Exploring earliest-arrival paths in large-scale time-dependent networks via combinatorial oracles

Workshop on Algorithmic Aspects of Temporal Graphs II

Patras, July 82019

Spyros Kontogiannis kontog@uoi.gr

Joint work with:
G. Papastavrou CSE.UoI

A. Papadopoulos CEID.UPatras

A. Paraskevopoulos CEID.UPatras

C. Zaroliagis CEID.UPatras

D. Wagner

KIT

Time-Dependent Route Planning ...problem, assumptions and challenges...

Shortest Paths

a fundamental problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time values: $D[u v]>0$.
- Origin-destination pair: $(o, d) \in V \times V$.

Shortest Paths

a fundamental problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time values: $D[u v]>0$.
- Origin-destination pair: $(o, d) \in V \times V$.
- Output: $\pi^{*} \in \arg \min _{\pi \in P_{o, d}}\left\{D[\pi]=\sum_{a \in \pi} D[a]\right\}$

Shortest Paths

a fundamental problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time values: $D[u v]>0$.
- Origin-destination pair: $(o, d) \in V \times V$.
- Output: $\pi^{*} \in \arg \min _{\pi \in P_{o, d}}\left\{D[\pi]=\sum_{a \in \pi} D[a]\right\}$
- MOTIVATION \& CHALLENGES: Routing in road networks.
- $V=$ set of intersections, $E=$ set of road segments.
- Non-planar, sparse $(|E| \in O(|V|))$ graphs.
- Very large size: $|V|=$ millions of intersections.

Shortest Paths

... a fundamental problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time values: $D[u v]>0$.
- Origin-destination pair: $(o, d) \in V \times V$.
- Output: $\pi^{*} \in \arg \min _{\pi \in P_{o, d}}\left\{D[\pi]=\sum_{a \in \pi} D[a]\right\}$
- MOTIVATION \& CHALLENGES: Routing in road networks.
- $V=$ set of intersections, $E=$ set of road segments.
- Non-planar, sparse $(|E| \in \mathrm{O}(|V|))$ graphs.
- Very large size: $|\mathrm{V}|=$ millions of intersections.
...possibly the most characteristic success story of algorithm engineering... Numerous oracles and speedup techniques for static road networks.

Time-Dependent Shortest Paths

a more challenging problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time functions: $D[u v]:[0, T) \mapsto \mathbb{R}_{>0}$. Assumption: Periodic, continuous, piecewise-linear, FIFO-compliant functions...
- Origin-destination-dep. time triple:

$$
\left(o, d, t_{o}\right) \in V \times V \times[0, T)
$$

Time-Dependent Shortest Paths

a more challenging problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time functions: $D[u v]:[0, T) \mapsto \mathbb{R}_{>0}$. Assumption: Periodic, continuous, piecewise-linear, FIFO-compliant functions...
- Origin-destination-dep. time triple:

$$
\left(o, d, t_{0}\right) \in V \times V \times[0, T)
$$

- Output:

$$
\pi^{*} \in \arg \min _{\pi \in P_{o, d}}\left\{D[\pi]\left(t_{o}\right)=\sum_{a \in \pi} D[a]\left(t_{o}\right)\right\}
$$

Time-Dependent Shortest Paths

a more challenging problem, both in theory and in practice...

- Input:
- Directed graph $G=(V, E)$.
- Arc-traversal-time functions: $D[u v]:[0, T) \mapsto \mathbb{R}_{>0}$. Assumption: Periodic, continuous, piecewise-linear, FIFO-compliant functions...
- Origin-destination-dep. time triple:

$$
\left(o, d, t_{o}\right) \in V \times V \times[0, T) .
$$

- Output:

$$
\pi^{*} \in \arg \min _{\pi \in P_{o, d}}\left\{D[\pi]\left(t_{o}\right)=\sum_{a \in \pi} D[a]\left(t_{o}\right)\right\}
$$

- MOTIVATION \& CHALLENGES: Routing in road networks.

- $V=$ set of intersections, $E=$ set of road segments.
- Non-planar, sparse $(|E| \in \mathrm{O}(|V|)$) graphs.
- Very large size: $|\mathrm{V}|=$ millions of intersections.
- Time-Dependence: Computationally harder instances.

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{o} from o? E.g.:

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{0} from o? E.g.: $t_{0}=0$

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{0} from o? E.g.: $t_{0}=1$

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{o} from o? E.g.:

Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{o} from o? E.g.:

Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{o} from o? E.g.:

Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Path: Examples

Q1 How would you commute as fast as possible from o to d, for a given departure time t_{o} from o? E.g.:

Q2 What if you are not sure about the departure time? earliest-arrival (path) function $= \begin{cases}\text { orange path, } & t_{0} \in[0,0.03) \\ \text { yellow path, } & t_{0} \in[0.03,2.9) \\ \text { purple path, } & t_{0} \in[2.9,+\infty)\end{cases}$

Time-Dependent Shortest Path: Definitions

INPUT:

- Directed graph $G=(V, A), n=|V|$.
- Arc travel-time / arrival-time functions:

$$
D[u v]\left(t_{u}\right) \quad \operatorname{Arr}[u v]\left(t_{u}\right)=t_{u}+D[u v]\left(t_{u}\right)
$$

Time-Dependent Shortest Path: Definitions

INPUT:

- Directed graph $G=(V, A), n=|V|$.
- Arc travel-time / arrival-time functions:

$$
D[u v]\left(t_{u}\right) \quad \operatorname{Arr}[u v]\left(t_{u}\right)=t_{u}+D[u v]\left(t_{u}\right)
$$

DEFINITIONS:

- $P_{o, d}$ Set of od-paths; $\pi=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path fravel-time / arrival-time functions:

$$
\begin{aligned}
& \operatorname{Arr}[\pi]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right]\left(\operatorname{Arr}\left[a_{k-1}\right]\left(\cdots\left(\operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right)\right) \cdots\right)\right) \\
& D[\pi]\left(t_{0}\right)=\operatorname{Arr}[\pi]\left(t_{0}\right)-t_{0}
\end{aligned}
$$

- Earliest-arrival / Shortest-travel-time functions:

$$
\operatorname{Arr}[o, d]\left(t_{0}\right)=\min _{\pi \in P_{0, d}}\left\{\operatorname{Arr}[\pi]\left(t_{0}\right)\right\}, D[o, d]\left(t_{0}\right)=\operatorname{Arr}[o, d]\left(t_{0}\right)-t_{0}
$$

Time-Dependent Shortest Path: Definitions

INPUT:

- Directed graph $G=(V, A), n=|V|$.
- Arc travel-time / arrival-time functions:

$$
D[u v]\left(t_{u}\right) \quad \operatorname{Arr}[u v]\left(t_{u}\right)=t_{u}+D[u v]\left(t_{u}\right)
$$

DEFINITIONS:

- $P_{o, d}$ Set of od-paths; $\pi=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path travel-time / arrival-time functions:

$$
\begin{aligned}
& \operatorname{Arr}[\pi]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right]\left(\operatorname{Arr}\left[a_{k-1}\right]\left(\cdots\left(\operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right)\right) \cdots\right)\right) \\
& D[\pi]\left(t_{0}\right)=\operatorname{Arr}[\pi]\left(t_{0}\right)-t_{0}
\end{aligned}
$$

- Earliest-arrival / Shortest-travel-time functions:

$$
\operatorname{Arr}[o, d]\left(t_{0}\right)=\min _{\pi \in P_{0, d}}\left\{\operatorname{Arr}[\pi]\left(t_{0}\right)\right\}, D[o, d]\left(t_{0}\right)=\operatorname{Arr}[o, d]\left(t_{0}\right)-t_{0}
$$

GOALS:

(1) For given departure-time t_{o} from 0 , determine $t_{d}=\operatorname{Arr}[0, d]\left(t_{o}\right)$.
(2) Provide a succinct representation of $\operatorname{Arr}[0, d]$, or of $D[o, d]$.

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions
Slopes of all $D[u v](t) \geq-1$ (e.g., for vehicles in road networks).
\Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.
\Rightarrow No reason to wait at vertices while moving along a path.

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all $D[u v](t) \geq-1$ (e.g., for vehicles in road networks).
\Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.
\Rightarrow No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).
\Rightarrow Forbidden waiting: \nexists subpath optimality; $\mathcal{N} \mathcal{P}$-hard.
(Orda-Rom (1990))
\Rightarrow Unrestricted waiting: Equivalent to FIFO.
(Dreyfus (1969))

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all $D[u v](t) \geq-1$ (e.g., for vehicles in road networks).
\Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.
\Rightarrow No reason to wait at vertices while moving along a path.
Non-FIFO Arc-Travel-Time Functions
Possibly profitable to wait at some vertex (e.g., in public transport).
\Rightarrow Forbidden waiting: \nexists subpath optimality; $\mathcal{N} \mathcal{P}$-hard.
(Orda-Rom (1990))
\Rightarrow Unrestricted waiting: Equivalent to FIFO.
(Dreyfus (1969))

FIFO arc delay example

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all $D[u v](t) \geq-1$ (e.g., for vehicles in road networks).
\Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.
\Rightarrow No reason to wait at vertices while moving along a path.
Non-FIFO Arc-Travel-Time Functions
Possibly profitable to wait at some vertex (e.g., in public transport).
\Rightarrow Forbidden waiting: \nexists subpath optimality; $\mathcal{N} \mathcal{P}$-hard.
(Orda-Rom (1990))
\Rightarrow Unrestricted waiting: Equivalent to FIFO.
(Dreyfus (1969))

FIFO arc delay example

Non-FIFO arc delay example

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all $D[u v](t) \geq-1$ (e.g., for vehicles in road networks).
\Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.
\Rightarrow No reason to wait at vertices while moving along a path.
Non-FIFO Arc-Travel-Time Functions
Possibly profitable to wait at some vertex (e.g., in public transport).
\Rightarrow Forbidden waiting: \nexists subpath optimality; $\mathcal{N} \mathcal{P}$-hard.
(Orda-Rom (1990))
\Rightarrow Unrestricted waiting: Equivalent to FIFO.
(Dreyfus (1969))

FIFO arc delay example

Equivalent FIFO arc delay (arbitrary waiting)

TDSP vs. vs. EA-Paths in Temporal Graphs

Earliest-arrival paths in temporal \quad\begin{tabular}{l}
Earliest-arrival paths in FIFO-

graphs with step functions for arc-

delays and unrestricted waiting

\quad

abiding TDSP networks with pwl

arc-delay functions.
\end{tabular}

TDSP vs. vs. EA-Paths in Temporal Graphs

Earliest-arrival paths in temporal graphs with step functions for arcdelays and unrestricted waiting

Earliest-arrival paths in FIFO\approx abiding TDSP networks with pwl arc-delay functions.

TDSP in FIFO networks: Complexity

for piecewise-linear arc-delay functions, with K breakpoints in total...
(1) Compute earliest-arrival-time at d, for given $\left(o, t_{0}\right)$:
(2) Compute succinct representations of $\operatorname{Arr}[0, d]$, for all departure times:

TDSP in FIFO networks: Complexity

for piecewise-linear arc-delay functions, with K breakpoints in total...
(1) Compute earliest-arrival-time at d, for given $\left(0, t_{0}\right)$:

- Time-dependent variant of Dijkstra (TDD) works for FIFO instances.
(Dreyfus (1969); Orda-Rom (1990))
- Time-dependent variant of Bellman-Ford (TDBF) works for FIFO instances.
(Orda-Rom (1990))
(2) Compute succinct representations of $\operatorname{Arr}[0, d]$, for all departure times:

TDSP in FIFO networks: Complexity

.for piecewise-linear arc-delay functions, with K breakpoints in total...
(1) Compute earliest-arrival-time at d, for given $\left(0, t_{0}\right)$:

- Time-dependent variant of Dijkstra (TDD) works for FIFO instances.
(Dreyfus (1969); Orda-Rom (1990))
- Time-dependent variant of Bellman-Ford (TDBF) works for FIFO instances.
(Orda-Rom (1990))
(2) Compute succinct representations of $\operatorname{Arr}[0, d]$, for all departure times:
- Succinct representation of $\operatorname{Arr}[0, d]$ may require space $(K+1) \cdot n^{\Theta(\log (n))}$, even for sparse networks with affine arc-travel-time functions.
(Foschini-Hershberger-Suri (2011))
- \exists polynomial-time point-to-point $(1+\varepsilon)$-approximation algorithms for $D[o, d]$, requiring space $\mathrm{O}(K+1)$ per (o, d)-pair.
(Dehne-Omran-Sack (2010); Foschini-Hershberger-Suri (2011))

Measuring Quality of Algorithms for TDSP...

- IN THEORY: Guaranteed quality of the proposed solution.
- OPT: The cost of a min-travel-time od-path.
- ACTUAL: The cost of the proposed od-path.
- Maximum absolute error: $M A E=A C T U A L ~-~ O P T$.
- Relative error (the (ACTUAL - OPT)/OPT $\leq \epsilon$ value of a $1+\epsilon$ approximation, as a percentage):

$$
R E=100 \cdot \frac{A C T U A L-O P T}{O P T} \%
$$

Measuring Quality of Algorithms for TDSP...

- IN THEORY: Guaranteed quality of the proposed solution.
- OPT: The cost of a min-travel-time od-path.
- ACTUAL: The cost of the proposed od-path.
- Maximum absolute error: $M A E=A C T U A L-O P T$.
- Relative error (the (ACTUAL - OPT)/OPT $\leq \epsilon$ value of a $1+\epsilon$ approximation, as a percentage): $\quad R E=100 \cdot \frac{A C T U A L-O P T}{O P T} \%$
- IN PRACTICE: Avg query-response time must be really small, for large-scale instances (e.g., < 1 msec for instances with millions of arcs).

R1 A relative error of 1% implies an extra delay of alt most 36 sec per hour of optimal-travel-time!!!

Measuring Quality of Algorithms for TDSP...

- IN THEORY: Guaranteed quality of the proposed solution.
- OPT: The cost of a min-travel-time od-path.
- ACTUAL: The cost of the proposed od-path.
- Maximum absolute error: $M A E=A C T U A L ~-~ O P T$.
- Relative error (the (ACTUAL - OPT)/OPT $\leq \epsilon$ value of a $1+\epsilon$ approximation, as a percentage): $\quad R E=100 \cdot \frac{A C T U A L-O P T}{O P T} \%$
- IN PRACTICE: Avg query-response time must be really small, for large-scale instances (e.g., < 1 msec for instances with millions of arcs).

R1 A relative error of 1% implies an extra delay of all most 36 sec per hour of optimal-travel-time!!!

R2 Hard to compare query times of algorithms running on different machines. A speedup $=\operatorname{Time}(D i j) / \operatorname{Time}($ Alg $)$ over a baseline (time-dependent) Dijkstra implementation might be more meaningful.

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...
QUESTION: \exists some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbitrary queries efficiently?

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...
QUESTION: \exists some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbiltrary queries efficiently?

- Trivial solution (I): Precompute all ($1+\varepsilon$)-upper-approximating trravel-time functions (summaries) $\Delta[o, d]$ for every od-pair.
酋 $\mathrm{O}\left(n^{2}(K+1)\right)$ space
/* store all (succinct representations of) $\Delta[0, d]$ */
[. $\mathrm{O}(\log \log (K))$ query time
$/ *$ look for the proper leg in $\Delta[o, d] * /$
e $(1+\varepsilon)$-stretch

About Oracles for TDSP．．．

．．．FIFO abiding，pwl arc－delay functions with K breakpoints in the arc－travel－time functions．．．
QUESTION：\exists some data structure（to precompute），and a query algorithm （to approximately answer routing requests on－the－fly）for TDSP that requires reasonable space and can answer arbiltrary queries efficiently？
－Trivial solution（I）：Precompute all $(1+\varepsilon)$－upper－approximating trravel－time functions（summaries）$\Delta[o, d]$ for every od－pair．
自 $\left(n^{2}(K+1)\right)$ space
运 $\mathrm{O}(\log \log (K))$ query time
$/ *$ store all（succinct representations of）$\Delta[o, d] * /$
e $(1+\varepsilon)$－stretch
－Trivial solution（II）：No preprocessing．Respond to queries with TD－Dijkstra：
道 $\mathrm{O}(n+m+K)$ space
／＊only store the instance＊／
\＃ $\mathrm{O}([m+n \log (n)] \times \log \log (K))$ query time
／＊run TD－Dijkstra＊／
送 1－stretch

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...
QUESTION: \exists some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbitrary queries efficiently?

- Trivial solution (I): Precompute all $(1+\varepsilon)$-upper-approximating trravel-time functions (summaries) $\Delta[o, d]$ for every od-pair.

```
当 \(\mathrm{O}\left(n^{2}(K+1)\right)\) space
\(\cdots \mathrm{O}(\log \log (K))\) query time
\(\cdots(1+\varepsilon)\)-stretch
```

- Trivial solution (II): No preprocessing. Respond to queries with TD-Dijkstra:
B $\mathrm{O}(n+m+K)$ space
/* only store the instance */
\# $\mathrm{O}([m+n \log (n)] \times \log \log (K))$ query time
/* run TD-Dijkstra */
[B 1-stretch
GOAL: Can we do better?
- Assure subquadratic space \& sublinear query time.
- Provide a smooth tradeoff among space / query time / stretch.

Assumptions: Statement (I)

Q Static \& undirected world \Longrightarrow time-dependent \& directed world?

Assumptions: Statement (I)

Q Static \& undirected world \Longrightarrow time-dependent \& directed world?
ASSUMPTION 1: (bounded travel time slopes)
Slopes of $D[0, d] \in\left[-\Lambda_{\min }, \Lambda_{\max }\right]$, for constants $\Lambda_{\max }>0, \Lambda_{\min } \in[0,1)$.

Assumptions: Statement (I)

Q Static \& undirected world \Longrightarrow time-dependent \& directed world?
ASSUMPTION 1: (bounded travel time slopes)
Slopes of $D[0, d] \in\left[-\Lambda_{\min }, \Lambda_{\max }\right]$, for constants $\Lambda_{\max }>0, \Lambda_{\min } \in[0,1)$.

ASSUMPTION 2: (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T), D[o, d](t) \leq \zeta \cdot D[d, o](t)$

Assumptions: Statement (I)

Q Static \& undirected world \Longrightarrow time-dependent \& directed world?
ASSUMPTION 1: (bounded travel time slopes)
Slopes of $D[0, d] \in\left[-\Lambda_{\min }, \Lambda_{\max }\right]$, for constants $\Lambda_{\max }>0, \Lambda_{\min } \in[0,1)$.

ASSUMPTION 2: (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T), D[o, d](t) \leq \zeta \cdot D[d, o](t)$

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an origin is at most polylogarithmic.

ORIGINAL FREE FLOW BALL
\#vertices $=F$ (V) \quad free flow radius $\longrightarrow 0$

Assumptions: Statement (I)

Q Static \& undirected world \Longrightarrow time-dependent \& directed world?
ASSUMPTION 1: (bounded travel time slopes)
Slopes of $D[0, d] \in\left[-\Lambda_{\min }, \Lambda_{\max }\right]$, for constants $\Lambda_{\max }>0, \Lambda_{\min } \in[0,1)$.

ASSUMPTION 2: (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T), D[o, d](t) \leq \zeta \cdot D[d, o](t)$

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an origin is at most polylogarithmic.

Assumptions: Statement (I)

Q Static \& undirected world \Longrightarrow time-dependent \& directed world?
ASSUMPTION 1: (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-\Lambda_{\min }, \Lambda_{\max }\right]$, for constants $\Lambda_{\max }>0, \Lambda_{\min } \in[0,1)$.

ASSUMPTION 2: (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T), D[o, d](t) \leq \zeta \cdot D[d, o](t)$

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an origin is at most polylogarithmic.

Assumptions: Statement (II)

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- Dijkstra Rank $\operatorname{DR}[o, d]\left(t_{o}\right)$: size of smallest ball from $\left(o, t_{o}\right)$, until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)
For $\lambda \in \mathrm{o}\left(\frac{\log (n)}{\log \log (n)}\right)$ the following hold:

Assumptions: Statement (II)

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- Dijkstra Rank $D R[o, d]\left(t_{o}\right)$: size of smallest ball from $\left(o, t_{o}\right)$, until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)
For $\lambda \in \mathrm{o}\left(\frac{\log (n)}{\log \log (n)}\right)$ the following hold:
(1) The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $D R[o, d]\left(t_{o}\right) \in \tilde{O}\left(\left(D[o, d]\left(t_{o}\right)\right)^{\lambda}\right)$

Assumptions: Statement (II)

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- Dijkstra Rank $D R[o, d]\left(t_{o}\right)$: size of smallest ball from $\left(o, t_{o}\right)$, until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)
For $\lambda \in \mathrm{o}\left(\frac{\log (n)}{\log \log (n)}\right)$ the following hold:
(1) The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $D R[o, d]\left(t_{0}\right) \in \tilde{O}\left(\left(D[o, d]\left(t_{0}\right)\right)^{\lambda}\right)$
(2) The travel-time is upper-bounded by a degree- $\left(\frac{1}{\lambda}\right)$ polynomial of the Dijkstra-rank: $D[o, d]\left(t_{o}\right) \in \tilde{O}\left(\left(D R[o, d]\left(t_{o}\right)\right)^{1 / \lambda}\right)$

Assumptions: Statement (II)

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- Dijkstra Rank $D R[o, d]\left(t_{o}\right)$: size of smallest ball from $\left(o, t_{o}\right)$, until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)
For $\lambda \in \mathrm{o}\left(\frac{\log (n)}{\log \log (n)}\right)$ the following hold:
(1) The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $D R[o, d]\left(t_{0}\right) \in \tilde{O}\left(\left(D[o, d]\left(t_{0}\right)\right)^{\lambda}\right)$
(2) The travel-time is upper-bounded by a degree- $\left(\frac{1}{\lambda}\right)$ polynomial of the Dijkstra-rank: $D[o, d]\left(t_{0}\right) \in \tilde{O}\left(\left(D R[o, d]\left(t_{0}\right)\right)^{1 / \lambda}\right)$

R1 The doubling dimension assumption used in metric embeddings correlates the distance metric with the Dijkstra-rank metric. For constant $\lambda \geq 1$, we can have an oracle providing a PTAS, for static metrics.

Assumptions: Statement (II)

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- Dijkstra Rank $D R[o, d]\left(t_{o}\right)$: size of smallest ball from $\left(o, t_{o}\right)$, until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)
For $\lambda \in \mathrm{o}\left(\frac{\log (n)}{\log \log (n)}\right)$ the following hold:
(1) The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $D R[o, d]\left(t_{0}\right) \in \tilde{O}\left(\left(D[o, d]\left(t_{0}\right)\right)^{\lambda}\right)$
(2) The travel-time is upper-bounded by a degree- $\left(\frac{1}{\lambda}\right)$ polynomial of the Dijkstra-rank: $D[o, d]\left(t_{0}\right) \in \tilde{O}\left(\left(D R[o, d]\left(t_{0}\right)\right)^{1 / \lambda}\right)$

R1 The doubling dimension assumption used in metric embeddings correlates the distance metric with the Dijkstra-rank metric. For constant $\lambda \geq 1$, we can have an oracle providing a PTAS, for static metrics.

R2 We have proved that Assumption $4 \Rightarrow$ Assumption 3

Overview of Our Theoretical Results

	preprocessing space/time	query time	recursion depth
(ICALP (2014) ALGORITHMICA (2016))	$K^{*} \cdot n^{2-\beta+\alpha(1)}$	$n^{\delta+0}(1)$	$R \in \mathrm{O}(1)$
TRAPONLY (ISAAC (2016))	$n^{2-\beta+o(1)}$	$n^{\delta+0}(1)$	$R \approx \frac{\delta}{a}-1$
FLAT (ISAAC (2016)) \& CELAT (ATMOS (2017))	$n^{2-\beta+o(1)}$	$n^{\delta+0}(1)$	$R \approx \frac{2 \delta}{a}-1$
HORN (ISAAC (2016))	$n^{2-\beta+o(1)}$	$\approx \Gamma[0, d]\left(t_{0}\right)^{\delta+o(1)}$	$R \approx \frac{2 \delta}{a}-1$

- ...assuming TD-instances with period $T=n^{a}$ for constant $a \in(0,1)$.
- ...achieving approx. guarantee $1+\varepsilon \cdot \frac{(\varepsilon / \psi)^{R+1}}{(\varepsilon / \psi)^{R+1}-1}$.
- For all oracles, except for the first, we assume that $\beta \downarrow 0$.

Recap of travel-time oracles

 ...approximation, preprocessing and query algorithms...
Approximation Algorithms for Path-Travel-Time Functions

GIVEN: Arc-traversal-time (continuous, pwl) functions $D[u v]:[0, T) \mapsto \mathbb{R}_{>0}$.

GOAL: Succinct representations of (unknown, pwl,continuous) min-travel-time functions.

$$
D[o, d]=\min _{\pi \in P_{o, d}}\{D[\pi]\}:[0, T) \mapsto \mathbb{R}_{>0}
$$

PROBLEM: Superpolynomial time/space complexities.

SOLUTION: Upper-approximations with polynomial time complexity.

CHALLENGE: One-to-all construction of succinct representations for the approximate min-travel-time functions.

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...

- Assume concavity (to be removed later) of the unknown functions $D[o, v]$ in an interval [t_{o}, t_{1}] of departure times.

- Bisect on the common departure-times axis: Recursively keep sampling, simultaneously for all active destinations $v \in V$, distance values from 0 , at mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...

- Assume concavity (to be removed later) of the unknown functions $D[o, v]$ in an interval [t_{o}, t_{1}] of departure times.

- Bisect on the common departure-times axis: Recursively keep sampling, simultaneously for all active destinations $v \in V$, distance values from o, at mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...

- Assume concavity (to be removed later) of the unknown functions $D[o, v]$ in an interval [t_{o}, t_{1}] of departure times.

- Bisect on the common departure-times axis: Recursively keep sampling, simultaneously for all active destinations $v \in V$, distance values from 0 , at mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...

- Assume concavity (to be removed later) of the unknown functions $D[o, v]$ in an interval [t_{o}, t_{1}] of departure times.

- Bisect on the common departure-times axis: Recursively keep sampling, simultaneously for all active destinations $v \in V$, distance values from 0 , at mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...

- Assume concavity (to be removed later) of the unknown functions $D[o, v]$ in an interval [t_{o}, t_{1}] of departure times.

- Bisect on the common departure-times axis: Recursively keep sampling, simultaneously for all active destinations $v \in V$, distance values from o, at mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Remark: Analysis based on closed-form expression of maximum absolute error (length of purple line).

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...

For each continuous, pwl, not necessarily concave arc-delay function:
(1) Run Reverse

TD-Dijkstra on reversed
graph, to project each concavity-spoiling PB to a departure-time (called primitive image -- PI) at the origin 0 .

(2) For each pair of consecutive Pls of o in $[0, T)$, run Bisect ion for the corresponding departure-times interval.
(3) Return the concatenation of upper-approximating trravel-time summaries.

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...
Theorem: Complexity of Bisect ion
For each (common) origin $o \in V$,

- SPACE:

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, v](0, T)}\right)\right\}\right)
$$

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...
Theorem: Complexity of Bisect ion
For each (common) origin $o \in V$,

- SPACE:

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[o, v](0, T)}\right)\right\}\right)
$$

- TIME (in number of TDSP-Probes):

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot \max _{v \in V}\left\{\log \left(\frac{T \cdot\left(\Lambda_{\max }+1\right)}{\varepsilon D_{\min }[0, v](0, T)}\right)\right\} \cdot \frac{1}{\varepsilon} \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, v](0, T)}\right)\right\}\right)
$$

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...
Theorem: Complexity of Bisect ion
For each (common) origin $o \in V$,

- SPACE:

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, v](0, T)}\right)\right\}\right)
$$

- TIME (in number of TDSP-Probes):

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot \max _{v \in V}\left\{\log \left(\frac{T \cdot\left(\Lambda_{\max }+1\right)}{\varepsilon D_{\min }[0, v](0, T)}\right)\right\} \cdot \frac{1}{\varepsilon} \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, v](0, T)}\right)\right\}\right)
$$

PROS	CONS

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...
Theorem: Complexity of Bisect ion
For each (common) origin $o \in V$,

- SPACE:

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, v](0, T)}\right)\right\}\right)
$$

- TIME (in number of TDSP-Probes):

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot \max _{v \in V}\left\{\log \left(\frac{T \cdot\left(\Lambda_{\max }+1\right)}{\varepsilon D_{\min }[0, v](0, T)}\right)\right\} \cdot \frac{1}{\varepsilon} \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, V](0, T)}\right)\right\}\right)
$$

PROS

CONS

© Simplicity.
(9) Space-optimal for concave functions.
(9) First one-to-all approximation.

Approximation Algorithms for Path-Travel-Time Functions

First Attempt: Bisection Algorithm (BIS)...
Theorem: Complexity of Bisect ion
For each (common) origin $o \in V$,

- SPACE:

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{v \in V}\left\{\log \left(\frac{D_{\max }[0, v](0, T)}{D_{\min }[0, v](0, T)}\right)\right\}\right)
$$

- TIME (in number of TDSP-Probes):

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot \max _{v \in V}\left\{\log \left(\frac{T \cdot\left(\Lambda_{\max }+1\right)}{\varepsilon D_{\text {min }}[0, v](0, T)}\right)\right\} \cdot \frac{1}{\varepsilon} \max _{v \in V}\left\{\log \left(\frac{D_{\text {max }}[0, v](0, T)}{\left.D_{\text {min }}[0,]\right](0, T)}\right)\right\}\right)
$$

PROS

© Simplicity.
(9) Space-optimal for concave functions.
(9) First one-to-all approximation.

CONS

© Linear
dependence on degree of disconcavity K^{*}.

Approximation Algorithms for Path-Travel-Time Functions

Second Attempt: Trapezoidal Algorithm (TRAP)...

TRAP samples simultaneously all min-travel-time values from ℓ, for ever-finer departure-points, until the approximation guarantee is achieved for all destinations.

- Avoids dependence on the shape of the function to approximate.
- Exploits knowledge of min/max slopes $\Lambda_{\min } / \Lambda_{\max }$ of min-travel-time functions.

Approximation Algorithms for Path-Travel-Time Functions

Second Attempt: Trapezoidal Algorithm (TRAP)...

TRAP samples simultaneously all

 min-travel-time values from ℓ, for ever-finer departure-points, until the approximation guarantee is achieved for all destinations.- Avoids dependence on the shape of the function to approximate.
- Exploits knowledge of min/max slopes $\Lambda_{\min } / \Lambda_{\max }$ of min-travel-time functions.

Orange line: Upper-approximating function $\Delta[\ell, v]$.
Green line: Lower-approximation.
Blue line: The unknown min-travel-time function $D[\ell, v]$.

Approximation Algorithms for Path-Travel-Time Functions

Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split $[0, T)$ into $\left\lceil\frac{T}{\tau}\right\rceil$ length τ intervals.

- TIME \& SPACE: $\Delta[\ell, v]=$ concatenation of approximations by TRAP for all subintervals. $\Rightarrow \mathrm{O}\left(\frac{T}{\tau}\right) \mathrm{BPs}$ and TDSP-probes.
- APPROXIMABILITY:

IF $\min _{k \in \mathbb{N}: k \tau \in[0, T)}\{D[\ell, v](k \tau)\} \geq\left(1+\frac{1}{\epsilon}\right) \Lambda_{\text {max }} \cdot \tau$ THEN $\Delta[\ell, v]$ is $(1+\epsilon)$-approximation of $D[\ell, v]$ in $[0, T)$.

Approximation Algorithms for Path-Travel-Time Functions

Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split $[0, T)$ into $\left\lceil\frac{T}{\tau}\right\rceil$ length $-\tau$ intervals.

- TIME \& SPACE: $\Delta[\ell, v]=$ concatenation of approximations by TRAP for all subintervals. $\Rightarrow \mathrm{O}\left(\frac{T}{\tau}\right) \mathrm{BPs}$ and TDSP-probes.
- APPROXIMABILITY:

IF $\min _{k \in \mathbb{N}: k \tau \in[0, T)}\{D[\ell, v](k \tau)\} \geq\left(1+\frac{1}{\epsilon}\right) \Lambda_{\text {max }} \cdot \tau$
THEN $\Delta[\ell, v]$ is $(1+\epsilon)$-approximation of $D[\ell, v]$ in $[0, T)$.

PROS

CONS

© Simplicity.
(9) One-to-all approximation.
© Independence from shape of the function to approximate.

Approximation Algorithms for Path-Travel-Time Functions

Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split $[0, T)$ into $\left\lceil\frac{T}{\tau}\right\rceil$ length $-\tau$ intervals.

- TIME \& SPACE: $\Delta[\ell, v]=$ concatenation of approximations by TRAP for all subintervals. $\Rightarrow \mathrm{O}\left(\frac{T}{\tau}\right) \mathrm{BPs}$ and TDSP-probes.
- APPROXIMABILITY:

IF $\min _{k \in \mathbb{N}: k \tau \in[0, T)}\{D[\ell, v](k \tau)\} \geq\left(1+\frac{1}{\epsilon}\right) \Lambda_{\text {max }} \cdot \tau$
THEN $\Delta[\ell, v]$ is $(1+\epsilon)$-approximation of $D[\ell, v]$ in $[0, T)$.

PROS

© Simplicity.
\oplus One-to-all approximation.
© Independence from shape of the function to approximate.

CONS

- No theoretical guarantee of space-optimality.
- Inappropriate (in theory) for "nearby" vertices around ℓ.

Approximation Algorithms for Path-Travel-Time Functions

Third Attempt: Combinatorial Trapezoidal Algorithm (CTRAP)...

CTRAP samples and stores shortest-path trees, rather than travel-time functions.

- Also avoids dependence on the shape of the function to approximate.
- Exploits knowledge of min slope $\Lambda_{\min }$ of min-travel-time functions.
- Constructs tighter
upper-approximating functions, by composing approximate arrival-time functions along
 Shortest-Path trees (in BFS order).

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

FLAT: Preprocessing Phase

- Rationale:
- Identify a (small) subset L of allegedly "important" vertices (landmarks) in the network, which are assumed to be crucial for almost all optimal paths.
- Use the approximation algorithm (BIS, TRAP, or CTRAP) to compute approximate travel-time summaries (upper-approximating functions) $\Delta[\ell, v], \forall(\ell, v) \in L \times V$, s.t.:

$$
\forall t \in[0, T), D[\ell, v](t) \leq \Delta[\ell, v](t) \leq(1+\epsilon) \cdot D[\ell, v](t)
$$

FLAT: Preprocessing Phase

- Rationale:
- Identify a (small) subset L of allegedly "important" vertices (landmarks) in the network, which are assumed to be crucial for almost all optimal paths.
- Use the approximation algorithm (BIS, TRAP, or CTRAP) to compute approximate travel-time summaries (upper-approximating functions) $\Delta[\ell, v], \forall(\ell, v) \in L \times V$, s.t.:

$$
\forall t \in[0, T), D[\ell, v](t) \leq \Delta[\ell, v](t) \leq(1+\epsilon) \cdot D[\ell, v](t)
$$

- Landmark Selection Policies:
- RANDOM (R): Independent and random selections, without repetitions.
- SPARSE-RANDOM (SR): Sequential and random selections, excluding nearby vertices of already selected landmarks.
- SPARSE KAHIP (SK): Selection of boundary vertices in a given KaHIP partition, excluding nearby vertices of already selected landmarks.
- BETWEENESS CENTRALITY (BC): Sequential selection according to the BC-order, excluding nearby vertices of already selected landmarks.

CF LAT: Preprocess trees rather than functions

Challenge for FLAT: Large preprocessing requirements (typical for landmark-based algorithms).

CF LA T: Preprocess trees rather than functions

: Challenge for FLAT: Large preprocessing requirements (typical for landmark-based algorithms).

The combinatorial structure of the optimal solution changes over time less frequently than the corresponding min-travel-time function.

CFLAT: Preprocess trees rather than functions

兰 Challenge for FLAT: Large preprocessing requirements (typical for landmark-based algorithms).

The combinatorial structure of the optimal solution changes over time less frequently than the corresponding min-travel-time function.

运 Combinatorial FLAT (CFLAT):

- Forget about (upper-approximations of) travel-time functions.
- Store only min-travel-time trees rooted at time-stamped landmarks $\left(\ell, t_{\ell}\right)$.
- Avoid vertex IDs and represent parents in the trees only by their relative order in the adjacency lists of incoming arcs.
- Store two different sequences per vertex v and landmark ℓ :
\star A sequence of departure-times from the landmark.
\star A sequence of predecessors, one per departure-time, in the corresponding unique ℓv-path.

CF LAT: Store only sampled trees \& avoid duplicates

- The CTRAP approximation algorithm:
- avoids storing travel-times, and only stores the departure-times and the predecessors sequences for all (ℓ, v) pairs.
- avoids storing intermediate breakpoints, between pairs of consecutive departure-time samples (saves 10 M and 100 M breakpoints per landmark in BER and GER, respectively).

CFLAT: Store only sampled trees \& avoid duplicates

- The CTRAP approximation algorithm:
- avoids storing travel-times, and only stores the departure-times and the predecessors sequences for all (ℓ, v) pairs.
- avoids storing intermediate breakpoints, between pairs of consecutive departure-time samples (saves 10 M and 100 M breakpoints per landmark in BER and GER, respectively).
- The CFLAT oracle:
- merges consecutive breakpoints with common predecessor.
- stores each sequence of departure times only once and lets all destinations corresponding to it to just point at it.
- uses two random hash functions for fast recognition of identical sequences of departure times. In case of positive answer, exhaustively check the tautology of the two sequences.

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until the N closest landmarks $\ell_{0}, \ldots, \ell_{N-1}$ (or d) are settled.
2. return $\min _{i \in\{0,1, \ldots, N-1\}}\left\{s o l_{i}=D\left[o, \ell_{i}\right]\left(t_{o}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[o, \ell_{i}\right]\left(t_{o}\right)\right)\right\}$

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until the N closest landmarks $\ell_{0}, \ldots, \ell_{N-1}$ (or d) are settled.
2. return $\min _{i \in\{0,1, \ldots, N-1\}}\left\{s o l_{i}=D\left[o, \ell_{i}\right]\left(t_{o}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[o, \ell_{i}\right]\left(t_{o}\right)\right)\right\}$

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until the N closest landmarks $\ell_{0}, \ldots, \ell_{N-1}$ (or d) are settled.
2. return $\min _{i \in\{0,1, \ldots, N-1\}}\left\{s o l_{i}=D\left[o, \ell_{i}\right]\left(t_{o}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[o, \ell_{i}\right]\left(t_{o}\right)\right)\right\}$

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until the N closest landmarks $\ell_{0}, \ldots, \ell_{N-1}$ (or d) are settled.
2. return $\min _{i \in\{0,1, \ldots, N-1\}}\left\{s o l_{i}=D\left[o, \ell_{i}\right]\left(t_{o}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[o, \ell_{i}\right]\left(t_{o}\right)\right)\right\}$

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until the N closest landmarks $\ell_{0}, \ldots, \ell_{N-1}$ (or d) are settled.
2. return $\min _{i \in\{0,1, \ldots, N-1\}}\left\{s o l_{i}=D\left[o, \ell_{i}\right]\left(t_{o}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[o, \ell_{i}\right]\left(t_{o}\right)\right)\right\}$

Performance of FCA (N) for random landmarks

- In theory: Constant-approximation, for a metric-dependent constant.

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball $B\left(0, t_{0}\right)$ until the N closest landmarks $\ell_{0}, \ldots, \ell_{N-1}$ (or d) are settled.
2. return $\min _{i \in\{0,1, \ldots, N-1\}}\left\{s o l_{i}=D\left[o, \ell_{i}\right]\left(t_{o}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[o, \ell_{i}\right]\left(t_{o}\right)\right)\right\}$

Performance of FCA (N) for random landmarks

- In theory: Constant-approximation, for a metric-dependent constant.
- In practice: Fast query-response times, optimal solutions in most cases.

CFCA (N) : A new query algorithm

procedure CFCA (N)

STEP 1: A TDD ball is grown from $\left(o, t_{0}\right)$, until N landmarks are settled.
1.1: if d is already settled then return optimal solution.
1.2: For each settled landmark $\ell, t_{\ell}=t_{o}+D[o, \ell]\left(t_{o}\right)$.

STEP 2: An appropriate subgraph is recursively created from d.
2.1: $\quad Q=\{d\}$
2.2: while \neg Q.Empty () do :
2.3
2.4
2.5:
if $v=Q \cdot \operatorname{Pop}()$ is not explored from STEP 1's TDD ball then :
for each settled landmark ℓ of STEP 1 do :
Mark the arcs $\left\langle\operatorname{PRED}[\ell, v]\left(t_{\ell}^{-}\right), v\right\rangle$ and $\left\langle\operatorname{PRED}[\ell, v]\left(t_{\ell}^{+}\right), v\right\rangle$ leading to v, where $\left[t_{\ell}^{-}, t_{\ell}^{+}\right)$is the unique interval in $\operatorname{DEP}[\ell, v]$ containing t_{ℓ}.
2.6:
if any of the predecessors was not yet visited
then $\left\{Q . \operatorname{Push}\left(\operatorname{PRED}[\ell, v]\left(t_{\ell}^{-}\right)\right) ; Q . P u s h\left(\operatorname{PRED}[\ell, v]\left(t_{\ell}^{+}\right)\right)\right\}$
2.7: endfor
2.8: endwhile

STEP 3: return optimal od-path in the induced subgraph by the TDD ball of STEP 1, and the marked arcs of STEP 2.

Significance of Path Construction

(0) For time-independent instances, path construction is quite easy and has essentially negligible contribution to the query-time.

Significance of Path Construction

0 For time-independent instances, path construction is quite easy and has essentially negligible contribution to the query-time.
I. For time-dependent instances, path construction is not so easy anymore, and usually contributes a significant amount to the query-time:

- During the (backward) path construction from the destination, one has to deal with evaluations of continuous functions rather than just scalars.
- For the instance of Germany (see experiments), for both CFLAT and KaTCH, the path-construction cost contributes more than 30\% of the total query-time.

Significance of Path Construction

0 For time-independent instances, path construction is quite easy and has essentially negligible contribution to the query-time.
I. For time-dependent instances, path construction is not so easy anymore, and usually contributes a significant amount to the query-time:

- During the (backward) path construction from the destination, one has to deal with evaluations of continuous functions rather than just scalars.
- For the instance of Germany (see experiments), for both CFLAT and KaTCH, the path-construction cost contributes more than 30\% of the total query-time.

B Steps 2 and 3 leave more room for (future) algorithm engineering.

Experimental Evaluation

 ...setup, instances, evaluation \& comparison...
Instances

Instance	\#nodes	\#edges
BER	473,253	$1,126,468$
GER	$4,692,091$	$10,805,429$
EUR	$18,010,173$	$42,188,664$
GRID	$5,400,976$	$11,045,894$

- Real-world Berlin instance (BER) -- kindly provided by TomTom.
- Real-world Germany instance (GER) -- kindly provided by PTV AG.
- Synthetic Europe instance (EUR) -- typical benchmark network of DIMACS challenge.
- Synthetic grid instance (GRID) -- constructed in this work.

Experiment 1: Preprocessing times of TD-Oracles

- Significant improvement by exploiting a time-dependent variant of the Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.
- Exploitation of a careful combination of data-parallelism and algorithmic parallelism.
- Exploitation of the amorphous-data-parallelism rationale, which also boosted the preprocessing phase.

Experiment 1: Preprocessing times of TD-Oracles

- Significant improvement by exploiting a time-dependent variant of the Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.
- Exploitation of a careful combination of data-parallelism and algorithmic parallelism.
- Exploitation of the amorphous-data-parallelism rationale, which also boosted the preprocessing phase.

DIJ vs DS @ OFLAT oracle									
INSTANCE (\# landmarks)	BERLIN (1000 landmarks)			GERMANY (1000 landmarks)			EUROPE (900 landmarks)		
method	 1xDIJsh(24)	OTRAP \& $8 \times D S(3)$	speedup	 1xDU/sh(12)	OTRAP \& $12 \times \operatorname{DS}(2)$	speedup	OTRAP \& 1xDUsh(12)	OTRAP \& $4 \times D S(6)$	speedup
total time (min)	5.964	7.701	0.774	123.454	89.216	1.384	5293.333	3549.745	1.491

Experiment 2: Query Response Times

QUERY RESPONSE TIMES(msec)		CFLAT QuERY : : CFCA(N)	OFLAT QUERY: : OFCA(N)		KaTCH (msec)
GER		4K SR Landmarks	5K SR Landmarks		0.820
	$\begin{aligned} & \text { SPT } \\ & \text { alg } \end{aligned}$	1xDIJbh(1)	$\begin{gathered} 1 \times \operatorname{DS}(1) \\ {[\Delta=32]} \end{gathered}$	1xDIJsh(1)	
	$\mathrm{N}=1$	0.582	0.692	0.4972	
	$\mathrm{N}=2$	1.242	1.087	0.9612	
	$\mathrm{N}=4$	2.413	1.926	1.8768	
	$\mathrm{N}=6$	3.572	2.904	2.7515	
EUR		--	700 SR Landmarks		1.560
	$\begin{aligned} & \text { SPT } \\ & \text { alg } \end{aligned}$	--	$\begin{aligned} & 1 \times \operatorname{DS}(12) \\ & {[\Delta=128]} \end{aligned}$	1xDIJsh(1)	
	$\mathrm{N}=1$	--	3.332	7.998	
	$\mathrm{N}=2$	--	4.678	15.463	
	$\mathrm{N}=4$	--	7.688	30.008	
	$\mathrm{N}=6$	--	10.444	44.652	

Thank You For Your Attention

Questions

MDPI / ALGORITHMS : Promotion slide...

푼

algorithms

an open access journal by Mopy

Journal's Aims and Scope:

Algorithms (ISSN 1999-4893) is an international journal, which provides an advanced forum for studies related to algorithms and their applications.
The scope of Algorithms includes:

- Theory of algorithms
- Combinatorial optimization and operations research, with applications
- Special data structures
- Distributed and parallel algorithms
- Metaheuristics
- Performance of algorithms and algorithm engineering
- Applications in other areas of computer science
- Algorithms in biology, chemistry, physics, language
- processing, etc.
- Image processing with applications
- Machine learning, including grammatical inference
- Educational aspects: how to teach algorithms

Open Access
Indexed by Scopus, Ei, and ESCI

Prof. Dr. Henning Fernau
Editor-in-Chief

First Decision 19.6 days

No Space Constraints

