find an optimal activity timeline $\mathcal{T}=\left\{I_{v}\right\}_{v \in V}$, such that length of each activity interval $I_{v j}$ is at most $b_{v j}$ and the gap points are interleaved
k-Budget can be solved $O(m)$, similarly to Budget

k-Max-Span

Iterate to solve k-Sum-Span (Alg. k-Budget):

- Start with $g_{v j}$ as mean points of the largest intervals with no activity of node v
- Solve k-Partition:
- do binary search on budgets with solving k-Budget
- update $g_{v j}$
- Repeat until no improvement

Summary

Problem 1: Sum-Span

- $k=1$ NP-hard
- $k>1$ inapproximable
- Subproblem (k-)Partition with inner points
- 2-approximation in linear time via BLP dual for (k-)Partition

Summary

Problem 2: Max-Span

- $k=1$ polynomially solvable
- $k>1$ inapproximable
- Subproblem (k-)Budget with budgets
- Exact solution in linear time via 2-SAT for (k-)Budget

Experiments: case study

- Tweets from Helsinki region, November 2013
- Inner algorithm (1-Sum-Span)

Experiments: case study

- Helsinki Twitter, years 2011-2013
- k -Inner algorithm with $\mathrm{k}=3$ (k -Max-S)

Performance: Inner

- Synthetic dataset, with planted ground truth
- overlap p is set to 0.5
- values are averaged over 100 runs.

Performance : k-Inner

- Synthetic dataset, $\mathrm{k}=10$ intervals

Performance : k-Budget

- Synthetic dataset, $\mathrm{k}=10$ intervals

Baseline comparison

- Baseline: greedily 'cover' the longest activity intervals of the nodes.

Running time

- $\mathrm{k}=10$, synthetic dataset

Conclusions

- Novel problem of network untangling:

Discover activity time intervals for the network entities to explain the observed interactions.

- A possible Temporal extension of Vertex Cover Problem
- Two settings: (k-)Sum-Span (minimize sum of interval lengths) and (k-)Max-Span (minimize maximum length).
- Some hardness and inapproximability results
- Efficient algorithms

Future work

- Approximation for 1-Sum-Span?
- Consider different activity levels for each entity.
- Consider hyperedges.

References

1. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain quantified Boolean formulas. 1982.
2. J. E. Hopcroft and J. D. Ullman. Data structures and algorithms. 1983.

Thank you!

Aalto University
School of Science

