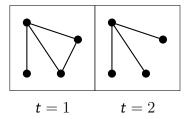
Comparing Temporal Graphs with Time Warping

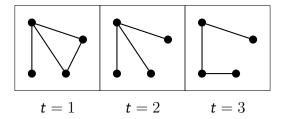
Malte Renken

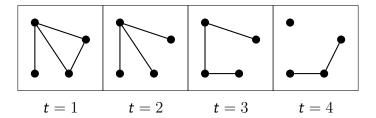
Algorithmics and Computational Complexity, TU Berlin, Germany

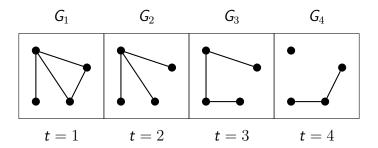
8. July 2019

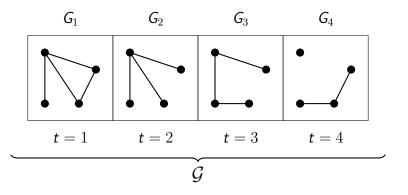
Joint work with Vincent Froese, Brijnesh Jain and Rolf Niedermeier.

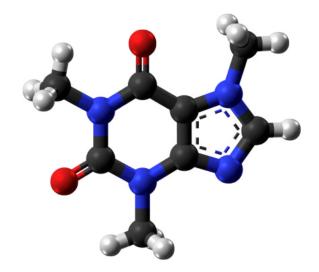


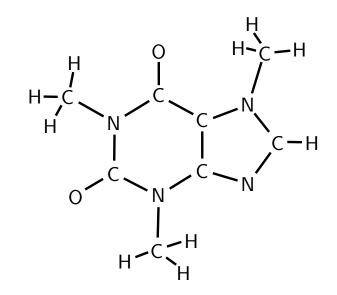












Main Question

How can we measure the similarity / distance between two temporal graphs $\mathcal{G}, \ \mathcal{H}?$

Graph distance using vertex signatures G H A A B C A A C A C A C A CB

Graph distance using vertex signatures G H $A \longrightarrow A$ B - C $A \longrightarrow C$

Example vertex signatures: $\sigma(\mathbf{v}) = (\text{label of } \mathbf{v}, \text{labels of } \mathbf{v}'\text{s neighbors})$

Example vertex signatures: $\sigma(\mathbf{v}) = (\text{label of } \mathbf{v}, \text{labels of } \mathbf{v}'\text{s neighbors})$

Example vertex signatures: $\sigma(\mathbf{v}) = (\text{label of } \mathbf{v}, \text{labels of } \mathbf{v}'\text{s neighbors})$

dist(G, H) =
$$\underbrace{\sum_{(v,w)\in M} \|\sigma(v) - \sigma(w)\|}_{C_M(G, H)}$$

Example vertex signatures: $\sigma(\mathbf{v}) = (\text{label of } \mathbf{v}, \text{labels of } \mathbf{v}'\text{s neighbors})$

dist(G, H) = min

$$M \in \mathcal{M}$$

 $\underbrace{\sum_{(v,w) \in M} \|\sigma(v) - \sigma(w)\|}_{C_M(G, H)}$

all maximal matchings between the two vertex sets

Graph distance using vertex signatures

$$\operatorname{dist}(G,H) = \min_{M \in \mathcal{M}} C_M(G,H)$$

Graph distance using vertex signatures

 $\operatorname{dist}(G,H) = \min_{M \in \mathcal{M}} C_M(G,H)$

► Jouili and Tabbone (GbRPR 2009).

Graph distance using vertex signatures

 $\operatorname{dist}(G,H) = \min_{M \in \mathcal{M}} C_M(G,H)$

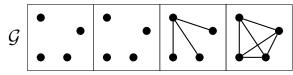
- ► Jouili and Tabbone (GbRPR 2009).
- Computation in cubic time using Jonker-Volgenant (or Hungarian).

Problem: The two temporal graphs may have different lifetimes.

Even worse, they can have different (non-homogeneous) time scales.

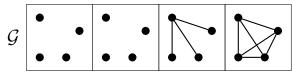
Problem: The two temporal graphs may have different lifetimes.

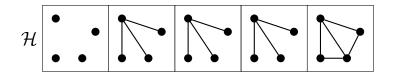
Even worse, they can have different (non-homogeneous) time scales.



Problem: The two temporal graphs may have different lifetimes.

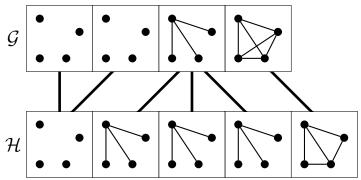
Even worse, they can have different (non-homogeneous) time scales.





Problem: The two temporal graphs may have different lifetimes.

Even worse, they can have different (non-homogeneous) time scales.



Solution: **Time warping** — assign each layer to the other one it resembles most (no crossings allowed!).

$\operatorname{dist}(G,H) = \min_{M \in \mathcal{M}} C_M(G,H)$

$$\operatorname{dtgw-dist}(\mathcal{G},\mathcal{H}) = \min_{W \in \mathcal{W}} \min_{M \in \mathcal{M}} \sum_{(t,u) \in W} C_M(G_t, H_u)$$

all time warpings between the two layer sets

$$\operatorname{dtgw-dist}(\mathcal{G},\mathcal{H}) = \min_{W \in \mathcal{W}} \min_{M \in \mathcal{M}} \sum_{(t,u) \in W} C_M(G_t, H_u)$$

all time warpings between the two layer sets

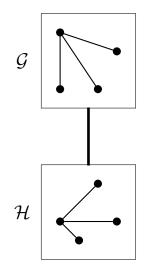
Good news: Time warping can be solved by a dynamic program in quadratic time ...

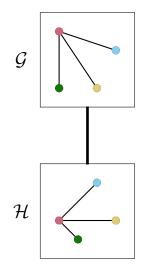
$$\operatorname{dtgw-dist}(\mathcal{G},\mathcal{H}) = \min_{W \in \mathcal{W}} \min_{M \in \mathcal{M}} \sum_{(t,u) \in W} C_M(G_t, H_u)$$

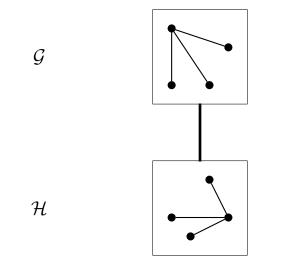
all time warpings between the two layer sets

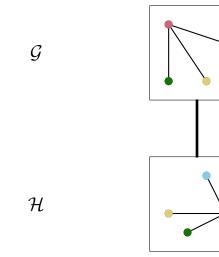
Good news: Time warping can be solved by a dynamic program in quadratic time ...

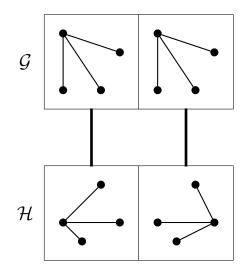
Bad news: ... if all pairwise distances are known in advance.

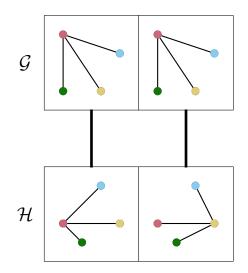


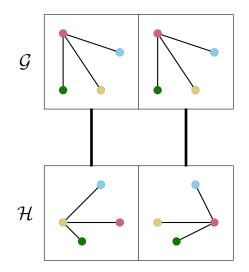


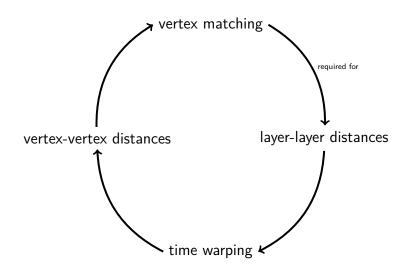












▶ Computing $dtgw-dist(\mathcal{G}, \mathcal{H})$ is NP-hard ...

- Computing $dtgw-dist(\mathcal{G}, \mathcal{H})$ is NP-hard ...
- ▶ ... and probably¹ impossible in $2^{o(\#vertices + \#layers + dtgw-dist)}$

- Computing $dtgw-dist(\mathcal{G}, \mathcal{H})$ is NP-hard ...
- ... and probably¹ impossible in $2^{o(\#vertices + \#layers + dtgw-dist)}$
- ... even if you limit the time warping to be "nice"

- ▶ Computing $dtgw-dist(\mathcal{G}, \mathcal{H})$ is NP-hard ...
- ... and probably¹ impossible in $2^{o(\#vertices + \#layers + dtgw-dist)}$
- ... even if you limit the time warping to be "nice"
- ... even if your graphs have maximum degree one.

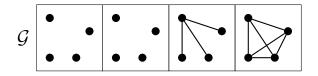
- ▶ Computing $dtgw-dist(\mathcal{G}, \mathcal{H})$ is NP-hard ...
- ... and probably¹ impossible in $2^{o(\#vertices + \#layers + dtgw-dist)}$
- ... even if you limit the time warping to be "nice"
- ... even if your graphs have maximum degree one.

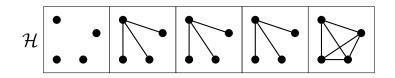
But ...

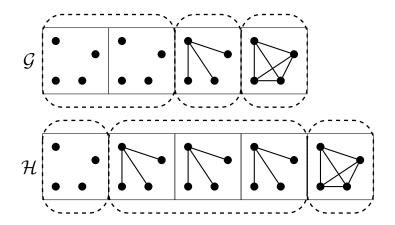
- ▶ Computing $dtgw-dist(\mathcal{G}, \mathcal{H})$ is NP-hard ...
- ... and probably¹ impossible in $2^{o(\#vertices + \#layers + dtgw-dist)}$
- ... even if you limit the time warping to be "nice"
- ... even if your graphs have maximum degree one.

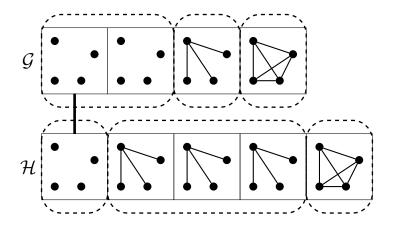
But ...

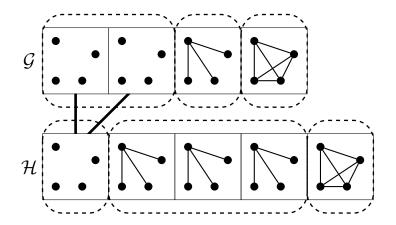
• ... you can check in polynomial time whether $dtgw-dist(\mathcal{G}, \mathcal{H}) = 0.$

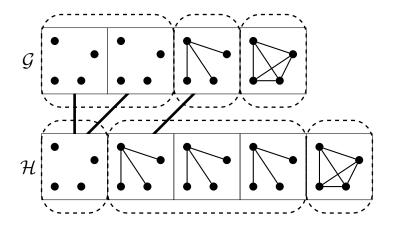


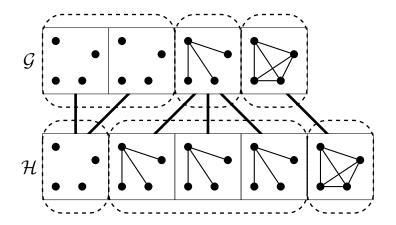


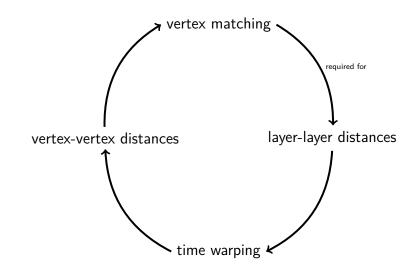


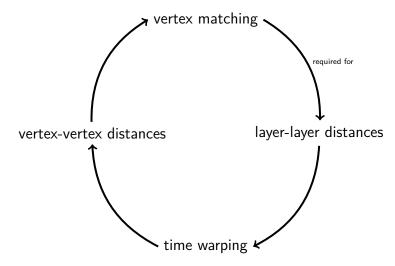












Make an educated guess on one of these and start cycling.

Make an educated guess on one of these and start cycling.

Make an educated guess on one of these and start cycling.

▶ Usually reaches a stable state after 2–5 rounds.

Make an educated guess on one of these and start cycling.

- ► Usually reaches a stable state after 2–5 rounds.
- Depends surprisingly little on your initial guess.

Make an educated guess on one of these and start cycling.

- Usually reaches a stable state after 2–5 rounds.
- Depends surprisingly little on your initial guess.
- Seems to produce good results.

1. Take a couple of real world temporal graphs².

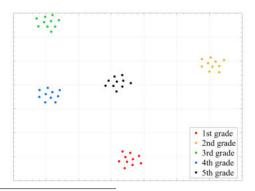
- 1. Take a couple of real world temporal graphs².
- 2. Make multiple copies of each.

- 1. Take a couple of real world temporal graphs².
- 2. Make multiple copies of each.
- 3. Add up to 30% noise (change edges, delete layers).

- 1. Take a couple of real world temporal graphs².
- 2. Make multiple copies of each.
- 3. Add up to 30% noise (change edges, delete layers).
- 4. Compute all pairwise distances with $\sigma(\mathbf{v}) = \deg(\mathbf{v})$.

- 1. Take a couple of real world temporal graphs².
- 2. Make multiple copies of each.
- 3. Add up to 30% noise (change edges, delete layers).
- 4. Compute all pairwise distances with $\sigma(\mathbf{v}) = \deg(\mathbf{v})$.

Result



²sociopatterns.org

1. Vertices: People at a conference.

- 1. Vertices: People at a conference.
- 2. Two temporal graphs:
 - 2.1 A: edges = face-to-face contacts
 - 2.2 B: edges = proximity

- 1. Vertices: People at a conference.
- 2. Two temporal graphs:
 - 2.1 A: edges = face-to-face contacts
 - 2.2 B: edges = proximity
- 3. Compute dtgw-distance.

- 1. Vertices: People at a conference.
- 2. Two temporal graphs:
 - 2.1 A: edges = face-to-face contacts
 - 2.2 B: edges = proximity
- 3. Compute dtgw-distance.
- 4. Look at the vertex matching.

- 1. Vertices: People at a conference.
- 2. Two temporal graphs:
 - 2.1 A: edges = face-to-face contacts
 - 2.2 B: edges = proximity
- 3. Compute dtgw-distance.
- 4. Look at the vertex matching.

Result

► 86% of people correctly identified, using only $\sigma(\mathbf{v}) = \deg(\mathbf{v})$.

- 1. Vertices: People at a conference.
- 2. Two temporal graphs:
 - 2.1 A: edges = face-to-face contacts
 - 2.2 B: edges = proximity
- 3. Compute dtgw-distance.
- 4. Look at the vertex matching.

Result

- ► 86% of people correctly identified, using only $\sigma(\mathbf{v}) = \deg(\mathbf{v})$.
- Robust against misaligned times.

 ...can help you compare structures that change over time (aka temporal graphs).

- ...can help you compare structures that change over time (aka temporal graphs).
- …is very hard in theory but mostly easy in practice.

- ...can help you compare structures that change over time (aka temporal graphs).
- …is very hard in theory but mostly easy in practice.

Open questions

- ...can help you compare structures that change over time (aka temporal graphs).
- …is very hard in theory but mostly easy in practice.

Open questions

▶ Is "dtgw-dist(\mathcal{G}, \mathcal{H}) ≤ d" decidable in $f(d) \cdot \operatorname{poly}(\mathcal{G}, \mathcal{H})$?

- ...can help you compare structures that change over time (aka temporal graphs).
- ...is very hard in theory but mostly easy in practice.

Open questions

- ▶ Is "dtgw-dist(\mathcal{G}, \mathcal{H}) ≤ d" decidable in $f(d) \cdot \operatorname{poly}(\mathcal{G}, \mathcal{H})$?
- Can you find approximation algorithms with guaranteed approximation quality?

- ...can help you compare structures that change over time (aka temporal graphs).
- ...is very hard in theory but mostly easy in practice.

Open questions

- ▶ Is "dtgw-dist(\mathcal{G}, \mathcal{H}) ≤ d" decidable in $f(d) \cdot \operatorname{poly}(\mathcal{G}, \mathcal{H})$?
- Can you find approximation algorithms with guaranteed approximation quality?
- Which vertex signatures work best in different settings?