

The network-untangling problem: From interactions to activity timelines

Polina Rozenshtein (Nordea DS Lab, Finland) Nikolaj Tatti (University of Helsinki, Finland) Aristides Gionis (Aalto University, Finland)

ECML/PKDD'17 + journal extension

Temporal networks

- Temporal graph G = (V, E)
- *V* set of entities (e.g. people, sensors, locations..)
- Edges $(u, v, t) \in E$ instantaneous interactions over entities
- $u, v \in V$
- *t* is the time of interaction
- tweets, emails, comments on social networks..

Problem setting

- consider a set of entities
- entities can become *active* or *inactive*
- entities interact over time, forming a temporal network
- each interaction is attributed to an active entity

Problem setting

- consider a set of entities
- entities can become *active* or *inactive*
- entities interact over time, forming a temporal network
- each interaction is attributed to an active entity
- can we reconstruct the activity timeline that explains best the observed temporal network?
- assumption: being active is more costly, thus we want to minimize total activity time

Motivating example

- analyze a discussion in twitter about a topic (e.g., brexit)
- entities are hashtags
- two hashtags interact if they appear in the same tweet
- summarize the discussion by reconstructing a timeline
- pick a set of important hashtags and the time intervals they are active

Motivating example

Motivating example

Problem formulation

- given a temporal network G = (V, E) with $E = \{(u, v, t)\}$
- $I_u = [s_u, e_u] \text{activity interval of } u \in V \text{ (starts at } s_u \text{ and ends at } e_u)$
- find a set of activity intervals for all nodes
- at most k per each node $u \in V$

Problem formulation: preliminaries

- given a temporal network G = (V, E) with $E = \{(u, v, t)\}$
- $I_u = [s_u, e_u] \text{activity interval of } u \in V$ (starts at s_u and ends at e_u)
- find a set of activity intervals for all nodes
- at most k per each node $u \in V$
- Activity timeline of G is a set of activity intervals T = {I_{ui}}_{u∈V,i∈[1,k]}
- The timeline \mathcal{T} covers temporal network G, if for each edge $(u, v, t) \in E$ we have $t \in I_{ui}$ or $t \in I_{vi}$ for some $i \in [1, k]$.

Aalto University School of Science

Problem formulation

Problem 1. (Sum-Span)

• Find a timeline $\mathcal{T} = \{I_{ui}\}_{u \in V, i \in [1,k]}$ that covers G and minimizes total length of \mathcal{T} .

Problem 2. (Max-Span)

- Find a timeline $\mathcal{T} = \{I_{ui}\}_{u \in V, i \in [1,k]}$ that covers G and minimizes maximum length of intervals in \mathcal{T} .
- For the ease of analysis consider k = 1 and k > 1 separately

Problem 1-Sum-Span is NP-hard

Consider subproblem Coalesce:

- Assume we are also given one active time point m_v for each vertex v ∈ V.
- Find an optimal activity timeline \mathcal{T} , which contains the corresponding active time points $\{m_v\}_{v \in V}$.

1-Sum-Span

- **Coalesce** can be solved in linear time with factor 2 approximation, based on Binary LP-formulation.
- Define a variable $x_{vt} \in \{0,1\}$ for each vertex $v \in V$ and time stamp $t \in T(v)$ (moments of interactions of v).
- $x_{vt} = 1$ indicates that t is either the beginning or end of the active interval of v.
- Binary LP:
 - Cost function min $\sum_{v,t} |t m_v| x_{vt}$
 - Constraints to ensure feasibility

1-Sum-Span

- Relax the integrality and write the dual
- Maximal solution to the dual program is a 2-approximation for Coalesce
- Maximal solution can be found in one pass (O(m), Alg. Maximal)

Iterate to solve 1-Sum-Span (Alg. Inner):

- Start with $m_v = (\min T(v) + \max T(v))/2$
- Run Maximal and update m_v
- Repeat until no improvement.

k-Sum-Span

k-Sum-Span is are inapproximable

Consider subproblem k-Coalesce:

- Assume we are also given k active time points m_{vi} for each vertex $v \in V$
- One for each of activity intervals of v
- Find an optimal activity timeline *T*, which contains the corresponding active time points {*m_{vi}*}_{v∈V,i∈[1,k]}.
- Similar BLP and Alg. k-Maximal, O(m)

k-Sum-Span

Iterate to solve k-Sum-Span (Alg. k-Inner):

- Start with m_{vj} as centroids of a k-clustering algorithm
- Run k-Maximal and update m_v
- Repeat until no improvement

1-Max-Span

1-Max-Span can be solved efficiently

Subproblem Budget:

- Assume we are also given a set of budgets {b_v}_{v∈V} of interval durations for each vertex.
- Find an optimal activity timeline $\mathcal{T} = \{I_v\}_{v \in V}$, such that length of each activity interval I_v is at most b_v .

1-Max-Span

Budget can be solved optimally in linear time

Map **Budget** into 2-SAT:

- Variable x_{vt} for each vertex v and timestamp $t \in T(v)$.
- Clause $(x_{vt} \lor x_{ut})$ cover each edge (u, v, t).
- Clause (x_{vs} ∨ x_{vt}) ensure budget: for each s, t ∈ T(v), such that |s − t| > b_v
- Solution for Budget : time intervals where all boolean variables are True.

1-Max-Span

Linear time:

- 2-SAT is solved in linear-time of the number of clauses (Aspvall et all [1]). We have $O(m^2)$ clauses.
- Bottleneck: SCC decomposition $O(m^2 + m)$
- algorithm by Kosaraju [2] for SCC decomposition
- Use of temporal structure \rightarrow perform DFS in O(m).

Solve 1-Max-Span by binary search to find the optimal maximum length for intervals (Algorithm Budget, $O(m \log(m))$).

k-Max-Span

k-Max-Span inapproximable

consider two nested subproblems

Subproblem **k-Partition**:

- Assume we are also given k-1 inactive time points g_{vi} for each vertex $v \in V$
- One for each of gap between the activity intervals of v
- Find an optimal activity timeline \mathcal{T} , which interleaves with corresponding gap points $\{g_{vj}\}_{v \in V, j = [1,k-1]}$

Aalto University School of Science

k-Max-Span

• Problem k-Partition can be solved in polynomial time through iteration of Problem k-Budget, which sets a budget for each interval.

Subproblem k-Budget:

- Assume we are given a set of budgets {b_v}_{v∈V} of interval durations for each vertex;
- k-1 inactive time points g_{vj} for each vertex
- Find an optimal activity timeline $\mathcal{T} = \{I_v\}_{v \in V}$, such that length of each activity interval I_{vj} is at most b_{vj} and the gap points are interleaved

k-Budget can be solved O(m), similarly to **Budget**

k-Max-Span

Iterate to solve k-Sum-Span (Alg. k-Budget):

- Start with g_{vj} as mean points of the largest intervals with no activity of node v
- Solve k-Partition:
 - do binary search on budgets with solving k-Budget
 - update g_{vj}
- Repeat until no improvement

Summary

Problem 1: Sum-Span

- k = 1 NP-hard
- k > 1 inapproximable
- Subproblem (k-)Partition with inner points
- 2-approximation in linear time via BLP dual for (k-)Partition

Summary

Problem 2: Max-Span

- k = 1 polynomially solvable
- k > 1 inapproximable
- Subproblem (k-)Budget with budgets
- Exact solution in linear time via 2-SAT for (k-)Budget

Experiments: case study

- Tweets from Helsinki region, November 2013
- **Inner** algorithm (1-Sum-Span)

Experiments: case study

- Helsinki Twitter, years 2011-2013
- **k-Inner** algorithm with k = 3 (**k-Max-S**)

Performance: Inner

- Synthetic dataset, with planted ground truth
- overlap p is set to 0.5
- values are averaged over 100 runs.

Performance : k-Inner

• Synthetic dataset, k=10 intervals

Performance : k-Budget

• Synthetic dataset, k=10 intervals

Baseline comparison

Baseline: greedily 'cover' the ۲ longest activity intervals of the nodes.

.....

8

160

140

120

100

80

60

40

20^L 2

3

5

6

number of intervals

Relative max length

Running time

• k=10, synthetic dataset

Conclusions

• Novel problem of network untangling:

Discover activity time intervals for the network entities to explain the observed interactions.

- A possible Temporal extension of Vertex Cover Problem
- Two settings: (k-)Sum-Span (minimize sum of interval lengths) and (k-)Max-Span (minimize maximum length).
- Some hardness and inapproximability results
- Efficient algorithms

Future work

- Approximation for **1-Sum-Span**?
- Consider different activity levels for each entity.
- Consider hyperedges.

References

- B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain quantified Boolean formulas. 1982.
- 2. J. E. Hopcroft and J. D. Ullman. Data structures and algorithms.1983.

Thank you!

