
0/18

Comparing Temporal Graphs
with Time Warping

Malte Renken

Algorithmics and Computational Complexity,
TU Berlin, Germany

8. July 2019

Joint work with
Vincent Froese, Brijnesh Jain and Rolf Niedermeier.



1/18

Temporal Graphs

t t t t

G G G G



1/18

Temporal Graphs

t = 1 t = 2

t t

G G G G



1/18

Temporal Graphs

t = 1 t = 2 t = 3

t

G G G G



1/18

Temporal Graphs

t = 1 t = 2 t = 3 t = 4

G G G G



1/18

Temporal Graphs

t = 1 t = 2 t = 3 t = 4

G1 G2 G3 G4



1/18

Temporal Graphs

t = 1 t = 2 t = 3 t = 4

G1 G2 G3 G4

G



2/18



2/18

N

N

N

N

C

C C

C

C

C

C

C

O

O
H

H

H

H

HH

H

H
H

H



3/18



4/18

?
∼=



5/18

Main Question
How can we measure the similarity / distance between two
temporal graphs G, H?



6/18

Graph distance using vertex signatures
G

A
A

B C

A
A

B C

H

A
A

C
B

A
A

C
B

M

Example vertex signatures:
v label of v labels of v ’s neighbors

dist G H

min
M

v w M
v w

CM G H

all maximal matchings between the two vertex sets



6/18

Graph distance using vertex signatures
G

A
A

B C

A
A

B C

H

A
A

C
B

A
A

C
B

M

Example vertex signatures:
σ(v) = (label of v , labels of v ’s neighbors)

dist G H

min
M

v w M
v w

CM G H

all maximal matchings between the two vertex sets



6/18

Graph distance using vertex signatures
G

A
A

B C

A
A

B C

H

A
A

C
B

A
A

C
B

M

Example vertex signatures:
σ(v) = (label of v , labels of v ’s neighbors)

dist G H

min
M

v w M
v w

CM G H

all maximal matchings between the two vertex sets



6/18

Graph distance using vertex signatures
G

A
A

B C

A
A

B C

H

A
A

C
B

A
A

C
B

M

Example vertex signatures:
σ(v) = (label of v , labels of v ’s neighbors)

dist(G ,H) =

min
M

∑

(v ,w)∈M
‖σ(v)− σ(w)‖

︸ ︷︷ ︸

CM(G ,H)

all maximal matchings between the two vertex sets



6/18

Graph distance using vertex signatures
G

A
A

B C

A
A

B C

H

A
A

C
B

A
A

C
B

M

Example vertex signatures:
σ(v) = (label of v , labels of v ’s neighbors)

dist(G ,H) = min
M∈M

∑

(v ,w)∈M
‖σ(v)− σ(w)‖

︸ ︷︷ ︸

CM(G ,H)

all maximal matchings between the two vertex sets



7/18

Graph distance using vertex signatures

dist(G ,H) = min
M∈M

CM(G ,H)

Jouili and Tabbone (GbRPR 2009).
Computation in cubic time using Jonker-Volgenant
(or Hungarian).



7/18

Graph distance using vertex signatures

dist(G ,H) = min
M∈M

CM(G ,H)

◮ Jouili and Tabbone (GbRPR 2009).

Computation in cubic time using Jonker-Volgenant
(or Hungarian).



7/18

Graph distance using vertex signatures

dist(G ,H) = min
M∈M

CM(G ,H)

◮ Jouili and Tabbone (GbRPR 2009).
◮ Computation in cubic time using Jonker-Volgenant

(or Hungarian).



8/18

Time Warping
Problem: The two temporal graphs may have different

lifetimes.
Even worse, they can have different
(non-homogeneous) time scales.

Solution: Time warping — assign each layer to the other
one it resembles most (no crossings allowed!).



8/18

Time Warping
Problem: The two temporal graphs may have different

lifetimes.
Even worse, they can have different
(non-homogeneous) time scales.

G

Solution: Time warping — assign each layer to the other
one it resembles most (no crossings allowed!).



8/18

Time Warping
Problem: The two temporal graphs may have different

lifetimes.
Even worse, they can have different
(non-homogeneous) time scales.

G

H

Solution: Time warping — assign each layer to the other
one it resembles most (no crossings allowed!).



8/18

Time Warping
Problem: The two temporal graphs may have different

lifetimes.
Even worse, they can have different
(non-homogeneous) time scales.

G

H

Solution: Time warping — assign each layer to the other
one it resembles most (no crossings allowed!).



9/18

dtgw-distance

dist(G ,H) =

min
W

min
M∈M

t u W

CM(G

t

,H

u

)

all time warpings between the two layer sets

Good news: Time warping can be solved by a dynamic
program in quadratic time …

Bad news: … if all pairwise distances are known in advance.



9/18

dtgw-distance

dtgw-dist(G,H) = min
W∈W

min
M∈M

∑

(t,u)∈W
CM(Gt ,Hu)

all time warpings between the two layer sets

Good news: Time warping can be solved by a dynamic
program in quadratic time …

Bad news: … if all pairwise distances are known in advance.



9/18

dtgw-distance

dtgw-dist(G,H) = min
W∈W

min
M∈M

∑

(t,u)∈W
CM(Gt ,Hu)

all time warpings between the two layer sets

Good news: Time warping can be solved by a dynamic
program in quadratic time …

Bad news: … if all pairwise distances are known in advance.



9/18

dtgw-distance

dtgw-dist(G,H) = min
W∈W

min
M∈M

∑

(t,u)∈W
CM(Gt ,Hu)

all time warpings between the two layer sets

Good news: Time warping can be solved by a dynamic
program in quadratic time …

Bad news: … if all pairwise distances are known in advance.



10/18

Pairwise distances

G

H



10/18

Pairwise distances

G

H



10/18

Pairwise distances

G

H



10/18

Pairwise distances

G

H



10/18

Pairwise distances

G

H



10/18

Pairwise distances

G

H



10/18

Pairwise distances

G

H



11/18

time warping

vertex-vertex distances layer-layer distances

vertex matching

required for



12/18

Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …

… and probably1 impossible in o #vertices #layers dtgw-dist

… even if you limit the time warping to be “nice”
… even if your graphs have maximum degree one.

But …

… you can check in polynomial time whether
dtgw-dist .

1assuming ETH



12/18

Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …
◮ … and probably1 impossible in 2o(#vertices+#layers+ dtgw-dist)

… even if you limit the time warping to be “nice”
… even if your graphs have maximum degree one.

But …

… you can check in polynomial time whether
dtgw-dist .

1assuming ETH



12/18

Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …
◮ … and probably1 impossible in 2o(#vertices+#layers+ dtgw-dist)

◮ … even if you limit the time warping to be “nice”

… even if your graphs have maximum degree one.
But …

… you can check in polynomial time whether
dtgw-dist .

1assuming ETH



12/18

Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …
◮ … and probably1 impossible in 2o(#vertices+#layers+ dtgw-dist)

◮ … even if you limit the time warping to be “nice”
◮ … even if your graphs have maximum degree one.

But …

… you can check in polynomial time whether
dtgw-dist .

1assuming ETH



12/18

Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …
◮ … and probably1 impossible in 2o(#vertices+#layers+ dtgw-dist)

◮ … even if you limit the time warping to be “nice”
◮ … even if your graphs have maximum degree one.

But …

… you can check in polynomial time whether
dtgw-dist .

1assuming ETH



12/18

Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …
◮ … and probably1 impossible in 2o(#vertices+#layers+ dtgw-dist)

◮ … even if you limit the time warping to be “nice”
◮ … even if your graphs have maximum degree one.

But …
◮ … you can check in polynomial time whether

dtgw-dist(G,H) = 0.

1assuming ETH



13/18

Testing for dtgw-dist(G,H) = 0

G

H



13/18

Testing for dtgw-dist(G,H) = 0

G

H



13/18

Testing for dtgw-dist(G,H) = 0

G

H



13/18

Testing for dtgw-dist(G,H) = 0

G

H



13/18

Testing for dtgw-dist(G,H) = 0

G

H



13/18

Testing for dtgw-dist(G,H) = 0

G

H



14/18

Heuristic

time warping

vertex-vertex distances layer-layer distances

vertex matching

required for

Make an educated guess on one of these and start cycling.



14/18

Heuristic

time warping

vertex-vertex distances layer-layer distances

vertex matching

required for

Make an educated guess on one of these and start cycling.



15/18

Heuristic

Make an educated guess on one of these and start cycling.

Usually reaches a stable state after 2–5 rounds.
Depends surprisingly little on your initial guess.
Seems to produce good results.



15/18

Heuristic

Make an educated guess on one of these and start cycling.
◮ Usually reaches a stable state after 2–5 rounds.

Depends surprisingly little on your initial guess.
Seems to produce good results.



15/18

Heuristic

Make an educated guess on one of these and start cycling.
◮ Usually reaches a stable state after 2–5 rounds.
◮ Depends surprisingly little on your initial guess.

Seems to produce good results.



15/18

Heuristic

Make an educated guess on one of these and start cycling.
◮ Usually reaches a stable state after 2–5 rounds.
◮ Depends surprisingly little on your initial guess.
◮ Seems to produce good results.



16/18

Experiment: Noise
1. Take a couple of real world temporal graphs2.

2. Make multiple copies of each.
3. Add up to 30% noise (change edges, delete layers).
4. Compute all pairwise distances with v deg v .

Result

2sociopatterns.org



16/18

Experiment: Noise
1. Take a couple of real world temporal graphs2.
2. Make multiple copies of each.

3. Add up to 30% noise (change edges, delete layers).
4. Compute all pairwise distances with v deg v .

Result

2sociopatterns.org



16/18

Experiment: Noise
1. Take a couple of real world temporal graphs2.
2. Make multiple copies of each.
3. Add up to 30% noise (change edges, delete layers).

4. Compute all pairwise distances with v deg v .

Result

2sociopatterns.org



16/18

Experiment: Noise
1. Take a couple of real world temporal graphs2.
2. Make multiple copies of each.
3. Add up to 30% noise (change edges, delete layers).
4. Compute all pairwise distances with σ(v) = deg(v).

Result

2sociopatterns.org



16/18

Experiment: Noise
1. Take a couple of real world temporal graphs2.
2. Make multiple copies of each.
3. Add up to 30% noise (change edges, delete layers).
4. Compute all pairwise distances with σ(v) = deg(v).

Result

2sociopatterns.org



17/18

Experiment: De-anonymization

1. Vertices: People at a conference.

2. Two temporal graphs:
2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.
4. Look at the vertex matching.

Result
86% of people correctly identified, using only

v deg v .

Robust against misaligned times.



17/18

Experiment: De-anonymization

1. Vertices: People at a conference.
2. Two temporal graphs:

2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.
4. Look at the vertex matching.

Result
86% of people correctly identified, using only

v deg v .

Robust against misaligned times.



17/18

Experiment: De-anonymization

1. Vertices: People at a conference.
2. Two temporal graphs:

2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.

4. Look at the vertex matching.

Result
86% of people correctly identified, using only

v deg v .

Robust against misaligned times.



17/18

Experiment: De-anonymization

1. Vertices: People at a conference.
2. Two temporal graphs:

2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.
4. Look at the vertex matching.

Result
86% of people correctly identified, using only

v deg v .

Robust against misaligned times.



17/18

Experiment: De-anonymization

1. Vertices: People at a conference.
2. Two temporal graphs:

2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.
4. Look at the vertex matching.

Result
◮ 86% of people correctly identified, using only

σ(v) = deg(v).

Robust against misaligned times.



17/18

Experiment: De-anonymization

1. Vertices: People at a conference.
2. Two temporal graphs:

2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.
4. Look at the vertex matching.

Result
◮ 86% of people correctly identified, using only

σ(v) = deg(v).
◮ Robust against misaligned times.



18/18

DTGW-distance

…can help you compare structures that change over time
(aka temporal graphs).
…is very hard in theory but mostly easy in practice.

Open questions

Is “dtgw-dist d” decidable in f d poly ?
Can you find approximation algorithms with guaranteed
approximation quality?
Which vertex signatures work best in different settings?



18/18

DTGW-distance
◮ …can help you compare structures that change over time

(aka temporal graphs).

…is very hard in theory but mostly easy in practice.

Open questions

Is “dtgw-dist d” decidable in f d poly ?
Can you find approximation algorithms with guaranteed
approximation quality?
Which vertex signatures work best in different settings?



18/18

DTGW-distance
◮ …can help you compare structures that change over time

(aka temporal graphs).
◮ …is very hard in theory but mostly easy in practice.

Open questions

Is “dtgw-dist d” decidable in f d poly ?
Can you find approximation algorithms with guaranteed
approximation quality?
Which vertex signatures work best in different settings?



18/18

DTGW-distance
◮ …can help you compare structures that change over time

(aka temporal graphs).
◮ …is very hard in theory but mostly easy in practice.

Open questions

Is “dtgw-dist d” decidable in f d poly ?
Can you find approximation algorithms with guaranteed
approximation quality?
Which vertex signatures work best in different settings?



18/18

DTGW-distance
◮ …can help you compare structures that change over time

(aka temporal graphs).
◮ …is very hard in theory but mostly easy in practice.

Open questions
◮ Is “dtgw-dist(G,H) ≤ d” decidable in f (d) · poly(G,H)?

Can you find approximation algorithms with guaranteed
approximation quality?
Which vertex signatures work best in different settings?



18/18

DTGW-distance
◮ …can help you compare structures that change over time

(aka temporal graphs).
◮ …is very hard in theory but mostly easy in practice.

Open questions
◮ Is “dtgw-dist(G,H) ≤ d” decidable in f (d) · poly(G,H)?
◮ Can you find approximation algorithms with guaranteed

approximation quality?

Which vertex signatures work best in different settings?



18/18

DTGW-distance
◮ …can help you compare structures that change over time

(aka temporal graphs).
◮ …is very hard in theory but mostly easy in practice.

Open questions
◮ Is “dtgw-dist(G,H) ≤ d” decidable in f (d) · poly(G,H)?
◮ Can you find approximation algorithms with guaranteed

approximation quality?
◮ Which vertex signatures work best in different settings?


