Exploring earliest-arrival paths in large-scale
time-dependent networks via combinatorial oracles
Workshop on Algorithmic Aspects of Temporal Graphs Il

Patras, July 8 2019

Spyros Kontogiannis
kontog@uoi.gr

Joint work with:

2

A. Papadopoulos A. Paraskevopoulos C. Zaroliagis
CEID.UPatras CEID.UPatras CEID.UPatras

Time-Dependent Route Planning

...problem, assumptions and challenges...

kontog@uoi.gr’

Shortest Paths

... a fundamental problem, both in theory and in practice...

@ Input:
» Directed graph G = (V, E).
» Arc-traversal-time values: D[uv] > 0.

» Origin-destination pair: (o, d) € V X V.

kontog@uoi.gr’

Shortest Paths

... a fundamental problem, both in theory and in practice...

@ Input:
» Directed graph G = (V, E).
» Arc-traversal-time values: D[uv] > 0.

» Origin-destination pair: (o, d) € V X V.

e Output: 7* € arg Mingep, , { D[] = Y e Da] }

kontog@uoi.gr’

Shortest Paths

... a fundamental problem, both in theory and in practice...

@ Input:
» Directed graph G = (V, E).
» Arc-traversal-time values: D[uv] > 0.
» Origin-destination pair: (o, d) € V X V.
e Output: 7* € arg mingep, , { D[71] = Yo Dla] }
@ MOTIVATION & CHALLENGES: Routing in
» V = set of intersections, E = set of road segments.
> , (E| € O(|V1)) graphs.

> size: |V| = millions of intersections.

kontog@uoi.gr’

Shortest Paths

... a fundamental problem, both in theory and in practice...

@ Input:

» Directed graph G = (V, E).

» Arc-tfraversal-time values: D[uv] > 0.

» Origin-destination pair: (o, d) € V X V.
e Output: 7* € arg mingep, , { D[71] = Yo Dla] }
@ MOTIVATION & CHALLENGES: Routing in

» V = set of intersections, E = set of road segments.

> , (E| € O(|V1)) graphs.

> size: |V| = millions of intersections.
...possibly the most characteristic of algorithm engineering...
Numerous and for static road networks. J

kontog@uoi.gr’

Time-Dependent Shortest Paths

...a more challenging problem, both and

@ Input:
» Directed graph G = (V, E).
» Arc-traversaltime functions: D[uv] : [0, T) — R.o.
Periodic, continuous, piecewise-linear,
FIFO-compliant functions...

» Origin-destination-dep. fime triple:
(0.d. 1) € VXV X[0,T).

kontog@uoi.gr’

Time-Dependent Shortest Paths

...a more challenging problem, both and

@ Input:
» Directed graph G = (V, E).

» Arc-traversaltime functions: D[uv] : [0, T) — R.o.
Periodic, continuous, piecewise-linear,
FIFO-compliant functions...

» Origin-destination-dep. fime triple:
(0.d. 1) € VXV X[0,T).

@ Output:
m* € argmingep, , { D[a](to) = Xoer Dla](to) }

kontog@uoi.gr’

Time-Dependent Shortest Paths

...a more challenging problem, both and

@ Input:
» Directed graph G = (V, E).

» Arc-traversaltime functions: D[uv] : [0, T) — R.o.
Periodic, continuous, piecewise-linear,
FIFO-compliant functions...
» Origin-destination-dep. fime triple:
(0.d. 1) € VXV X[0,T).

@ Output:
7" € arg Mingep,, { D[] (o) = Laer Dlal(%o) §
@ MOTIVATION & CHALLENGES: Routing in
» V = set of infersections, E = set of road segments.
> , (E| € O(|V1)) graphs.

> size: |V| = millions of intersections.

» Time-Dependence: Computationally harder instances.

kontog@uoi.gr’

Time-Dependent Shortest Path: Examples

Instance with ARC DELAY functions

X+2
2x+0.1

X+2
2x+0.1

How would you commute

departure time f, from o? E.g.:

kontog@uoi.gr’

from o to d, for a given

Time-Dependent Shortest Path: Examples

o]
o ° 2.1
o]
o 75 1 d
|
0:9
O
[04]
How would you commute from o to d, for a given

departure time f, from o? E.g.: I:l

kontog@uoi.gr’

Time-Dependent Shortest Path: Examples

How would you commute from o to d, for a given
departure time f, from o? E.g.: |:|

kontog@uoi.gr’

Time-Dependent Shortest Path: Examples

Instance with ARC DELAY functions
X+2
2x+0.1
1
3x
X+2
2x+0.1
How would you commute from o to d, for a given

departure time f, from o? E.g.:

What if you are not sure about the departure time?

kontog@uoi.gr’

Time-Dependent Shortest Path: Examples

Instance with ARC- 243 ARRIVAL functions

How would you commute from o to d, for a given
departure time f, from o? E.g.:

What if you are not sure about the departure time?

kontog@uoi.gr’

Time-Dependent Shortest Path: Examples

Instance with ARC- BEEASY ARRIVAL functions
Arr[oud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arrfovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arrfouvd](t,) = Arr[vd](Arr[uv](Arr[ou](t,))) = 36t,+1.3

How would you commute from o to d, for a given
departure time f, from o? E.g.:

What if you are not sure about the departure time?

kontog@uoi.gr’

Time-Dependent Shortest Path: Examples

Instance with ARC- BELASY ARRIVAL functions

Arr[oud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

How would you commute
departure time f, from o? E.g.:

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](t,))) = 36t,+1.3

from o to d, for a given

What if you are not sure about the departure time?

earliest-arrival (path) function =

t, € [0,0.03)
t, € [0.03,2.9)

purple path, 1, € [2.9, +0)

kontog@uoi.gr’

Time-Dependent Shortest Path: Definitions

INPUT:
° graph G = (V,A), n=|V/|. T :Ar:uvm |
@ Arc travel time / arrival-time functions: D[:ut\lvlj;:)
| Dlw](t) || Ar[uv](t,) = #, + D[uv](,)

kontog@uoi.gr’

Time-Dependent Shortest Path: Definitions

INPUT:
° graph G = (V,A), n=|V/|.

@ Arc travel-time / arrival-time functions:
| Dlw](t) || Ar[uv](t,) = #, + D[uv](,)

D[uv](ty)

DEFINITIONS:
@ P, 4: Set of od-paths; 1 = (an,...,0) € Pog
@ Path travel-time / arrival-time functions:
Anlr](10) = Anfa(Arfac] (- (Arfar] (1)))
D[n](t,) = Arr[z](ts) — 1o
@ Earliest-arrival / Shortest-travel-time functions:

ty

= Arr[uv](ty)
=ttt
D[uv](t,)

Arr[o, d|(t,) = mingep,, { Arr[n](t,) }. Do, d](t,) = Arr[o, d](t,) — 1o

kontog@uoi.gr’

Time-Dependent Shortest Path: Definitions

INPUT:
° graph & = (V, A).n = |VI. Dluvl(t,) :Arkm ,
@ Arc travel-time / arrival-time functions: D[:ut\uj;:)
| Dlw](t) || Ar[uv](t,) = #, + D[uv](,)
DEFINITIONS:

@ P, 4: Set of od-paths; 1 = (an,...,0) € Pog
@ Path travel-time / arrival-time functions:
Arr[r](to) = Arr[a](Arr[ak=1](- - - (Arr[an] (o)) - +))
D[n](t,) = Arr[z](ts) — 1o
@ Earliest-arrival / Shortest-travel-time functions:
Arr[o, d|(t,) = mingep,, { Arr[n](t,) }. Do, d](t,) = Arr[o, d](t,) — 1o

GOALS:
@ For departure-time f, from o, determine ty = Arr[o, d|(1,).
@ Provide a of Arr[o, d|, or of D|o, d.

kontog@uoi.gr’

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) = —1 (e.g.. for vehicles in road networks).

= arc-arrival, path-arrival and earliest-arrival functions.
= No reason to wait at vertices while moving along a path.

kontog@uoi.gr’

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) = —1 (e.g.. for vehicles in road networks).

= arc-arrival, path-arrival and earliest-arrival functions.
= No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to (e.g.. in public tfransport).

= A subpath optimality; NP—hard. (Orda-Rom (1990))
= Equivalent to FIFO. (Dreyfus (1969))

v

kontog@uoi.gr’

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) = —1 (e.g.. for vehicles in road networks).

= arc-arrival, path-arrival and earliest-arrival functions.
= No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to (e.g.. in public tfransport).
= A subpath optimality; NP—hard. (Orda-Rom (1990))
= Equivalent to FIFO. (Dreyfus (1969))
v
A
10,
é\' 8
T‘_) 6)
= *
w 4 H
8
2:46810121416182022;426;
departure t, from tail[uv]

FIFO arc delay example
kontog@uoi.gr’

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) = —1 (e.g.. for vehicles in road networks).

= arc-arrival, path-arrival and earliest-arrival functions.
= No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to (e.g.. in public tfransport).
= A subpath optimality; NP—hard.
= Equivalent to FIFO.
A A
10, 10}
8 8| ?
Eg‘] 2§ E‘ / @sxi1
3 * 8/13)x + 173/13 3
o 4 o 4 \
] @t S o Ly
i o i - *
2 - 4 6 8 10 12 14 16 18 20 22 24 26 ; 2 4 6 8 10 12 14 16 18 20 22 24 26 >
departure t, from tail[uv] departure t, from tail[uv]
FIFO arc delay example Non-FIFO arc delay example

kontog@uoi.gr’

FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) = —1 (e.g.. for vehicles in road networks).

= arc-arrival, path-arrival and earliest-arrival functions.
= No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to (e.g.. in public tfransport).
= A subpath optimality; NP—hard.
= Equivalent to FIFO.
A A
10, 10|
------------------------------- ° o}
8 8| H
E - E @sxr1 i
o S 0 H
= T ESASIEINTG o -x+l79
o 4 g o 4 i
L 8 5 e
2 : 4 6 8 10 12 14 16 18 20 22 2’4 26 ; 2 : 4 6 8 10 12 l:4 16 18 20 22 2A 26 ;
departure t, from tail[uv] departure t, from tail[uv]
FIFO arc delay example Equivalent FIFO arc delay (arbitrary waiting)

kontog@uoi.gr’

TDSP vs. vs. EA-Paths in Temporal Graphs

Earliest-arrival paths in temporal Earliest-arrival paths in
graphs with TDSP networks with pwl
and arc-delay functions.

X

kontog@uoi.gr’

Earliest-arrival paths in temporal Earliest-arrival paths in FIFO-
graphs with step functions for arc- =~ abiding TDSP networks with pwil
delays and unrestricted waiting arc-delay functions.

Spyros Konfogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 8/37

TDSP in FIFO networks: Complexity

...for piecewise-linear arc-delay functions, with K breakpoints in total...

@ Compute at . for given (o, f,):

@ Compute of Arr[o, d|, for all departure times:

kontog@uoi.gr’

TDSP in FIFO networks: Complexity

...for piecewise-linear arc-delay functions, with K breakpoints in total...

@ Compute at d, for given (o, 1,):

> Time-dependent variant of D1 jkst ra (TDD) works for .
(Dreyfus (1969); Orda-Rom (1990))

» Time-dependent variant of Be 1 Iman—Ford (TDBE) works for
(Orda-Rom (1990))

@ Compute of Arr[o, d|, for all departure times:

kontog@uoi.gr’

TDSP in FIFO networks: Complexity

...for piecewise-linear arc-delay functions, with K breakpoints in total...

@ Compute at d, for given (o, 1,):

> Time-dependent variant of D1 jkst ra (TDD) works for .
(Dreyfus (1969); Orda-Rom (1990))
» Time-dependent variant of Be 1 Iman—Ford (TDBE) works for

(Orda-Rom (1990))

@ Compute of Arr[o, d|, for all departure times:
» Succinct representation of Arr[o, d] may require space (K + 1) - n™1°g(),
even for networks with arc-travel-time functions.

(Foschini-Hershberger-Suri (2011))

> 1 polynomial-time point-to-point (14+ s)—opproximofion algorithms for
D[o, d]. requiring space O(K + 1) per (o, d)-pair.

(Dehne-Omran-Sack (2010); Foschini-Hershberger-Suri (2011))

kontog@uoi.gr’

Measuring Quality of Algorithms for TDSP...

@ IN THEORY: Guaranteed quality of the proposed solution.

> OPT: The cost of a min-fravel-time od-path.

» ACTUAL: The cost of the proposed od-path.

> Maximum absolute error: MAE = ACTUAL — OPT.

» Relative error (the (ACTUAL — OPT)/OPT < e value of a 1+ €

approximation, as a percentage): RE = 100 - % %

kontog@uoi.gr’

Measuring Quality of Algorithms for TDSP...

@ IN THEORY: Guaranteed quality of the proposed solution.

> OPT: The cost of a min-fravel-time od-path.

» ACTUAL: The cost of the proposed od-path.

> Maximum absolute error: MAE = ACTUAL — OPT.

» Relative error (the (ACTUAL — OPT)/OPT < e value of a 1+ €

approximation, as a percentage): RE = 100 - ’% %

@ IN PRACTICE: Avg query-response time must be really small, for large-scale
instances (e.g., for instances with millions of arcs).

A relative error of 1% implies an of of
optimal-travel-time!!l

kontog@uoi.gr’

Measuring Quality of Algorithms for TDSP...

@ IN THEORY: Guaranteed quality of the proposed solution.

> OPT: The cost of a min-fravel-time od-path.

» ACTUAL: The cost of the proposed od-path.

> Maximum absolute error: MAE = ACTUAL — OPT.

» Relative error (the (ACTUAL — OPT)/OPT < e value of a 1+ €

approximation, as a percentage): RE = 100 - % %

@ IN PRACTICE: Avg query-response time must be really small, for large-scale
instances (e.g., for instances with millions of arcs).

A relative error of 1% implies an of of
optimal-travel-time!!l

Hard to compare query fimes of algorithms
A speedup = Time(Djj)/Time(Alg) over a baseline (time-dependent)
Dijkstra implementation might be more meaningful.

kontog@uoi.gr’

Recap of tfravel-time oracles

...approximation, preprocessing and query algorithms...

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: 1 some data structure (tfo precompute), and a query algorithm
(to approximately answer routing requests on-the-fly) for TDSP that requires
and can answer efficiently?

kontog@uoi.gr’

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: 1 some data structure (tfo precompute), and a query algorithm
(to approximately answer routing requests on-the-fly) for TDSP that requires
and can answer efficiently?
@ Trivial solution (I): Precompute all (1 4 &)—upper-approximating
trravel-time functions () Ao, d] for every od-pair.
® O(n?(K + 1)) space
+ O(log log(K)) query time
(1 + &)—stretch

kontog@uoi.gr’

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: 1 some data structure (tfo precompute), and a query algorithm
(to approximately answer routing requests on-the-fly) for TDSP that requires
and can answer efficiently?
@ Trivial solution (I): Precompute all (1 4 &)—upper-approximating
trravel-time functions () Ao, d] for every od-pair.
® O(n?(K + 1)) space
+ O(log log(K)) query time
(1 + &)—stretch

@ Trivial solution (II): . Respond to queries with
TD-Dijkstra:
2% O(n+ m+ K) space
= O([m+ nlog(n)] x log log(K)) query time
1-stretch

kontog@uoi.gr’

About Oracles for TDSP...

...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: 1 some data structure (tfo precompute), and a query algorithm
(to approximately answer routing requests on-the-fly) for TDSP that requires
and can answer efficiently?
@ Trivial solution (I): Precompute all (1 4 &)—upper-approximating
trravel-time functions () Ao, d] for every od-pair.
® O(n?(K + 1)) space
+ O(log log(K)) query time
(1 + &)—stretch
@ Trivial solution (II): . Respond to queries with
TD-Dijkstra:
2% O(n+ m+ K) space
= O([m+ nlog(n)] x log log(K)) query time
1—stretch

GOAL: Can we do better?
> Assure subquadratic space & sublinear query time.
> Provide a smooth tradeoff among space / query time / stretch.

kontog@uoi.gr’

Assumptions: Statement (I)

Static & undirected world = time-dependent & directed world?

kontog@uoi.gr’

Assumptions: Statement (I)

Static & undirected world = time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)
Slopes of D[o, d] € [~Amin, Amax]. for constants Amax > 0, Amin € [0, 1).

kontog@uoi.gr,

Assumptions: Statement (I)
Static & undirected world = time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)
Slopes of D[o, d] € [~Amin, Amax]. for constants Amax > 0, Amin € [0, 1).

ASSUMPTION 2: (bounded opposite trips)
A >1:V(o,d) e VXV, ¥Yte[0,T), Dlo,d](t) < ¢ D[d, o](t)

kontog@uoi.gr,

Assumptions: Statement (I)

Static & undirected world = time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)
Slopes of D[o, d] € [~Amin, Amax]. for constants Amax > 0, Amin € [0, 1).

ASSUMPTION 2: (bounded opposite trips)
A >1:Y(o,d) e VXV, Yte|[0,T), Dlo,d|(t) < ¢ - D[d, o(t)

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an
A U #vertices = F @4———»
origin is at most polylogarithmic.

kontog@uoi.gr,

Assumptions: Statement (I)

Static & undirected world = time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)
Slopes of D[o, d] € [~Amin, Amax]. for constants Amax > 0, Amin € [0, 1).

ASSUMPTION 2: (bounded opposite trips)
A >1:Y(o,d) e VXV, Yte|[0,T), Dlo,d|(t) < ¢ - D[d, o(t)

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an) 1
7 t' res = nl
origin is at most polylogarithmic. e W

kontog@uoi.gr,

Assumptions: Statement (I)

Static & undirected world = time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)
Slopes of D[o, d] € [~Amin, Amax]. for constants Amax > 0, Amin € [0, 1).

ASSUMPTION 2: (bounded opposite trips)
A >1:VY(o,d) e VXV, Yte|[0,T), D[o,d](t) < ¢ - D[d, o](t)

ASSUMPTION 3: (growth of free-flow balls)

FINAL FREE%FL()W BALL

The growth of free-flow balls from an
origin is at most polylogarithmic.

#vertices = F
full congestion radiu

#vertices =G = O(F polylog(F))

kontog@uoi.gr,

Assumptions: Statement ()

@ Necessary assumption for the analysis of the hierarchical oracle (HORN).
@ Dijkstra Rank DR[o, d|(1,): size of smallest ball from (o, 1,). until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For A € o(I log(n)) the following hold:
og log(n)

kontog@uoi.gr,

Assumptions: Statement ()

@ Necessary assumption for the analysis of the hierarchical oracle (HORN).
@ Dijkstra Rank DR[o, d|(1,): size of smallest ball from (o, 1,). until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For A € o(I log(n)) the following hold:
og log(n)

@ The is upper-bounded by a degree-A polynomial of the
eiCEIeRETE : ‘ DRlo, d](1) € B((Dlo, (1))

kontog@uoi.gr’

Assumptions: Statement ()

@ Necessary assumption for the analysis of the hierarchical oracle (HORN).
@ Dijkstra Rank DR[o, d|(1,): size of smallest ball from (o, 1,). until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For A € o(log(n)) the following hold:

log log(n)
@ The is upper-bounded by a degree-A polynomial of the
eiCEIeRETE : ‘ DRlo, d](1) € B((Dlo, (1))
Q The is upper-bounded by a degree-(%) polynomial of the

:| Dlo, d](to) € O((DR[o, d](1.))'/4)

kontog@uoi.gr’

Assumptions: Statement ()

@ Necessary assumption for the analysis of the hierarchical oracle (HORN).
@ Dijkstra Rank DR[o, d|(1,): size of smallest ball from (o, 1,). until d is settled.

ASSUMPTION 4: (correlation of travel-tfimes with Dijkstra ranks)

For A € o(log(n)) the following hold:

log log(n)
@ The is upper-bounded by a degree-A polynomial of the
eiCEIeRETE ; ‘ DRlo, d](1) € B((Dlo, (1))
Q The is upper-bounded by a degree-(%) polynomial of the

:| Dlo, d](to) € O((DR[o, d](1.))'/4)

v

The doubling dimension assumption used in correlates
the distance metric with the Dijkstra-rank metric. For constant A > 1, we
can have an oracle providing a PTAS, for stafic metrics.

kontog@uoi.gr’

Assumptions: Statement ()

@ Necessary assumption for the analysis of the hierarchical oracle (HORN).
@ Dijkstra Rank DR[o, d|(1,): size of smallest ball from (o, 1,). until d is settled.

ASSUMPTION 4: (correlation of travel-tfimes with Dijkstra ranks)

For A € o(log(n)) the following hold:

log log(n)
@ The is upper-bounded by a degree-A polynomial of the
eiCEIeRETE ; ‘ DRlo, d](1) € B((Dlo, (1))
Q The is upper-bounded by a degree-(%) polynomial of the

:| Dlo, d](to) € O((DR[o, d](1.))'/4)

v

The doubling dimension assumption used in correlates
the distance metric with the Dijkstra-rank metric. For constant A > 1, we
can have an oracle providing a PTAS, for stafic metrics.

We have proved that =

kontog@uoi.gr’

Overview of Our Theoretical Results

(ICALP (2014)
ALGORITHMICA (2016))
TRAPONLY

(ISAAC (2016))

FLAT

(ISAAC (2016)) &
CFLAT

(ATMOS (2017))

HORN

(ISAAC (2016))

r2—B+o1)

2B+(1)

2—B+l1)

)

o)

~ o, d](t,)° T4

[
¢
20
2

@ ..assuming TD-instances with period T = n“ for constant a € (0, 1).

(e/y)*h

@ ...achieving approx. guarantee 1+ ¢ - (CDGASk

@ For all oracles, except for the first, we assume that 5 | O.

kontog@uoi.gr,

Recap of tfravel-time oracles

...approximation, preprocessing and query algorithms...

Approximation Algorithms for Path-Travel-Time Functions

GIVEN: Arc-traversal-time (continuous,
pwl) functions D[uv] : [0, T) - R.o.

GOAL: Succinct representations of
(unknown, pwl,continuous)
min-travel-time functions.

o
S

Dlo, d] = mingep, { D[] } : [0, T) = Ry

PROBLEM: Superpolynomial time/space
complexities.

SOLUTION: with
polynomial time complexity.

CHALLENGE: One-to-all construction of
succinct representations for the
approximate min-travel-time functions.

kontog@uoi.gr’

s

-

N
"

o

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

) (to
be removed later) of the
unknown functions
D|o, v] in an interval
[to, 1] of departure
times.

Dof-

Dy

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

® Recursively keep sampling,
v € V, distance values from o, at
mid-points of currently unsatisfied intervals (wrt approximation guarantee).

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

) (to
be removed later) of the
unknown functions
D|o, v] in an interval
[to, 1] of departure
times.

Dy

Dy

ty h

Example of Bisection Execution : = Upper Bound, = Lower Bound

® Recursively keep sampling,
v € V, distance values from o, at
mid-points of currently unsatisfied intervals (wrt approximation guarantee).

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

) (to
be removed later) of the
unknown functions
D|o, v] in an interval
[to, 1] of departure
times.

Do

Dy

t) h

Example of Bisection Execution : Level-1 Recursion

o Recursively keep sampling,
v € V, distance values from o, at
mid-points of currently unsatisfied intervals (wrt approximation guarantee).

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

) (to
be removed later) of the
unknown functions ’

D|o, v] in an interval D//
[to, 1] of departure
times.

Dy

t 6 t A

Example of Bisection Execution : Level-2 Recursion

o Recursively keep sampling,
v € V, distance values from o, at
mid-points of currently unsatisfied intervals (wrt approximation guarantee).

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

) (to
be removed later) of the z
unknown functions ’

D|o, v] in an interval D//
[to, 1] of departure
times.

Dy

t 6 t A

Example of Bisection Execution : Level-2 Recursion

o Recursively keep sampling,
v € V, distance values from o, at
mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Remark: Analysis based on expression of maximum absolute error
(length of purple line).

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

For each arc-delay function:

@ Run Reverse
TD-Dijkstraon
, to project each
concavity-spoiling PB fo a
departure-time (called primitive
image -- PI) atf the origin o.

head(uv]

earliest-arrival times at v

v

1 Lo n 1 s T

departure time from u = tail[uv]
@ For each pair of of oin [0,7T), run Bisect ion forthe
corresponding departure-times interval.
@ Return the of upper-approximating trravel-time summaries.

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection
For each (common) origin o € V,

°
O((K* +1)-n- é - MaXyey {Iog(—g::[[s:]]((grr)))})

kontog@uoi.gr,

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection
For each (common) origin o € V,
°
O((K* +1)-n- é - MaXyey {Iog(—g::[[s:]]((grr)))})
° (in number of TDSP-Probes):

O((K* + 1)- maxyey {Iog (%)} . é maXyecy {Iog(%

)

kontog@uoi.gr,

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection
For each (common) origin o € V,
°
O((K* +1)-n- é - MaXyey {|°g(—g::[[s:]]((grr)))})

° (in number of TDSP-Probes):

O((K* + 1)- maxyey {Iog (%)} . é maXyecy {Iog(%

)

v

PROS CONS

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection
For each (common) origin o € V,
°
O((K* +1)-n- 1. maxyey {'Og(—gﬁ[[;):]]((grr)))})
° (in number of TDSP-Probes):
O((K* + 1) maxyey {Iog (%)} - L maxyey {Iog(%)})

PROS CONS
¥ Simplicity.
& Space-optimal for functions.
¥ First one-to-all approximation.

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection
For each (common) origin o € V,

)
" 1 Dmax|o,v|(0,T
O((K +1)-n- < - maxyey {Iog(%)})
° (in number of TDSP-Probes):
* T'(Amax+]) 1 Dmax[OvV](OvT)
O((K ¢ 1) maXyey {lOg (m)} i maXyey {lOg (m)})
PROS CONS
¥ Simplicity. ¥ Linear
& Space-optimal for functions. dependence on
- degree of
¥ First one-to-all approximation. disconcavity K*.

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions

Second Aftempt: Trapezoidal Algorithm (TRAP)...

TRAP all
from £, for

ever-finer departure-points, until the

approximation guarantee is achieved

® on the shape
of the function to approximate.

o of min/max
slopes Amin/NAmax of
min-fravel-time functions.

kontog@uoi.gr’

Dy [1,v](ts,t7)

D[Lv](z)

um travel time at v

DallVI(tst)S
£

'
: Slope: -Amin

Slope: Amax
Slope: -Amin

minimum travel time at v

D[Lv](r0)

Tn Im
departure time from landmark

v

Approximation Algorithms for Path-Travel-Time Functions

Second Aftempt: Trapezoidal Algorithm (TRAP)...

TRAP all
from £, for

ever-finer departure-points, until the

approximation guarantee is achieved

® on the shape
of the function to approximate.

o of min/max
slopes Amin/NAmax of
min-fravel-time functions.

Dy [1,v](ts,t7)

D[Lv](z)

um travel time at v

DallVI(tst)S
£

'
: Slope: -Amin

Slope: Amax
Slope: -Amin

minimum travel time at v

D[Lv](r0)

A

Tn Im
departure time from landmark

v

Upper-approximating function A[¢, v].

Green line: Lower-approximation.

Blue line: The unknown min-travel-time function D¢, v].

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
Second Aftempt: Trapezoidal Algorithm (TRAP)...
Theorem: Complexity of Trapezoidal Method (TRAP)
Split [0, T) into [ﬂ length- intervals.
° A[¢, v] = concatenation of approximations by TRAP for all
subintervals. = O(%) BPs and TDSP-probes.

IF minkeN:kTe[O,T) { D[, V](kT) } = (] + %)/\max T
THEN A[¢, v] is (1 + €)-approximation of D[¢, v] in [0, T).

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
Second Aftempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)
Split [0, T) into [q length- intervals.

;.
° A[¢, v] = concatenation of approximations by TRAP for all
subintervals. = O(%) BPs and TDSP-probes.

(*]

IF minkeN:kTe[O,T) { D[, V](kT) } = (] + %) Amax " T
THEN A[¢, v] is (1 + €)-approximation of D[¢, v] in [0, T).

PROS CONS
& Simplicity.
& One-to-all approximation.

& |ndependence from shape of
the function to approximate.

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
Second Aftempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)
Split [0, T) into [q length- intervals.

;.
° A[¢, v] = concatenation of approximations by TRAP for all
subintervals. = O(%) BPs and TDSP-probes.

(*]

IF minkeN:kTe[O,T) { D[, V](kT) } = (] + %) Amax " T
THEN A[¢, v] is (1 + €)-approximation of D[¢, v] in [0, T).

PROS CONS

& Simplicity. & No theoretical guarantee of

& One-to-all approximation. space-optimality.

< |nappropriate (in theory) for

& |ndependence from shape of
around ¢.

the function to approximate.

kontog@uoi.gr’

Approximation Algorithms for Path-Travel-Time Functions
Third Attempt: Combinatorial Trapezoidal Algorithm (CTRAP)...

CTRAP samples and stores

, rather than R y
' . L4 ‘.
travel-time functions. n ST
Almlitalt]) =p====- - _\-i;-
i - o~
@ Also on the T — ;\‘Imi!m
-
shape of the function to)
- -
approximate. Sit) Mg '
‘l !.‘)
° of min slope SIop b
Amin of min-travel-time functions.
AT e ey " e e
@ Constructs
| 1 i : 14
’ All+] E
by composing approximate S[r.] - i ["-]“ .
eV han] ¥
arrival-time functions along

Shortest-Path trees (in BFS order).

kontog@uoi.gr’

Recap of tfravel-time oracles

...approximation, preprocessing and query algorithms...

kontog@uoi.gr’

F'LAT: Preprocessing Phase

@ Rationale:
> |dentify a (small) subset L of allegedly “‘important’” vertices (landmarks) in
the network, which are assumed to be

» Use the approximation algorithm (BT S, TRAP, or CTRAP) fo compute
approximate travel-time summaries (upper-approximating functions)
A[L,v].Y(L,v) € LX V, st

[vteon), DEV](H) < <(1+¢€)- DL, V(1)

kontog@uoi.gr’

F'LAT: Preprocessing Phase

@ Rationale:

>

>

Identify a (small) subset L of allegedly *‘important’” vertices (landmarks) in
the network, which are assumed to be

Use the approximation algorithm (BT S, TRAP, or CTRAP) to compute
approximate travel-time summaries (upper-approximating functions)
A[L,v].Y(L,v) € LX V, st

[vteon), DEV](H) < <(1+¢€)- DL, V(1)

@ Landmark Selection Policies:

>

>

RANDOM (R): Independent and random selections, without repetitions.

SPARSE-RANDOM (SR): Sequential and random selections, excluding nearby
vertices of already selected landmarks.

SPARSE KAHIP (SK): Selection of boundary vertices in a given KaHIP partition,
excluding nearby vertices of already selected landmarks.

BETWEENESS CENTRALITY (BC): Sequential selection according to the
BC-order, excluding nearby vertices of already selected landmarks.

kontog@uoi.gr’

CEFLAT: Preprocess trees rather than functions

! Challenge for FLAT: requirements (typical for
landmark-based algorithms).

kontog@uoi.gr’

CELAT: Preprocess trees rather than functions

! Challenge for FLAT: requirements (typical for
landmark-based algorithms).

The of the optimal solution changes over time
than the corresponding min-travel-time function.

kontog@uoi.gr’

CELAT: Preprocess trees rather than functions

Challenge for F'LAT: requirements (typical for
landmark-based algorithms).

The of the optimal solution changes over time
than the corresponding min-travel-time function.

Combinatorial FLAT (CELAT):

> Forget about (upper-approximations of) fravel-time functions.
» Store only min-fravel-time frees rooted at ({’ , f[).

» Avoid vertex IDs and represent parents in the trees only by their
in the adjacency lists of incoming arcs.

» Store two different sequences per vertex v and landmark ¢:
* A sequence of from the landmark.

* A sequence of , one per departure-time, in the corresponding
unigue {v-path.

kontog@uoi.gr’

CEFLAT: Store only sampled trees & avoid duplicates

@ The CTRAP approximation algorithm:

> avoids storing , and only stores the departure-times and the
predecessors sequences for all ({’, v) pairs.

> avoids storing , between pairs of consecutive
departure-time samples (saves 10M and 100M breakpoints per landmark in
BER and GER, respectively).

kontog@uoi.gr’

CEFLAT: Store only sampled trees & avoid duplicates

@ The CTRAP approximation algorithm:

> avoids storing , and only stores the departure-times and the
predecessors sequences for all ({’, v) pairs.

> avoids storing , between pairs of consecutive
departure-time samples (saves 10M and 100M breakpoints per landmark in
BER and GER, respectively).

@ The CFLAT oracle:

> merges consecutive breakpoints with

» stores each sequence of departure times and lets all destinations
corresponding to it fo just point af it.

> uses two for fast recognition of identical sequences
of departure times. In case of positive answer, exhaustively check the
tautology of the two sequences.

kontog@uoi.gr’

Recap of tfravel-time oracles

...approximation, preprocessing and query algorithms...

kontog@uoi.gr’

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

] Extended Forward Constant Approximation -- FCA(N) ‘

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £, ..., {y—_1 (or d)
are seftled.

2. return mino1, n-1) { sol = Dlo, €j](1,) + A[&;, d](t + Dlo, €](15)) }

kontog@uoi.gr,

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

’ Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £, ..., {y—_1 (or d)
are settled.
2. return mino1, n-1) { sol = Dlo, €j](1,) + A[&;, d](t + Dlo, €](15)) }

kontog@uoi.gr’

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

’ Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £, ..., {y—_1 (or d)
are settled.
2. return mino1, n-1) { sol = Dlo, €j](1,) + A[&;, d](t + Dlo, €](15)) }

kontog@uoi.gr’

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

] Extended Forward Constant Approximation -- FCA(N) ‘

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £, ..., {y—_1 (or d)
are seftled.

2. return mino1, n-1) { sol = Dlo, €j](1,) + A[&;, d](t + Dlo, €](15)) }

kontog@uoi.gr,

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

] Extended Forward Constant Approximation -- FCA(N) ‘

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £, ..., {y—_1 (or d)
are seftled.

2. return mino1, n-1) { sol = Dlo, €j](1,) + A[&;, d](t + Dlo, €](15)) }

Performance of F'CA (N) for random landmarks
@ In theory: Constant-approximation, for a metric-dependent constant.

kontog@uoi.gr’

FCA (N) : A Simple Dijkstra-based Query Algorithm

(Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016))

] Extended Forward Constant Approximation -- FCA(N) ‘

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £, ..., {y—_1 (or d)
are seftled.

2. return mino1, n-1) { sol = Dlo, €j](1,) + A[&;, d](t + Dlo, €](15)) }

Performance of F'CA (N) for random landmarks
@ In theory: Constant-approximation, for a metric-dependent constant.

@ In practice: Fast query-response times, optimal solutions in most cases.

kontog@uoi.gr’

CECA (N): A new query algorithm

| procedure CiCA (1)

2.6:

2.7:
2.8:

STEP 1: A TDD ball is grown from (o, 1,), until N landmarks are settled.
1.1
1.2:

if d is already settled then return optimal solution.
For each settled landmark ¢, f; = t, + D[o, {](t,).

STEP 2: An appropriate subgraph is recursively created from d.
2.1:
2.2:
2.3:
24:
2.5:

Q={d} Q
while =Q.Empty() do
if v = Q.Pop() is not explored from STEP 1's TDD ball then :
for each settled landmark £ of STEP 1 do :
Mark the arcs (PRED[(, v](t;), v) and (PRED[C, v](Tj), v) leading
to v, where [t f[) is the unique interval in DEP[{, v] containing f;.
if any of the predecessors was not yet visited
then { Q.Push(PREDIL, v|(t;)): @.Push(PRED[L, v](1,')) }
endfor
endwhile

STEP 3: return optimal od-path in the induced subgraph by the TDD ball of STEP 1,
and the marked arcs of STEP 2.

kontog@uoi.gr’

Significance of Path Construction

For fime-independent instances, path construction is quite easy and has
essentially to the query-time.

kontog@uoi.gr’

Significance of Path Construction

For fime-independent instances, path construction is quite easy and has

essentially to the query-time.
For fime-dependent instances, path construction is anymore,
and usually contributes a amount to the query-time:

> During the (backward) path construction from the destination, one has to
deal with evaluations of continuous functions rather than just scalars.

> For the instance of Germany (see experiments), for both CFLAT and
KaTCH, the path-construction cost contributes more than 30% of the total
query-fime.

kontog@uoi.gr’

Significance of Path Construction

For fime-independent instances, path construction is quite easy and has

essentially to the query-time.
For fime-dependent instances, path construction is anymore,
and usually contributes a amount to the query-time:

> During the (backward) path construction from the destination, one has to
deal with evaluations of continuous functions rather than just scalars.

> For the instance of Germany (see experiments), for both CFLAT and
KaTCH, the path-construction cost contributes more than 30% of the total
query-fime.

Steps 2 and 3 leave more room for (future) algorithm engineering.

kontog@uoi.gr’

Experimental Evaluation

...setup, instances, evaluation & comparison...

kontog@uoi.gr’

Instances

Instance #nodes #edges

BER 473,253 1,126,468
GER 4,692,091 10,805,429
EUR 18,010,173 42,188,664
GRID 5400976 11,045,894

@ Real-world Berlin instance (BER) -- kindly provided by TomTom.
@ Real-world Germany instance (GER) -- kindly provided by PTV AG.

@ Synthetic Europe instance (EUR) -- typical benchmark network of DIMACS
challenge.

@ Synthetic grid instance (GRID) -- constructed in this work.

kontog@uoi.gr’

Experiment 1: Preprocessing times of TD-Oracles

@ Significant improvement by exploiting a tfime-dependent variant of the
Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.

@ Exploitation of a careful combination of data-parallelism and algorithmic
parallelism.

@ Exploitation of the amorphous-data-parallelism rationale, which also
boosted the preprocessing phase.

kontog@uoi.gr’

Experiment 1: Preprocessing times of TD-Oracles

@ Significant improvement by exploiting a tfime-dependent variant of the
Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.

@ Exploitation of a careful combination of data-parallelism and algorithmic
parallelism.

@ Exploitation of the amorphous-data-parallelism rationale, which also
boosted the preprocessing phase.

DU vs DS @ OFLAT oracle

INSTANCE BERLIN [GERMANY EUROPE
[# landmarks) | (1000 landmarks) | (1000 landmarks) | (900 !_anﬁmarks]
ey OTRAP & (OTRAP&| . | OTRAP& OTRAP& . | OTRAP& |OTRAPE |
1xDUsh(24) | 8x0s(3) | “PP°°P| 1xpush(12) | 12x08(2) *PU*P| 1xpush(12) | axpsfe) | PP
total time (min) | 5964) 7.701] 0774 123454 89216 1384 5203133/3549745 1481

kontog@uoi.gr’

Experiment 2: Query Response Times

() H L
4K SR Landmarks 5K SR Landmarks
SPT 1xDS(1)
|
g 1xDIJbh(1) ey 1xDlJsh(1)
GER [0.582 0692 | 0.4972 | 0820
N=2 1.242 1.087 0.9612
N= 2.413 1.926 1.8768
N=6 3.572 2.904 27515
- 700 SR Landmarks
SPT - DS(12) | | o "
E U R alg [A=128] 1.560
N=1 -- 3.332 7.998
N=2 - 4.678 15.463
N=4 - 7.688 30.008
N=6 — 10.444 44,652

kontog@uoi.gr,

Thank You For Your Attention

L]
Questions

kontog@uoi.gr’

MDPI / ALGORITHMS : Promotion slide...

algorithms

an Open BEoess joumal by [Mor)

Journal's Aims and Scope:

Algorithms (ISSN 1999-4883) is an international journal, which provides . i
an advanced forum for studies related to algerithme and their applications. Timescale (in 2018)

The scope of Algorithms includes:

+ Theory of algorithms
+ Combinaterial optimization and operations research, with applications

Downloads: 101,807
Page views: 654,126

+ Special data structures Fublished papers: 223

+ Distributed and parallel algorithms

*+ Metaheuristics Journal website:

+ Performance of algorithms and algorithm engineering mdpi.com/journal/algerithms
* Applications in other areas of computer science E-Mail:

« Algorithms in biology, chemistry, physics, language 7 .
« processing, efc. algorithms@mdpi.com

+ Image processing with applications Twitter: @Algorithms_MDPI
+ Machine leaming, including grammatical inference
+ Educational aspects: how to teach algorithms

Open Access
Indexed by Scopus, Ei, @ First Decision 19.6 days
and ESCI

Prof. Dr. Henning Fernau /l] .
@ Editor-in.Chiaf MNo Space Constraints

A
MDPY| -~ o o

kontog@uoi.gr,

	The Problem...
	TDSP Definition
	TDSP: Example
	Rationale of Speedup Techniques and Oracles

	Recap of Oracles
	Assumptions
	Overview of Theoretical Results
	Recap of Approximation Algorithms
	Recap of Preprocessing
	Recap of Query Algorithms

	Experimental Evaluation...

