Exploring earliest-arrival paths in large-scale time-dependent networks via combinatorial oracles

Workshop on Algorithmic Aspects of Temporal Graphs II

Patras, July 8 2019

Spyros Kontogiannis kontog@uoi.gr

Joint work with:

G. Papastavrou CSE.Uol

A. Papadopoulos CEID.UPatras

A. Paraskevopoulos CEID.UPatras

C. Zaroliagis CEID.UPatras

D. Wagner **KIT**

Time-Dependent Route Planning

...problem, assumptions and challenges...

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

... a fundamental problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time values: D[uv] > 0.
- Origin-destination pair: $(o, d) \in V \times V$.

... a fundamental problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time values: D[uv] > 0.
- Origin-destination pair: $(o, d) \in V \times V$.

• Output: $\pi^* \in \arg\min_{\pi \in P_{o,d}} \{ D[\pi] = \sum_{a \in \pi} D[a] \}$

... a fundamental problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time values: D[uv] > 0.
- Origin-destination pair: $(o, d) \in V \times V$.
- Output: $\pi^* \in \arg\min_{\pi \in P_{o,d}} \{ D[\pi] = \sum_{\alpha \in \pi} D[\alpha] \}$
- MOTIVATION & CHALLENGES: Routing in road networks.
 - V = set of intersections, E = set of road segments.
 - ► Non-planar, sparse ($|E| \in O(|V|)$) graphs.
 - Very large size: |V| = millions of intersections.

... a fundamental problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time values: D[uv] > 0.
- Origin-destination pair: $(o, d) \in V \times V$.
- Output: $\pi^* \in \arg\min_{\pi \in P_{o,d}} \{ D[\pi] = \sum_{\alpha \in \pi} D[\alpha] \}$
- MOTIVATION & CHALLENGES: Routing in road networks.
 - V = set of intersections, E = set of road segments.
 - Non-planar, sparse ($|E| \in O(|V|)$) graphs.
 - Very large size: |V| = millions of intersections.

...possibly the most characteristic *success story* of algorithm engineering... Numerous **oracles** and **speedup techniques** for static road networks.

Time-Dependent Shortest Paths

...a more challenging problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time functions: $D[uv] : [0, T) \mapsto \mathbb{R}_{>0}$. Assumption: Periodic, continuous, piecewise-linear, FIFO-compliant functions...
- Origin-destination-dep. time triple: $(o, d, t_o) \in V \times V \times [0, T).$

Time-Dependent Shortest Paths

...a more challenging problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time functions: $D[uv] : [0, T) \mapsto \mathbb{R}_{>0}$. Assumption: Periodic, continuous, piecewise-linear, FIFO-compliant functions...
- Origin-destination-dep. time triple: $(o, d, t_o) \in V \times V \times [0, T).$

• Output:

 $\pi^* \in \arg\min_{\pi \in P_{o,d}} \{ D[\pi](t_o) = \sum_{\alpha \in \pi} D[\alpha](t_o) \}$

Time-Dependent Shortest Paths

...a more challenging problem, both in theory and in practice...

• Input:

- Directed graph G = (V, E).
- Arc-traversal-time functions: $D[uv] : [0, T) \mapsto \mathbb{R}_{>0}$. Assumption: Periodic, continuous, piecewise-linear, FIFO-compliant functions...
- Origin-destination-dep. time triple: $(o, d, t_o) \in V \times V \times [0, T).$
- Output:

 $\pi^* \in \arg\min_{\pi \in P_{o,d}} \{ D[\pi](t_o) = \sum_{a \in \pi} D[a](t_o) \}$

- MOTIVATION & CHALLENGES: Routing in road networks.
 - V = set of intersections, E = set of road segments.
 - Non-planar, sparse ($|E| \in O(|V|)$) graphs.
 - Very large size: |V| = millions of intersections.
 - Time-Dependence: Computationally harder instances.

All How would you commute as fast as possible from o to d, for a given departure time t_o from o? E.g.:

Q1 How would you commute as fast as possible from *o* to *d*, for a given

departure time t_o from o? E.g.: $t_o = 0$

Q1 How would you commute as fast as possible from o to d, for a given

departure time t_o from o? E.g.: $t_o = 1$

How would you commute as fast as possible from o to d, for a given departure time t_o from o? E.g.:

All How would you commute as fast as possible from *o* to *d*, for a given departure time *t_o* from *o*? E.g.:

All How would you commute as fast as possible from o to d, for a given departure time t_o from o? E.g.:

All How would you commute as fast as possible from o to d, for a given departure time t_o from o? E.g.:

Q2 What if you are not sure about the departure time?

earliest-arrival (path) function = $\begin{pmatrix} \text{orange path}, & t_o \in [0, 0.03) \\ \text{yellow path}, & t_o \in [0.03, 2.9) \\ \text{purple path}, & t_o \in [2.9, +\infty) \end{pmatrix}$

А

Time-Dependent Shortest Path: Definitions

INPUT:

- Directed graph G = (V, A), n = |V|.
- Arc travel-time / arrival-time functions: $D[uv](t_u) \quad Arr[uv](t_u) = t_u + D[uv](t_u)$

Time-Dependent Shortest Path: Definitions

INPUT:

• Directed graph G = (V, A), n = |V|.

• Arc travel-time / arrival-time functions: $D[uv](t_u) \quad Arr[uv](t_u) = t_u + D[uv](t_u)$

DEFINITIONS:

- $P_{o,d}$: Set of od-paths; $\pi = (a_1, \dots, a_k) \in P_{o,d}$
- Path travel-time / arrival-time functions: $Arr[\pi](t_o) = Arr[\alpha_k](Arr[\alpha_{k-1}](\cdots(Arr[\alpha_1](t_o))\cdots))$ $D[\pi](t_o) = Arr[\pi](t_o) - t_o$

/* function composition */

• Earliest-arrival / Shortest-travel-time functions: $Arr[o, d](t_o) = \min_{\pi \in P_{o,d}} \{ Arr[\pi](t_o) \}, D[o, d](t_o) = Arr[o, d](t_o) - t_o$

Time-Dependent Shortest Path: Definitions

INPUT:

• Directed graph G = (V, A), n = |V|.

• Arc travel-time / arrival-time functions: $D[uv](t_u) \quad Arr[uv](t_u) = t_u + D[uv](t_u)$

DEFINITIONS:

- $P_{o,d}$: Set of od-paths; $\pi = (a_1, \dots, a_k) \in P_{o,d}$
- Path travel-time / arrival-time functions: $Arr[\pi](t_o) = Arr[a_k](Arr[a_{k-1}](\cdots(Arr[a_1](t_o))\cdots))$ $D[\pi](t_o) = Arr[\pi](t_o) - t_o$

/* function composition */

• Earliest-arrival / Shortest-travel-time functions: $Arr[o, d](t_o) = \min_{\pi \in P_{o,d}} \{ Arr[\pi](t_o) \}, D[o, d](t_o) = Arr[o, d](t_o) - t_o$

GOALS:

- For given departure-time t_o from o, determine $t_d = Arr[o, d](t_o)$.
 - Provide a succinct representation of Arr[o, d], or of D[o, d].

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

FIFO Arc-Travel-Time Functions

Slopes of all $D[uv](t) \ge -1$ (e.g., for vehicles in road networks).

 \Rightarrow **non-decreasing** arc-arrival, path-arrival and earliest-arrival functions.

 \Rightarrow No reason to wait at vertices while moving along a path.

FIFO Arc-Travel-Time Functions

Slopes of all $D[uv](t) \ge -1$ (e.g., for vehicles in road networks).

 \Rightarrow **non-decreasing** arc-arrival, path-arrival and earliest-arrival functions.

 \Rightarrow No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to *wait at some vertex* (e.g., in public transport).

 \Rightarrow Forbidden waiting: \nexists subpath optimality; \mathcal{NP} -hard.

 \Rightarrow Unrestricted waiting: Equivalent to FIFO.

(Orda-Rom (1990))

(Dreyfus (1969))

FIFO Arc-Travel-Time Functions

Slopes of all $D[uv](t) \ge -1$ (e.g., for vehicles in road networks).

 \Rightarrow **non-decreasing** arc-arrival, path-arrival and earliest-arrival functions.

 \Rightarrow No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).

 \Rightarrow Forbidden waiting: \nexists subpath optimality; \mathcal{NP} -hard.

 \Rightarrow Unrestricted waiting: Equivalent to FIFO.

FIFO arc delay example Spyros Kontogiannis (kontog@uoi.gr) Expl

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

(Orda-Rom (1990))

(Dreyfus (1969))

FIFO Arc-Travel-Time Functions

Slopes of all $D[uv](t) \ge -1$ (e.g., for vehicles in road networks).

 \Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.

 \Rightarrow No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).

 \Rightarrow Forbidden waiting: \nexists subpath optimality; \mathcal{NP} -hard.

 \Rightarrow Unrestricted waiting: Equivalent to FIFO.

FIFO arc delay example Spyros Kontogiannis (kontog@uoi.gr) Expl

arc delay

ple Non-FIFO arc delay example Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

(Dreyfus (1969))

FIFO Arc-Travel-Time Functions

Slopes of all $D[uv](t) \ge -1$ (e.g., for vehicles in road networks).

 \Rightarrow non-decreasing arc-arrival, path-arrival and earliest-arrival functions.

 \Rightarrow No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).

 \Rightarrow Forbidden waiting: \nexists subpath optimality; \mathcal{NP} -hard.

 \Rightarrow Unrestricted waiting: Equivalent to FIFO.

FIFO arc delay example

Equivalent FIFO arc delay (arbitrary waiting)

Spyros Kontogiannis (kontog@uoi.gr) Exploring earlie

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

(Orda-Rom (1990))

(Drevfus (1969))

TDSP vs. vs. EA-Paths in Temporal Graphs

 \approx

Earliest-arrival paths in temporal graphs with step functions for arcdelays and unrestricted waiting Earliest-arrival paths in FIFOabiding TDSP networks with pwl arc-delay functions.

TDSP vs. vs. EA-Paths in Temporal Graphs

Earliest-arrival paths in temporal graphs with step functions for arcdelays and unrestricted waiting

Earliest-arrival paths in FIFO ≈ abiding TDSP networks with pwl arc-delay functions.

Spyros Kontogiannis (kontog@uoi.gr)

TDSP in FIFO networks: Complexity

...for piecewise-linear arc-delay functions, with K breakpoints in total...

• Compute *earliest-arrival-time* at d, for given (o, t_o) :

Ocmpute succinct representations of Arr[o, d], for all departure times:

TDSP in FIFO networks: Complexity

...for piecewise-linear arc-delay functions, with K breakpoints in total...

• Compute *earliest-arrival-time* at d, for given (o, t_o) :

Time-dependent variant of Dijkstra (TDD) works for FIFO instances.

(Dreyfus (1969); Orda-Rom (1990))

- Time-dependent variant of Bellman-Ford (TDBF) works for FIFO instances. (Orda-Rom (1990))
- 2 Compute *succinct representations* of *Arr*[*o*, *d*], for all departure times:

TDSP in FIFO networks: Complexity

...for piecewise-linear arc-delay functions, with K breakpoints in total...

• Compute *earliest-arrival-time* at d, for given (o, t_o) :

- Time-dependent variant of Dijkstra (TDD) works for FIFO instances. (Drevfus (1969): Orda-Rom (1990))
- Time-dependent variant of Bellman-Ford (TDBF) works for FIFO instances. (Orda-Rom (1990))
- 2 Compute *succinct representations* of Arr[o, d], for all departure times:
 - Succinct representation of Arr[o, d] may require space $(K + 1) \cdot n^{\Theta(\log(n))}$, even for sparse networks with affine arc-travel-time functions.

(Foschini-Hershberger-Suri (2011))

► ∃ polynomial-time point-to-point $(1 + \varepsilon)$ -approximation algorithms for D[o, d], requiring space O(K + 1) per (o, d)-pair.

(Dehne-Omran-Sack (2010); Foschini-Hershberger-Suri (2011))

Spyros Kontogiannis (kontog@uoi.gr)

Measuring Quality of Algorithms for TDSP...

- IN THEORY: Guaranteed quality of the proposed solution.
 - OPT: The cost of a min-travel-time od-path.
 - ACTUAL: The cost of the proposed od-path.
 - Maximum absolute error: MAE = ACTUAL OPT.
 - ► **Relative error** (the $(ACTUAL OPT)/OPT \le \epsilon$ value of a $1 + \epsilon$ approximation, as a percentage): $RE = 100 \cdot \frac{ACTUAL - OPT}{OPT} \%$

Measuring Quality of Algorithms for TDSP...

- IN THEORY: Guaranteed quality of the proposed solution.
 - OPT: The cost of a min-travel-time od-path.
 - ACTUAL: The cost of the proposed od-path.
 - Maximum absolute error: MAE = ACTUAL OPT.
 - ► **Relative error** (the $(ACTUAL OPT)/OPT \le \epsilon$ value of a $1 + \epsilon$ approximation, as a percentage): $RE = 100 \cdot \frac{ACTUAL - OPT}{OPT} \%$
- IN PRACTICE: Avg query-response time must be really small, for large-scale instances (e.g., < 1msec for instances with millions of arcs).
- R1 A relative error of 1% implies an *extra delay* of **at most 36sec per hour** of optimal-travel-time!!!

Measuring Quality of Algorithms for TDSP...

- IN THEORY: Guaranteed quality of the proposed solution.
 - OPT: The cost of a min-travel-time od-path.
 - ACTUAL: The cost of the proposed od-path.
 - Maximum absolute error: MAE = ACTUAL OPT.
 - ► **Relative error** (the $(ACTUAL OPT)/OPT \le \epsilon$ value of a $1 + \epsilon$ approximation, as a percentage): $RE = 100 \cdot \frac{ACTUAL - OPT}{OPT} \%$
- IN PRACTICE: Avg query-response time must be really small, for large-scale instances (e.g., < 1msec for instances with millions of arcs).
- R1 A relative error of 1% implies an *extra delay* of **at most 36sec per hour** of optimal-travel-time!!!
- R2 Hard to compare query times of algorithms *running on different machines*. A speedup = Time(Dij)/Time(Alg) over a baseline (time-dependent) Dijkstra implementation might be more meaningful.

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: 3 some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbitrary queries efficiently?

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

- QUESTION: 3 some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbitrary queries efficiently?
 - Trivial solution (I): Precompute all $(1 + \varepsilon)$ -upper-approximating trravel-time functions (summaries) $\Delta[o, d]$ for every *od*-pair.
 - \sim O($n^2(K+1)$) space
 - i O(log log(K)) query time
 - $(1+\varepsilon)$ -stretch

/* store **all** (succinct representations of) $\Delta[o,d]$ */ /* look for the **proper leg** in $\Delta[o,d]$ */

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

- QUESTION: 3 some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbitrary queries efficiently?
 - Trivial solution (I): Precompute all $(1 + \varepsilon)$ -upper-approximating trravel-time functions (summaries) $\Delta[o, d]$ for every *od*-pair.
 - \sim O($n^2(K+1)$) space
 - \square O(log log(K)) query time
 - $(1+\varepsilon)$ -stretch

```
/* store all (succinct representations of) \Delta[o, d] * /
/* look for the proper leg in \Delta[o, d] * /
```

- Trivial solution (II): No preprocessing. Respond to queries with TD-Dijkstra:
 - \bigcirc O(n + m + K) space
 - \square O([$m + n \log(n)$] × log log(K)) query time
 - 1-stretch

/* only store the instance */

/* run TD-Dijkstra */
About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

- QUESTION: 3 some data structure (to precompute), and a query algorithm (to approximately answer routing requests on-the-fly) for TDSP that requires reasonable space and can answer arbitrary queries efficiently?
 - Trivial solution (I): Precompute all $(1 + \varepsilon)$ -upper-approximating trravel-time functions (summaries) $\Delta[o, d]$ for every *od*-pair.
 - \sim O($n^2(K+1)$) space
 - \bigcirc O(log log(K)) query time
 - $(1+\varepsilon)$ -stretch

```
/* store all (succinct representations of) \Delta[o,d] */ 
 /* look for the proper leg in \Delta[o,d] */
```

- Trivial solution (II): No preprocessing. Respond to queries with TD-Dijkstra:
 - (n + m + K) space
 - \square O([$m + n \log(n)$] × log log(K)) query time
 - 🐸 1–stretch

```
/* only store the instance */
```

```
/* run TD-Dijkstra */
```

- GOAL: Can we do better?
 - Assure subquadratic space & sublinear query time.
 - Provide a smooth tradeoff among space / query time / stretch.

Q Static & undirected world \implies time-dependent & directed world?

Q Static & undirected world \implies time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of $D[o, d] \in [-\Lambda_{\min}, \Lambda_{\max}]$, for constants $\Lambda_{\max} > 0$, $\Lambda_{\min} \in [0, 1)$.

Q Static & undirected world \implies time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of $D[o, d] \in [-\Lambda_{\min}, \Lambda_{\max}]$, for constants $\Lambda_{\max} > 0$, $\Lambda_{\min} \in [0, 1)$.

ASSUMPTION 2: (bounded opposite trips) $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \forall t \in [0, T), D[o, d](t) \le \zeta \cdot D[d, o](t)$

Q Static & undirected world \implies time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of $D[o, d] \in [-\Lambda_{\min}, \Lambda_{\max}]$, for constants $\Lambda_{\max} > 0$, $\Lambda_{\min} \in [0, 1)$.

ASSUMPTION 2: (bounded opposite trips) $\exists \zeta \geq 1 : \forall (o, d) \in V \times V, \forall t \in [0, T), D[o, d](t) \leq \zeta \cdot D[d, o](t)$

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an origin is at most polylogarithmic.

Q Static & undirected world \implies time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of $D[o, d] \in [-\Lambda_{\min}, \Lambda_{\max}]$, for constants $\Lambda_{\max} > 0$, $\Lambda_{\min} \in [0, 1)$.

ASSUMPTION 2: (bounded opposite trips) $\exists \zeta \geq 1 : \forall (o, d) \in V \times V, \forall t \in [0, T), D[o, d](t) \leq \zeta \cdot D[d, o](t)$

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an origin is at most polylogarithmic.

Q Static & undirected world \implies time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of $D[o, d] \in [-\Lambda_{\min}, \Lambda_{\max}]$, for constants $\Lambda_{\max} > 0$, $\Lambda_{\min} \in [0, 1)$.

ASSUMPTION 2: (bounded opposite trips) $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \ \forall t \in [0, T), D[o, d](t) \le \zeta \cdot D[d, o](t)$

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an origin is at most polylogarithmic.

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- Dijkstra Rank $DR[o, d](t_o)$: size of smallest ball from (o, t_o) , until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For $\lambda \in o\left(\frac{\log(n)}{\log\log(n)}\right)$ the following hold:

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- **Dijkstra Rank** $DR[o, d](t_o)$: size of smallest ball from (o, t_o) , until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For $\lambda \in o\left(\frac{\log(n)}{\log\log(n)}\right)$ the following hold:

• The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $DR[o, d](t_o) \in \tilde{O}((D[o, d](t_o))^{\lambda})$

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- **Dijkstra Rank** $DR[o, d](t_o)$: size of smallest ball from (o, t_o) , until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For $\lambda \in o\left(\frac{\log(n)}{\log\log(n)}\right)$ the following hold:

- The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $DR[o, d](t_o) \in \tilde{O}((D[o, d](t_o))^{\lambda})$
- The travel-time is upper-bounded by a degree- $(\frac{1}{\lambda})$ polynomial of the Dijkstra-rank: $D[o, d](t_o) \in \tilde{O}((DR[o, d](t_o))^{1/\lambda})$

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- **Dijkstra Rank** $DR[o, d](t_o)$: size of smallest ball from (o, t_o) , until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For $\lambda \in o\left(\frac{\log(n)}{\log\log(n)}\right)$ the following hold:

• The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $DR[o, d](t_o) \in \tilde{O}((D[o, d](t_o))^{\lambda})$

The travel-time is upper-bounded by a degree- $(\frac{1}{\lambda})$ polynomial of the Dijkstra-rank: $D[o, d](t_o) \in \tilde{O}((DR[o, d](t_o))^{1/\lambda})$

R1 The **doubling dimension** assumption used in **metric embeddings** correlates the distance metric with the Dijkstra-rank metric. For constant $\lambda \ge 1$, we can have an oracle providing a PTAS, for static metrics.

- Necessary assumption for the analysis of the hierarchical oracle (HORN).
- **Dijkstra Rank** $DR[o, d](t_o)$: size of smallest ball from (o, t_o) , until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For $\lambda \in o\left(\frac{\log(n)}{\log\log(n)}\right)$ the following hold:

• The Dijkstra rank is upper-bounded by a degree- λ polynomial of the corresponding travel-time: $DR[o, d](t_o) \in \tilde{O}((D[o, d](t_o))^{\lambda})$

The travel-time is upper-bounded by a degree- $(\frac{1}{\lambda})$ polynomial of the Dijkstra-rank: $D[o, d](t_o) \in \tilde{O}((DR[o, d](t_o))^{1/\lambda})$

R1 The **doubling dimension** assumption used in **metric embeddings** correlates the distance metric with the Dijkstra-rank metric. For constant $\lambda \ge 1$, we can have an oracle providing a PTAS, for static metrics.

R2 We have proved that Assumption $4 \Rightarrow$ Assumption 3

Overview of Our Theoretical Results

	preprocessing space/time	query time	recursion depth
	$K^* \cdot n^{2-\beta+o(1)}$	$n^{\delta+o(1)}$	$R \in O(1)$
(ICALP (2014)			
ALGORITHMICA (2016))			
TRAPONLY	$n^{2-\beta+o(1)}$	$n^{\delta+o(1)}$	$R \approx \frac{\delta}{a} - 1$
(ISAAC (2016))			
FLAT	$n^{2-\beta+o(1)}$	$n^{\delta+o(1)}$	$R \approx \frac{2\delta}{a} - 1$
(ISAAC (2016)) &			
CFLAT			
(ATMOS (2017))			
HORN	$n^{2-\beta+o(1)}$	$\approx \Gamma[o, d](t_o)^{\delta + o(1)}$	$R \approx \frac{2\delta}{a} - 1$
(ISAAC (2016))			-

- ...assuming TD-instances with period $T = n^{\alpha}$ for constant $\alpha \in (0, 1)$.
- ...achieving approx. guarantee $1 + \varepsilon \cdot \frac{(\varepsilon/\psi)^{R+1}}{(\varepsilon/\psi)^{R+1}-1}$.
- For all oracles, except for the first, we assume that $\beta \downarrow 0$.

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

GIVEN: Arc-traversal-time (continuous, pwl) functions $D[uv] : [0, T) \mapsto \mathbb{R}_{>0}$.

GOAL: Succinct representations of (unknown, pwl,continuous) min-travel-time functions. $D[o, d] = \min_{\pi \in P_{o,d}} \{ D[\pi] \} : [0, T) \mapsto \mathbb{R}_{>0}$

PROBLEM: Superpolynomial time/space complexities.

SOLUTION: Upper-approximations with

polynomial time complexity.

CHALLENGE: One-to-all construction of succinct representations for the approximate min-travel-time functions.

Spyros Kontogiannis (kontog@uoi.gr)

First Attempt: Bisection Algorithm (BIS)...

 Assume concavity (to be removed later) of the unknown functions D[o, v] in an interval [t_o, t₁] of departure times.

First Attempt: Bisection Algorithm (BIS)...

 Assume concavity (to be removed later) of the unknown functions D[o, v] in an interval [t_o, t₁] of departure times.

First Attempt: Bisection Algorithm (BIS)...

Assume concavity (to be removed later) of the unknown functions
 D[o, v] in an interval
 [t_o, t₁] of departure times.

First Attempt: Bisection Algorithm (BIS)...

 Assume concavity (to be removed later) of the unknown functions D[o, v] in an interval [t_o, t₁] of departure times.

First Attempt: Bisection Algorithm (BIS)...

 Assume concavity (to be removed later) of the unknown functions D[o, v] in an interval [t_o, t₁] of departure times.

 Bisect on the common departure-times axis: Recursively keep sampling, simultaneously for all active destinations v ∈ V, distance values from o, at mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Remark: Analysis based on *closed-form* expression of **maximum absolute error** (length of purple line).

First Attempt: Bisection Algorithm (BIS)...

For each *continuous, pwl, not necessarily concave* arc-delay function:

```
Run Reverse
TD-Dijkstra on reversed
graph, to project each
concavity-spoiling PB to a
departure-time (called primitive
image -- PI) at the origin o.
```


- For each pair of consecutive PIs of o in [0, 7), run Bisection for the corresponding departure-times interval.
- Return the concatenation of upper-approximating trravel-time summaries.

First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection

For each (common) origin $o \in V$,

• SPACE:

$$O\left((K^*+1) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max_{v \in V} \left\{ \log \left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)} \right) \right\} \right\}$$

First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection For each (common) origin $o \in V$, • **SPACE:** $O\left((K^* + 1) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max_{v \in V} \left\{ \log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right) \right\} \right)$ • TIME (in number of TDSP-Probes): $O\left((K^* + 1) \cdot \max_{v \in V} \left\{ \log\left(\frac{T \cdot (\Lambda_{\max} + 1)}{\varepsilon D_{\min}[o,v](0,T)}\right) \right\} \cdot \frac{1}{\varepsilon} \max_{v \in V} \left\{ \log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right) \right\} \right)$

First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection

For each (common) origin $o \in V$,

- SPACE: $O\left(\left(K^*+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max_{v \in V} \left\{ \log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right) \right\} \right)$
- TIME (in number of TDSP-Probes):

$$O\left(\left(K^*+1\right)\cdot \max_{v\in V}\left\{\log\left(\frac{T\cdot\left(\Lambda_{\max}+1\right)}{\varepsilon D_{\min}[o,v](0,T)}\right)\right\} \cdot \frac{1}{\varepsilon}\max_{v\in V}\left\{\log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right)\right\}\right\}$$

PROS	CONS

First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection

For each (common) origin $o \in V$,

• SPACE:

$$O\left(\left(K^{*}+1\right) \cdot n \cdot \frac{1}{\varepsilon} \cdot \max_{v \in V} \left\{ \log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right) \right\} \right)$$

• TIME (in number of TDSP-Probes):

$$O\left(\left(K^{*}+1\right) \cdot \max_{v \in V} \left\{ \log\left(\frac{T \cdot (\Lambda_{\max}+1)}{\varepsilon D_{\min}[o,v](0,T)}\right) \right\} \cdot \frac{1}{\varepsilon} \max_{v \in V} \left\{ \log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right) \right\} \right\}$$

PROS	CONS
壁 Simplicity.	
Space-optimal for <i>concave</i> functions.	
First one-to-all approximation.	

First Attempt: Bisection Algorithm (BIS)...

$$O\left(\left(K^{*}+1\right)\cdot n\cdot \frac{1}{\varepsilon}\cdot \max_{v\in V}\left\{\log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right)\right\}\right\}$$

• TIME (in number of TDSP-Probes):

$$O\left((K^*+1)\cdot \max_{v\in V}\left\{\log\left(\frac{T\cdot(\Lambda_{\max}+1)}{\varepsilon D_{\min}[o,v](0,T)}\right)\right\} \cdot \frac{1}{\varepsilon}\max_{v\in V}\left\{\log\left(\frac{D_{\max}[o,v](0,T)}{D_{\min}[o,v](0,T)}\right)\right\}\right\}$$

PROS	CONS
壁 Simplicity.	오 Linear
Space-optimal for concave functions.	dependence on
First one-to-all approximation.	degree of disconcavity <i>K</i> *.

Second Attempt: Trapezoidal Algorithm (TRAP)...

TRAP samples simultaneously all **min-travel-time values** from ℓ , for ever-finer departure-points, until the approximation guarantee is achieved for all destinations.

- Avoids dependence on the shape of the function to approximate.
- Exploits knowledge of min/max slopes A_{min}/A_{max} of min-travel-time functions.

Second Attempt: Trapezoidal Algorithm (TRAP)...

TRAP samples simultaneously all **min-travel-time values** from ℓ , for ever-finer departure-points, until the approximation guarantee is achieved for all destinations.

- Avoids dependence on the shape of the function to approximate.
- Exploits knowledge of min/max slopes A_{min}/A_{max} of min-travel-time functions.

Orange line: Upper-approximating function $\Delta[\ell, v]$.

Green line: Lower-approximation.

Blue line: The unknown min-travel-time function $D[\ell, v]$.

Spyros Kontogiannis (kontog@uoi.gr)

Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split [0, T) into $\left\lfloor \frac{I}{\tau} \right\rfloor$ length- τ intervals.

- TIME & SPACE: $\Delta[\ell, v] = \text{concatenation of approximations by TRAP for all subintervals. <math>\Rightarrow O(\frac{I}{\tau})$ BPs and TDSP-probes.
- APPROXIMABILITY:

IF $\min_{k \in \mathbb{N}: k\tau \in [0,T)} \{ D[\ell, v](k\tau) \} \ge (1 + \frac{1}{\epsilon}) \Lambda_{\max} \cdot \tau$ THEN $\Delta[\ell, v]$ is $(1 + \epsilon)$ -approximation of $D[\ell, v]$ in [0, T).

Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split [0, T) into $\left\lfloor \frac{T}{\tau} \right\rfloor$ length- τ intervals.

- TIME & SPACE: $\Delta[\ell, v] = \text{concatenation of approximations by TRAP}$ for all subintervals. $\Rightarrow O(\frac{I}{\tau})$ BPs and TDSP-probes.
- APPROXIMABILITY:

IF $\min_{k \in \mathbb{N}: k\tau \in [0,T)} \{ D[\ell, v](k\tau) \} \ge (1 + \frac{1}{\epsilon}) \Lambda_{\max} \cdot \tau$ THEN $\Delta[\ell, v]$ is $(1 + \epsilon)$ -approximation of $D[\ell, v]$ in [0, T).

PROS

😫 Simplicity.

One-to-all approximation.

Independence from shape of the function to approximate.

CONS

Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split [0, T) into $\left\lfloor \frac{T}{\tau} \right\rfloor$ length- τ intervals.

- TIME & SPACE: $\Delta[\ell, v] = \text{concatenation of approximations by TRAP for all subintervals. <math>\Rightarrow O(\frac{I}{\tau})$ BPs and TDSP-probes.
- APPROXIMABILITY:

IF $\min_{k \in \mathbb{N}: k\tau \in [0,T]} \{ D[\ell, v](k\tau) \} \ge (1 + \frac{1}{\epsilon}) \Lambda_{\max} \cdot \tau$ THEN $\Delta[\ell, v]$ is $(1 + \epsilon)$ -approximation of $D[\ell, v]$ in [0, T).

PROS

😫 Simplicity.

- One-to-all approximation.
- Independence from shape of the function to approximate.

CONS

- No theoretical guarantee of space-optimality.
- Inappropriate (in theory) for ``nearby'' vertices around l.

Third Attempt: Combinatorial Trapezoidal Algorithm (CTRAP)...

CTRAP samples and stores shortest-path trees, rather than travel-time functions.

- Also avoids dependence on the shape of the function to approximate.
- Exploits knowledge of min slope Λ_{min} of min-travel-time functions.
- Constructs tighter upper-approximating functions, by composing approximate arrival-time functions along Shortest-Path trees (in BFS order).

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

FLAT: Preprocessing Phase

• Rationale:

- Identify a (small) subset L of allegedly ``important'' vertices (landmarks) in the network, which are assumed to be crucial for almost all optimal paths.
- ► Use the approximation algorithm (BIS, TRAP, or CTRAP) to compute approximate travel-time summaries (upper-approximating functions) ∆[ℓ, v], ∀(ℓ, v) ∈ L × V, s.t.:

 $\forall t \in [0, T), \ D[\ell, v](t) \le \Delta[\ell, v](t) \le (1 + \epsilon) \cdot D[\ell, v](t)$

FLAT: Preprocessing Phase

• Rationale:

- Identify a (small) subset L of allegedly ``important'' vertices (landmarks) in the network, which are assumed to be crucial for almost all optimal paths.
- ► Use the approximation algorithm (BIS, TRAP, or CTRAP) to compute approximate travel-time summaries (upper-approximating functions) $\Delta[\ell, v], \forall (\ell, v) \in L \times V$, s.t.:

 $\forall t \in [0, T), \ D[\ell, v](t) \le \Delta[\ell, v](t) \le (1 + \epsilon) \cdot D[\ell, v](t)$

- Landmark Selection Policies:
 - **RANDOM** (R): Independent and random selections, without repetitions.
 - SPARSE-RANDOM (SR): Sequential and random selections, excluding nearby vertices of already selected landmarks.
 - SPARSE KAHIP (SK): Selection of boundary vertices in a given KaHIP partition, excluding nearby vertices of already selected landmarks.
 - BETWEENESS CENTRALITY (BC): Sequential selection according to the BC-order, excluding nearby vertices of already selected landmarks.

CFLAT: Preprocess trees rather than functions

Challenge for FLAT: Large preprocessing requirements (typical for landmark-based algorithms).
CFLAT: Preprocess trees rather than functions

- Challenge for FLAT: Large preprocessing requirements (typical for landmark-based algorithms).
- The *combinatorial structure* of the optimal solution changes over time **less** frequently than the corresponding min-travel-time function.

CFLAT: Preprocess trees rather than functions

- Challenge for FLAT: Large preprocessing requirements (typical for landmark-based algorithms).
- The combinatorial structure of the optimal solution changes over time less frequently than the corresponding min-travel-time function.

Combinatorial FLAT (CFLAT):

- Forget about (upper-approximations of) travel-time functions.
- Store only min-travel-time trees rooted at time-stamped landmarks (ℓ, t_{ℓ}) .
- Avoid vertex IDs and represent parents in the trees only by their relative order in the adjacency lists of incoming arcs.
- Store two different sequences per vertex v and landmark ℓ :
 - ★ A sequence of departure-times from the landmark.
 - A sequence of predecessors, one per departure-time, in the corresponding unique lv-path.

CFLAT: Store only sampled trees & avoid duplicates

- The CTRAP approximation algorithm:
 - ► avoids storing travel-times, and only stores the departure-times and the predecessors sequences for all (ℓ, ν) pairs.
 - avoids storing intermediate breakpoints, between pairs of consecutive departure-time samples (saves 10M and 100M breakpoints per landmark in BER and GER, respectively).

CFLAT: Store only sampled trees & avoid duplicates

- The CTRAP approximation algorithm:
 - ► avoids storing travel-times, and only stores the departure-times and the predecessors sequences for all (ℓ, ν) pairs.
 - avoids storing intermediate breakpoints, between pairs of consecutive departure-time samples (saves 10M and 100M breakpoints per landmark in BER and GER, respectively).
- The CFLAT oracle:
 - merges consecutive breakpoints with common predecessor.
 - stores each sequence of departure times only once and lets all destinations corresponding to it to just point at it.
 - uses two random hash functions for fast recognition of identical sequences of departure times. In case of positive answer, exhaustively check the tautology of the two sequences.

Recap of travel-time oracles

...approximation, preprocessing and query algorithms...

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

28 / 37

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the N closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or d) are settled.
- 2. return $\min_{i \in \{0, 1, ..., N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

-]. Grow TD-Dijkstra ball $B(o, t_o)$ until the N closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or d) are settled.
- 2. return $\min_{i \in \{0, 1, ..., N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the N closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or d) are settled.
- 2. return $\min_{i \in \{0, 1, ..., N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the N closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or d) are settled.
- 2. return $\min_{i \in \{0,1,...,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the N closest landmarks $\ell_0, \ldots, \ell_{N-1}$ (or d) are settled.
- 2. return $\min_{i \in \{0,1,...,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

Performance of FCA (N) for random landmarks

• In theory: Constant-approximation, for a metric-dependent constant.

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

Extended Forward Constant Approximation -- FCA(N)

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the N closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or d) are settled.
- 2. return $\min_{i \in \{0,1,...,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

Performance of FCA (N) for random landmarks

- In theory: Constant-approximation, for a metric-dependent constant.
- In practice: Fast query-response times, optimal solutions in most cases.

Spyros Kontogiannis (kontog@uoi.gr)

CFCA (N): A new query algorithm

Spyros Kontogiannis (kontog@uoi.gr)

Significance of Path Construction

For time-independent instances, path construction is quite easy and has essentially negligible contribution to the query-time.

Significance of Path Construction

- For time-independent instances, path construction is quite easy and has essentially negligible contribution to the query-time.
- For time-dependent instances, path construction is **not so easy** anymore, and usually contributes a **significant** amount to the query-time:
 - During the (backward) path construction from the destination, one has to deal with evaluations of continuous functions rather than just scalars.
 - For the instance of Germany (see experiments), for both CFLAT and KaTCH, the path-construction cost contributes more than 30% of the total query-time.

Significance of Path Construction

- For time-independent instances, path construction is quite easy and has essentially negligible contribution to the query-time.
- For time-dependent instances, path construction is **not so easy** anymore, and usually contributes a **significant** amount to the query-time:
 - During the (backward) path construction from the destination, one has to deal with evaluations of continuous functions rather than just scalars.
 - For the instance of Germany (see experiments), for both CFLAT and KaTCH, the path-construction cost contributes more than 30% of the total query-time.
 - Steps 2 and 3 leave more room for (future) algorithm engineering.

Experimental Evaluation

...setup, instances, evaluation & comparison...

Instance	#nodes	#edges
BER	473,253	1,126,468
GER	4,692,091	10,805,429
EUR	18,010,173	42,188,664
GRID	5,400,976	11,045,894

- Real-world Berlin instance (BER) -- kindly provided by TomTom.
- Real-world Germany instance (GER) -- kindly provided by PTV AG.
- Synthetic Europe instance (EUR) -- typical benchmark network of DIMACS challenge.
- Synthetic grid instance (GRID) -- constructed in this work.

Experiment 1: Preprocessing times of TD-Oracles

- Significant improvement by exploiting a time-dependent variant of the Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.
- Exploitation of a careful combination of data-parallelism and algorithmic parallelism.
- Exploitation of the **amorphous-data-parallelism** rationale, which also boosted the preprocessing phase.

34 / 37

Experiment 1: Preprocessing times of TD-Oracles

- Significant improvement by exploiting a time-dependent variant of the Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.
- Exploitation of a careful combination of data-parallelism and algorithmic parallelism.
- Exploitation of the amorphous-data-parallelism rationale, which also boosted the preprocessing phase.

DIJ vs DS @ OFLAT oracle									
INSTANCE (# landmarks)	(1000	BERLIN landmar	ks)	GERMANY (1000 landmarks)		EUROPE (900 landmarks)			
method	OTRAP & 1xDIJsh(24)	OTRAP & 8xDS(3)	speedup	OTRAP & 1xDIJsh(12)	OTRAP & 12xDS(2)	speedup	OTRAP & 1xDUsh(12)	OTRAP & 4xDS(6)	speedup
total time (min)	5.964	7.701	0.774	123.454	89.216	1.384	5293.333	3549.745	1.491

Experiment 2: Query Response Times

QUERY RESPONSE TIMES (msec)		CFLAT QUERY : : CFCA(N)	OFLAT QUERY : : OFCA(N)		KaTCH (msec)	
GER		4K SR Landmarks	5K SR Landmarks			
	SPT alg	1xDIJbh(1)	1xDS(1) [∆=32]	1xDIJsh(1)	0 820	
	N=1	0.582	0.692	0.4972	0.820	
	N=2	1.242	1.087	0.9612		
	N=4	2.413	1.926	1.8768		
	N=6	3.572	2.904	2.7515		
EUR			700 SR Landmarks			
	SPT alg		1xDS(12) [Δ=128]	1xDIJsh(1)	1.560	
	N=1		3.332	7.998		
	N=2		4.678	15.463		
	N=4	(22)	7.688	30.008		
	N=6		10.444	44.652		

Thank You For Your Attention

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

36 / 37

MDPI / ALGORITHMS : Promotion slide...

Journal's Aims and Scope:

Algorithms (ISSN 1999-4893) is an international journal, which provides an advanced forum for studies related to algorithms and their applications.

The scope of Algorithms includes:

- · Theory of algorithms
- · Combinatorial optimization and operations research, with applications
- Special data structures
- Distributed and parallel algorithms
- Metaheuristics
- · Performance of algorithms and algorithm engineering
- · Applications in other areas of computer science
- Algorithms in biology, chemistry, physics, language
- · processing, etc.
- · Image processing with applications
- Machine learning, including grammatical inference
- Educational aspects: how to teach algorithms

Open Access Indexed by Scopus, Ei, and ESCI

Prof. Dr. Henning Fernau Editor-in-Chief

First Decision 19.6 days

No Space Constraints

Timescale (in 2018)

Downloads: 101,907 Page views: 654,126 Published papers: 223

Journal website:

mdpi.com/journal/algorithms E-Mail: algorithms@mdpi.com Twitter: @Algorithms_MDPI

Spyros Kontogiannis (kontog@uoi.gr)

Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles

MDPI OPEN & ACCESS