Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

Francesco Pasquale[♦]

based on a joint work with

L. Becchetti[♥], A. Clementi[♦], E. Natale[♠], and L. Trevisan[♣]

Sapienza Università di Roma,
 Tor Vergata Università di Roma,
 UC Berkeley,
 Université Côte d'Azur

Algorithmic Aspects of Temporal Graphs II

Patras, Greece, July 9, 2019

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

イロト 不得 トイヨト イヨト 二日

Cryptocurrencies: The Bitcoin Revolution

Bitcoin P2P e-cash paper

Satoshi Nakamoto Sat, 01 Nov 2008 16:16:33 -0700

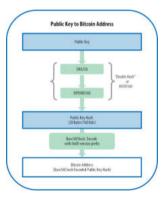
I've been working on a new electronic cash system that's fully peer-to-peer, with no trusted third party.

The paper is available at: http://www.bitcoin.org/bitcoin.pdf

The main properties: Double-spending is prevented with a peer-to-peer network. No mint or other trusted parties. Participants can be anonymous. New coins are made from Hashcash style proof-of-work. The proof-of-work for new coin generation also powers the network to prevent double-spending.

Cryptocurrencies: The Bitcoin Revolution

1C78STt6GqKNob7wnX9kWFcTLrPe39jRRQ



Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

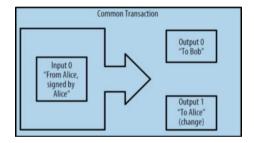
人口医 人名英格兰英 人名英格兰英

Cryptocurrencies: The Bitcoin Revolution

Bitcoin

Addresses

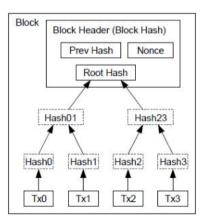
Transactions



Cryptocurrencies: The Bitcoin Revolution

Bitcoin

- Addresses
- Transactions
- Blocks

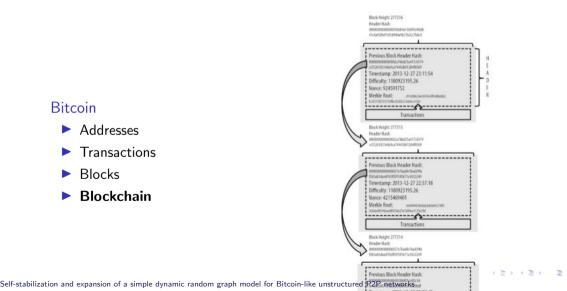


2/14

Cryptocurrencies: The Bitcoin Revolution

Bitcoin

- Addresses
- Transactions
- Blocks
- Blockchain

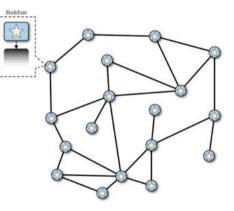


イロト イヨト イヨト イヨト

Cryptocurrencies: The Bitcoin Revolution

Bitcoin

- Addresses
- Transactions
- Blocks
- Blockchain
- P2P network



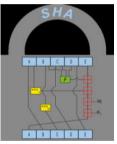
- 34

Cryptocurrencies: The Bitcoin Revolution

Bitcoin

- Addresses
- Transactions
- Blocks
- Blockchain
- P2P network
- Mining and Consensus

Proof of Work



f(block-header) < target

э

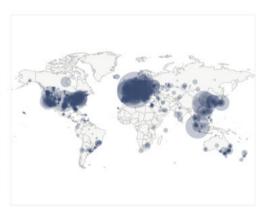
The Bitcoin P2P Network

GLOBAL BITCOIN NODES DISTRIBUTION Reachable nodes as of Sun Jul 07 2019 22:40:19 GMT+0200 (CEST).

10118 NODES

Top 10 countries with their respective number of reachable nodes are as follow.

RANK	COUNTRY	NODES
1	United States	2456 (24,27%)
2	Germany	1931 (19.08%)
з	n/a	624 (5.17%)
.4	France	612 (6.05%)
5	Netherlands	514 (5.08%)
6	China	426 (4.21%)
7	Canada	344 (3.40%)
8	United Kingdom	295 (2.92%)
9	Singapore	286 (2.83%)
10	Russian Federation	246 (2.43%)



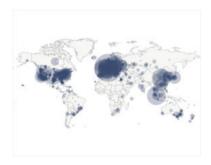
The Bitcoin P2P Network

- Initially: DNS queries
- List of active nodes periodically updated and advertised
- Minimum of 8 connections initiated
- Maximum 125 connections



The Bitcoin P2P Network

- Initially: DNS queries
- List of active nodes periodically updated and advertised
- Minimum of 8 connections initiated
- Maximum 125 connections



Question Network structure?

(日本)(周本)(日本)(日本)(日本)

Bitcoin Topology Inference

Miller et al.

Discovering bitcoin's public topology and influential nodes 2015

Neudecker et al.

Timing analysis for inferring the topology of the bitcoin peer-to-peer network 2016

 Delgado-Segura et al.
 TxProbe: Discovering Bitcoin's Network Topology Using Orphan Transactions
 2018

G(n, d, c) dynamic random graph

(í n	:	number of nodes
{	d	:	minimum required degree
	$c \ge 1$:	"tolerance" (<i>cd</i> = maximum degree)

G(n, d, c) dynamic random graph

ſ	п	:	number of nodes
{	d	:	minimum required degree
l	$c \geqslant 1$:	"tolerance" (<i>cd</i> = maximum degree)

At each round, each node $u \in [n]$, independently of the other nodes:

Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

G(n, d, c) dynamic random graph

((n	:	number of nodes
{	d	:	minimum required degree
	$c \geqslant 1$:	"tolerance" (<i>cd</i> = maximum degree)

At each round, each node $u \in [n]$, independently of the other nodes: - If u has degree < d then u picks a node v uniformly at random and adds the edge $\{u, v\}$ in E.

G(n, d, c) dynamic random graph

((n	:	number of nodes
{	d	:	minimum required degree
	$c \geqslant 1$:	"tolerance" (<i>cd</i> = maximum degree)

At each round, each node u ∈ [n], independently of the other nodes:
If u has degree < d then u picks a node v uniformly at random and adds the edge {u, v} in E.
If u has degree > cd then u picks one of its neighbors v uniformly at random and removes the edge {u, v} from E

Self-stabilization and expansion

When (If) the process terminates all nodes have

 $d \leqslant$ degree $\leqslant cd$

Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

Self-stabilization and expansion

When (If) the process terminates all nodes have

 $d \leqslant$ degree $\leqslant cd$

Question 1 How long it takes to settle?

Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

Self-stabilization and expansion

When (If) the process terminates all nodes have

 $d \leqslant$ degree $\leqslant cd$

Question 1

How long it takes to settle?

Question 2 Structure of the resulting graph?

Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

A D A A B A A B A A B A B A

RAES

Request a link, Accept if Enough Space

Directed graph G = (V, E)

- ► d_{out} = d (outgoing links)
- $d_{in} \leq cd$ (max number of incoming links)

At each round, each node $u \in [n]$, independently of the other nodes: - If u has $d_{out} < d$ outgoing links then u picks $d - d_{out}$ nodes uniformly at random $v_1, \ldots, v_{d-d_{out}}$ and "requests" edges $\{u, v_1\}, \ldots, \{u, v_{d-d_{out}}\}$ - If u receives > cd incoming requests, u "rejects" all requests of the last round

RAES

Request a link, Accept if Enough Space

Directed graph G = (V, E)

- ▶ d_{out} = d (outgoing links)
- ▶ $d_{in} \leq cd$ (max number of incoming links)

At each round, each node $u \in [n]$, independently of the other nodes: - If u has $d_{out} < d$ outgoing links then u picks $d - d_{out}$ nodes uniformly at random $v_1, \ldots, v_{d-d_{out}}$ and "requests" edges $\{u, v_1\}, \ldots, \{u, v_{d-d_{out}}\}$ - If u receives > cd incoming requests, u "rejects" all requests of the last round

Observation Once a link is "accepted" it is "settles"

Algorithmic Aspects of Temporal Graphs II - Patras - July 2019

Self-stabilization

Question 1

How long it takes to settle?

Self-stabilization and expansion of a simple dynamic random graph model for Bitcoin-like unstructured P2P networks

Self-stabilization

Question 1

How long it takes to settle?

Stabilization

For every $d \ge 1$, c > 1, and $\beta > 1$, process terminates within $\beta \log(n) / \log(c)$ rounds, with probability at least $1 - d/n^{\beta-1}$.

人口区 医周底 医医下颌下的

Self-stabilization

Question 1

How long it takes to settle?

Stabilization

For every $d \ge 1$, c > 1, and $\beta > 1$, process terminates within $\beta \log(n) / \log(c)$ rounds, with probability at least $1 - d/n^{\beta-1}$.

Proof sketch

- Parallel balls-into-bins problem (nd "link requests" [balls] in ncd "available slots" [bins])
- > At each round each request has constant probability to be accepted

Expansion

Question 2

Structure of the resulting graph?

Expander Graph

A graph G = (V, E) is an ε -expander if, for every subset $U \subset V$ with $|U| \leq n/2$, number of edges in the cut (U, V - U) at least $\varepsilon \cdot \operatorname{vol}(U)$.

Expansion

Question 2

Structure of the resulting graph?

Expander Graph

A graph G = (V, E) is an ε -expander if, for every subset $U \subset V$ with $|U| \leq n/2$, number of edges in the cut (U, V - U) at least $\varepsilon \cdot \operatorname{vol}(U)$.

化口水 化塑料 化医水化医水合 医

Expansion

Question 2

Structure of the resulting graph?

Expander Graph

A graph G = (V, E) is an ε -expander if, for every subset $U \subset V$ with $|U| \leq n/2$, number of edges in the cut (U, V - U) at least $\varepsilon \cdot \operatorname{vol}(U)$.

Main difficulty

Complex dependencies among edges of the resulting graph

Expansion

Question 2

Structure of the resulting graph?

Expander Graph

A graph G = (V, E) is an ε -expander if, for every subset $U \subset V$ with $|U| \leq n/2$, number of edges in the cut (U, V - U) at least $\varepsilon \cdot \operatorname{vol}(U)$.

Main difficulty

Complex dependencies among edges of the resulting graph

Theorem

A sufficiently-small constant $\varepsilon > 0$ exists such that for sufficiently large constants d and c resulting random graph G is ε -expander w.h.p.

Expansion

Proof idea: Encoding argument

- nTd log n total random bits
 - n nodes
 - T rounds
 - d out-neighbors
 - log n bits per sample



dT slots of $\log n$ random bits

э

Algorithmic Aspects of Temporal Graphs II - Patras - July 2019

Total number of bit strings

Expansion

$2nTd\log n$

Proof idea: Encoding argument

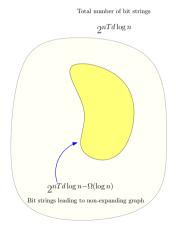
nTd log *n* total random bits

Algorithmic Aspects of Temporal Graphs II - Patras - July 2019

Expansion

Proof idea: Encoding argument

- nTd log n total random bits
- Any bit string R ∈ {0,1}^{nTd log n} leading to a non-expanding graph can be "encoded" losslessy with nTd log n − Ω(log n) bits.



< ロト < 同ト < ヨト < ヨト

Proof Idea

▶ If G is not an expander, then there is non-expanding set of nodes S...

Proof Idea

 \blacktriangleright If G is not an expander, then there is non-expanding set of nodes S...

▶ ...then the typical node in *S* will have a lot of neighbors in *S*...

Proof Idea

- \blacktriangleright If G is not an expander, then there is non-expanding set of nodes S...
- ...then the typical node in S will have a lot of neighbors in S...
- ...then we can "encode" those link requests with log |S| bits instead of log n...

Proof Idea

- \blacktriangleright If G is not an expander, then there is non-expanding set of nodes S...
- ...then the typical node in S will have a lot of neighbors in S...
- \blacktriangleright ...then we can "encode" those link requests with log |S| bits instead of log n...
- Improvided that we already "encoded" who's the set S...

Proof Idea

- ▶ If G is not an expander, then there is non-expanding set of nodes S...
- ...then the typical node in S will have a lot of neighbors in S...
- \blacktriangleright ...then we can "encode" those link requests with log |S| bits instead of log n...
- ...provided that we already "encoded" who's the set S...
- ...this takes $\log \binom{n}{|S|}$ bits...

Encoding argument

Proof Idea

- ▶ If G is not an expander, then there is non-expanding set of nodes S...
- ...then the typical node in S will have a lot of neighbors in S...
- \blacktriangleright ...then we can "encode" those link requests with log |S| bits instead of log n...
- ...provided that we already "encoded" who's the set S...
- ...this takes $\log \binom{n}{|S|}$ bits...
- ...but we can save other bits suitably encoding accepted and rejected requests

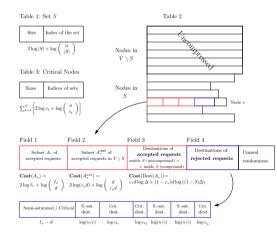
イロト イヨト イヨト イヨト

э

11/14

Encoding argument

Proof Idea



Bounded-degree expander inside a dense one

In this talk

Each node can sample **any** other node.

Bounded-degree expander inside a dense one

In this talk

Each node can sample **any** other node.

Results smoothly apply to a slight generalization

Underlying Δ -regular graph with $\Delta = \Theta(n)$. Nodes can sample only their neighbors.

Bounded-degree expander inside a dense one

In this talk

Each node can sample **any** other node.

Results smoothly apply to a slight generalization

Underlying Δ -regular graph with $\Delta = \Theta(n)$. Nodes can sample only their neighbors.

Bounded-degree expander from a dense one

Parallel algorithm to find a bounded-degree expander inside a dense one.

Conclusions

- Bitcoin P2P network as an interesting available dynamic network
- ▶ The protocol hides the network structure
- Encoding argument to prove properties of random graphs

G(n, d, c) dynamic random graph

ſ	n	:	number of nodes
J	d	:	minimum required degree
١	$c \ge 1$:	"tolerance" (<i>cd</i> = maximum degree)
J			

At each round, each node $u \in [n]$, independently of the other nodes: - If u has degree < d then u picks a node v uniformly at random and adds the edge $\{u, v\}$ in E. - If u has degree > cd then u picks one of its neighbors v uniformly at random and removes the edge $\{u, v\}$ from E

G(n, d, c, p) dynamic random graph

1	n	:	number of nodes
J	d	:	minimum required degree
	$c \geqslant 1$:	"tolerance" (<i>cd</i> = maximum degree)
	р	:	edge failure probability

At each round, each node $u \in [n]$, independently of the other nodes: - If u has degree < d then u picks a node v uniformly at random and adds the edge $\{u, v\}$ in E. - If u has degree > cd then u picks one of its neighbors v uniformly at random and removes the edge $\{u, v\}$ from E- Each edge $e \in E$ disappears with probability p

Ergodic Markov Chain

Mixing time?

Stationary random graph properties?

Ergodic Markov Chain

Mixing time?

Stationary random graph properties?

Proof techniques

Encodign argument doesn't seem to help.

Ergodic Markov Chain

Mixing time?

Stationary random graph properties?

Proof techniques

Encodign argument doesn't seem to help.

Further

Nodes joining and leaving the network.

Algorithmic Aspects of Temporal Graphs II - Patras - July 2019

14/14

Thank you!