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Time-Dependent Route PlanningTime-Dependent Route Planning
...problem, assumptions and challenges......problem, assumptions and challenges...
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Shortest Paths
... a fundamental problem, both in theory and in practice...

Input:

◮ Directed graph G = (V , E).

◮ Arc-traversal-time values: D[uv] > 0.

◮ Origin-destination pair: (o, d) ∈ V × V .

o

d
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Input:

◮ Directed graph G = (V , E).

◮ Arc-traversal-time values: D[uv] > 0.

◮ Origin-destination pair: (o, d) ∈ V × V .

Output: π∗ ∈ argminπ∈Po,d

{

D[π] =
∑

a∈π D[a]
}

o
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Shortest Paths
... a fundamental problem, both in theory and in practice...

Input:

◮ Directed graph G = (V , E).

◮ Arc-traversal-time values: D[uv] > 0.

◮ Origin-destination pair: (o, d) ∈ V × V .

Output: π∗ ∈ argminπ∈Po,d

{

D[π] =
∑

a∈π D[a]
}

MOTIVATION & CHALLENGES: Routing in road networks.

◮ V = set of intersections, E = set of road segments.

◮ Non-planar, sparse (|E | ∈ O(|V |)) graphs.

◮ Very large size: |V | = millions of intersections.

o
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∑

a∈π D[a]
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MOTIVATION & CHALLENGES: Routing in road networks.

◮ V = set of intersections, E = set of road segments.

◮ Non-planar, sparse (|E | ∈ O(|V |)) graphs.

◮ Very large size: |V | = millions of intersections.

o

d

...possibly the most characteristic success story of algorithm engineering...

Numerous oracles and speedup techniques for static road networks.
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Time-Dependent Shortest Paths
...a more challenging problem, both in theory and in practice...

Input:

◮ Directed graph G = (V , E).

◮ Arc-traversal-time functions: D[uv] : [0, T) 7→ R>0.

Assumption: Periodic, continuous, piecewise-linear,

FIFO-compliant functions...

◮ Origin-destination-dep. time triple:

(o, d, to) ∈ V × V × [0, T).

o

d
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Input:

◮ Directed graph G = (V , E).

◮ Arc-traversal-time functions: D[uv] : [0, T) 7→ R>0.

Assumption: Periodic, continuous, piecewise-linear,

FIFO-compliant functions...

◮ Origin-destination-dep. time triple:

(o, d, to) ∈ V × V × [0, T).

Output:

π∗ ∈ argminπ∈Po,d

{

D[π](to) =
∑

a∈π D[a](to)
}
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Time-Dependent Shortest Paths
...a more challenging problem, both in theory and in practice...

Input:

◮ Directed graph G = (V , E).

◮ Arc-traversal-time functions: D[uv] : [0, T) 7→ R>0.

Assumption: Periodic, continuous, piecewise-linear,

FIFO-compliant functions...

◮ Origin-destination-dep. time triple:

(o, d, to) ∈ V × V × [0, T).

Output:

π∗ ∈ argminπ∈Po,d

{

D[π](to) =
∑

a∈π D[a](to)
}

MOTIVATION & CHALLENGES: Routing in road networks.

◮ V = set of intersections, E = set of road segments.

◮ Non-planar, sparse (|E | ∈ O(|V |)) graphs.

◮ Very large size: |V | = millions of intersections.

◮ Time-Dependence: Computationally harder instances.

o

d
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Time-Dependent Shortest Path: Examples

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time to from o? E.g.:
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Q1 How would you commute as fast as possible from o to d, for a given

departure time to from o? E.g.: to = 0
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Time-Dependent Shortest Path: Examples
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Q1 How would you commute as fast as possible from o to d, for a given

departure time to from o? E.g.: to = 1
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Q1 How would you commute as fast as possible from o to d, for a given

departure time to from o? E.g.:

Q2 What if you are not sure about the departure time?
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Instance with ARC- DELAY ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1

Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8
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Q2 What if you are not sure about the departure time?
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Q1 How would you commute as fast as possible from o to d, for a given

departure time to from o? E.g.:

Q2 What if you are not sure about the departure time?

A earliest-arrival (path) function =



















orange path, to ∈ [0, 0.03)
yellow path, to ∈ [0.03, 2.9)
purple path, to ∈ [2.9,+∞)
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Time-Dependent Shortest Path: Definitions

INPUT:

Directed graph G = (V ,A), n = |V |.

Arc travel-time / arrival-time functions:

D[uv](tu) Arr[uv](tu) = tu + D[uv](tu)

D[uv](tu)   
v

= Arr[uv](tu )

= tu + 

D[uv](tu)

u
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Time-Dependent Shortest Path: Definitions

INPUT:

Directed graph G = (V ,A), n = |V |.

Arc travel-time / arrival-time functions:

D[uv](tu) Arr[uv](tu) = tu + D[uv](tu)

D[uv](tu)   
v

= Arr[uv](tu )

= tu + 

D[uv](tu)

u

DEFINITIONS:

Po,d : Set of od-paths; π = (a1, . . . , ak) ∈ Po,d

Path travel-time / arrival-time functions:

Arr[π](to) = Arr[ak ](Arr[ak−1](· · · (Arr[a1](to)) · · · )) /∗ function composition ∗/

D[π](to) = Arr[π](to) − to

Earliest-arrival / Shortest-travel-time functions:

Arr[o, d](to) = minπ∈Po,d

{

Arr[π](to)
}

, D[o, d](to) = Arr[o, d](to) − to
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Time-Dependent Shortest Path: Definitions

INPUT:

Directed graph G = (V ,A), n = |V |.

Arc travel-time / arrival-time functions:

D[uv](tu) Arr[uv](tu) = tu + D[uv](tu)

D[uv](tu)   
v

= Arr[uv](tu )

= tu + 

D[uv](tu)

u

DEFINITIONS:

Po,d : Set of od-paths; π = (a1, . . . , ak) ∈ Po,d

Path travel-time / arrival-time functions:

Arr[π](to) = Arr[ak ](Arr[ak−1](· · · (Arr[a1](to)) · · · )) /∗ function composition ∗/

D[π](to) = Arr[π](to) − to

Earliest-arrival / Shortest-travel-time functions:

Arr[o, d](to) = minπ∈Po,d

{

Arr[π](to)
}

, D[o, d](to) = Arr[o, d](to) − to

GOALS:

1 For given departure-time to from o, determine td = Arr[o, d](to).

2 Provide a succinct representation of Arr[o, d], or of D[o, d].
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FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) ≥ −1 (e.g., for vehicles in road networks).

⇒ non-decreasing arc-arrival, path-arrival and earliest-arrival functions.

⇒ No reason to wait at vertices while moving along a path.
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FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) ≥ −1 (e.g., for vehicles in road networks).

⇒ non-decreasing arc-arrival, path-arrival and earliest-arrival functions.

⇒ No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).

⇒ Forbidden waiting: ∄ subpath optimality; NP−hard. [Orda-Rom (1990)]

⇒ Unrestricted waiting: Equivalent to FIFO. [Dreyfus (1969)]

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 7 / 37



FIFO (a.k.a. Non-Overtaking) Property in TD Networks
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⇒ No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).

⇒ Forbidden waiting: ∄ subpath optimality; NP−hard. [Orda-Rom (1990)]

⇒ Unrestricted waiting: Equivalent to FIFO. [Dreyfus (1969)]
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FIFO (a.k.a. Non-Overtaking) Property in TD Networks

FIFO Arc-Travel-Time Functions

Slopes of all D[uv](t) ≥ −1 (e.g., for vehicles in road networks).

⇒ non-decreasing arc-arrival, path-arrival and earliest-arrival functions.

⇒ No reason to wait at vertices while moving along a path.

Non-FIFO Arc-Travel-Time Functions

Possibly profitable to wait at some vertex (e.g., in public transport).

⇒ Forbidden waiting: ∄ subpath optimality; NP−hard. [Orda-Rom (1990)]

⇒ Unrestricted waiting: Equivalent to FIFO. [Dreyfus (1969)]
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TDSP vs. vs. EA-Paths in Temporal Graphs

Earliest-arrival paths in temporal

graphs with step functions for arc-

delays and unrestricted waiting

≈

Earliest-arrival paths in FIFO-

abiding TDSP networks with pwl

arc-delay functions.
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TDSP in FIFO networks: Complexity
...for piecewise-linear arc-delay functions, with K breakpoints in total...

1 Compute earliest-arrival-time at d, for given (o, to):

2 Compute succinct representations of Arr[o, d], for all departure times:
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TDSP in FIFO networks: Complexity
...for piecewise-linear arc-delay functions, with K breakpoints in total...

1 Compute earliest-arrival-time at d, for given (o, to):

◮ Time-dependent variant of Dijkstra (TDD) works for FIFO instances.

[Dreyfus (1969); Orda-Rom (1990)]

◮ Time-dependent variant of Bellman-Ford (TDBF) works for FIFO

instances. [Orda-Rom (1990)]

2 Compute succinct representations of Arr[o, d], for all departure times:
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TDSP in FIFO networks: Complexity
...for piecewise-linear arc-delay functions, with K breakpoints in total...

1 Compute earliest-arrival-time at d, for given (o, to):

◮ Time-dependent variant of Dijkstra (TDD) works for FIFO instances.

[Dreyfus (1969); Orda-Rom (1990)]

◮ Time-dependent variant of Bellman-Ford (TDBF) works for FIFO

instances. [Orda-Rom (1990)]

2 Compute succinct representations of Arr[o, d], for all departure times:

◮ Succinct representation of Arr[o, d] may require space (K + 1) · nΘ(log(n)),
even for sparse networks with affine arc-travel-time functions.

[Foschini-Hershberger-Suri (2011)]

◮ ∃ polynomial-time point-to-point (1 + ε)−approximation algorithms for

D[o, d], requiring space O(K + 1) per (o, d)-pair.

[Dehne-Omran-Sack (2010); Foschini-Hershberger-Suri (2011)]
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Measuring Quality of Algorithms for TDSP...

IN THEORY: Guaranteed quality of the proposed solution.

◮ OPT : The cost of a min-travel-time od-path.

◮ ACTUAL: The cost of the proposed od-path.

◮ Maximum absolute error: MAE = ACTUAL − OPT .

◮ Relative error (the (ACTUAL − OPT)/OPT ≤ ǫ value of a 1 + ǫ

approximation, as a percentage): RE = 100 · ACTUAL−OPT

OPT
%
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IN THEORY: Guaranteed quality of the proposed solution.

◮ OPT : The cost of a min-travel-time od-path.

◮ ACTUAL: The cost of the proposed od-path.

◮ Maximum absolute error: MAE = ACTUAL − OPT .

◮ Relative error (the (ACTUAL − OPT)/OPT ≤ ǫ value of a 1 + ǫ

approximation, as a percentage): RE = 100 · ACTUAL−OPT

OPT
%

IN PRACTICE: Avg query-response time must be really small, for large-scale

instances (e.g., < 1msec for instances with millions of arcs).

R1 A relative error of 1% implies an extra delay of at most 36sec per hour of

optimal-travel-time!!!

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 10 / 37



Measuring Quality of Algorithms for TDSP...
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◮ OPT : The cost of a min-travel-time od-path.

◮ ACTUAL: The cost of the proposed od-path.

◮ Maximum absolute error: MAE = ACTUAL − OPT .

◮ Relative error (the (ACTUAL − OPT)/OPT ≤ ǫ value of a 1 + ǫ

approximation, as a percentage): RE = 100 · ACTUAL−OPT

OPT
%

IN PRACTICE: Avg query-response time must be really small, for large-scale

instances (e.g., < 1msec for instances with millions of arcs).

R1 A relative error of 1% implies an extra delay of at most 36sec per hour of

optimal-travel-time!!!

R2 Hard to compare query times of algorithms running on different machines.

A speedup = Time(Dij)/Time(Alg) over a baseline (time-dependent)

Dijkstra implementation might be more meaningful.
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Recap of travel-time oraclesRecap of travel-time oracles
...approximation, preprocessing and query algorithms......approximation, preprocessing and query algorithms...
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About Oracles for TDSP...
...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: ∃ some data structure (to precompute), and a query algorithm

(to approximately answer routing requests on-the-fly) for TDSP that requires

reasonable space and can answer arbitrary queries efficiently?
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...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: ∃ some data structure (to precompute), and a query algorithm

(to approximately answer routing requests on-the-fly) for TDSP that requires

reasonable space and can answer arbitrary queries efficiently?

Trivial solution (I): Precompute all (1 + ε)−upper-approximating

trravel-time functions (summaries) ∆[o, d] for every od-pair.

O(n2(K + 1)) space /∗ store all (succinct representations of) ∆[o, d] ∗/

O(log log(K )) query time /∗ look for the proper leg in ∆[o, d] ∗/

(1 + ε)−stretch
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reasonable space and can answer arbitrary queries efficiently?

Trivial solution (I): Precompute all (1 + ε)−upper-approximating

trravel-time functions (summaries) ∆[o, d] for every od-pair.

O(n2(K + 1)) space /∗ store all (succinct representations of) ∆[o, d] ∗/

O(log log(K )) query time /∗ look for the proper leg in ∆[o, d] ∗/

(1 + ε)−stretch

Trivial solution (II): No preprocessing. Respond to queries with

TD-Dijkstra:

O(n + m + K ) space /∗ only store the instance ∗/

O([m + n log(n)] × log log(K )) query time /∗ run TD-Dijkstra ∗/

1−stretch
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...FIFO abiding, pwl arc-delay functions with K breakpoints in the arc-travel-time functions...

QUESTION: ∃ some data structure (to precompute), and a query algorithm

(to approximately answer routing requests on-the-fly) for TDSP that requires

reasonable space and can answer arbitrary queries efficiently?

Trivial solution (I): Precompute all (1 + ε)−upper-approximating

trravel-time functions (summaries) ∆[o, d] for every od-pair.

O(n2(K + 1)) space /∗ store all (succinct representations of) ∆[o, d] ∗/

O(log log(K )) query time /∗ look for the proper leg in ∆[o, d] ∗/

(1 + ε)−stretch

Trivial solution (II): No preprocessing. Respond to queries with

TD-Dijkstra:

O(n + m + K ) space /∗ only store the instance ∗/

O([m + n log(n)] × log log(K )) query time /∗ run TD-Dijkstra ∗/

1−stretch

GOAL: Can we do better?

◮ Assure subquadratic space & sublinear query time.

◮ Provide a smooth tradeoff among space / query time / stretch.
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Assumptions: Statement (I)

Q Static & undirected world =⇒ time-dependent & directed world?
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Assumptions: Statement (I)

Q Static & undirected world =⇒ time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of D[o, d] ∈ [−Λmin,Λmax], for constants Λmax > 0, Λmin ∈ [0, 1).
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ASSUMPTION 2: (bounded opposite trips)

∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0, T), D[o, d](t) ≤ ζ · D[d, o](t)

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an

origin is at most polylogarithmic.

ORIGINAL FREE FLOW BALL

free flow radiusv#vertices = F
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ORIGINAL FREE FLOW BALL

free flow radiusv
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Assumptions: Statement (I)

Q Static & undirected world =⇒ time-dependent & directed world?

ASSUMPTION 1: (bounded travel time slopes)

Slopes of D[o, d] ∈ [−Λmin,Λmax], for constants Λmax > 0, Λmin ∈ [0, 1).

ASSUMPTION 2: (bounded opposite trips)

∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0, T), D[o, d](t) ≤ ζ · D[d, o](t)

ASSUMPTION 3: (growth of free-flow balls)

The growth of free-flow balls from an

origin is at most polylogarithmic.

FINAL FREE FLOW BALL

ORIGINAL FREE FLOW BALL

free flow radiusv

full congestion radius

final free flow radius

#vertices = F

#vertices = G   O( F polylog(F) )
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Assumptions: Statement (II)

Necessary assumption for the analysis of the hierarchical oracle (HORN).

Dijkstra Rank DR[o, d](to): size of smallest ball from (o, to), until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For λ ∈ o

(

log(n)
log log(n)

)

the following hold:
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Necessary assumption for the analysis of the hierarchical oracle (HORN).

Dijkstra Rank DR[o, d](to): size of smallest ball from (o, to), until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For λ ∈ o

(

log(n)
log log(n)

)

the following hold:

1 The Dijkstra rank is upper-bounded by a degree-λ polynomial of the

corresponding travel-time: DR[o, d](to) ∈ Õ
(

(D[o, d](to))
λ
)
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Dijkstra Rank DR[o, d](to): size of smallest ball from (o, to), until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For λ ∈ o

(

log(n)
log log(n)

)

the following hold:

1 The Dijkstra rank is upper-bounded by a degree-λ polynomial of the

corresponding travel-time: DR[o, d](to) ∈ Õ
(

(D[o, d](to))
λ
)

2 The travel-time is upper-bounded by a degree-
(

1

λ

)

polynomial of the

Dijkstra-rank: D[o, d](to) ∈ Õ
(

(DR[o, d](to))
1/λ
)
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Assumptions: Statement (II)

Necessary assumption for the analysis of the hierarchical oracle (HORN).

Dijkstra Rank DR[o, d](to): size of smallest ball from (o, to), until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For λ ∈ o

(

log(n)
log log(n)

)

the following hold:

1 The Dijkstra rank is upper-bounded by a degree-λ polynomial of the

corresponding travel-time: DR[o, d](to) ∈ Õ
(

(D[o, d](to))
λ
)

2 The travel-time is upper-bounded by a degree-
(

1

λ

)

polynomial of the

Dijkstra-rank: D[o, d](to) ∈ Õ
(

(DR[o, d](to))
1/λ
)

R1 The doubling dimension assumption used in metric embeddings correlates

the distance metric with the Dijkstra-rank metric. For constant λ ≥ 1, we

can have an oracle providing a PTAS, for static metrics.

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 14 / 37



Assumptions: Statement (II)

Necessary assumption for the analysis of the hierarchical oracle (HORN).

Dijkstra Rank DR[o, d](to): size of smallest ball from (o, to), until d is settled.

ASSUMPTION 4: (correlation of travel-times with Dijkstra ranks)

For λ ∈ o

(

log(n)
log log(n)

)

the following hold:

1 The Dijkstra rank is upper-bounded by a degree-λ polynomial of the

corresponding travel-time: DR[o, d](to) ∈ Õ
(

(D[o, d](to))
λ
)

2 The travel-time is upper-bounded by a degree-
(

1

λ

)

polynomial of the

Dijkstra-rank: D[o, d](to) ∈ Õ
(

(DR[o, d](to))
1/λ
)

R1 The doubling dimension assumption used in metric embeddings correlates

the distance metric with the Dijkstra-rank metric. For constant λ ≥ 1, we

can have an oracle providing a PTAS, for static metrics.

R2 We have proved that Assumption 4⇒ Assumption 3
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Overview of Our Theoretical Results

preprocessing

space/time

query time recursion

depth

[ICALP (2014)

ALGORITHMICA (2016)]

K ∗ · n2−β+o(1) nδ+o(1) R ∈ O(1)

TRAPONLY

[ISAAC (2016)]

n2−β+o(1) nδ+o(1) R ≈ δ
a
− 1

FLAT

[ISAAC (2016)] &

CFLAT

[ATMOS (2017)]

n2−β+o(1) nδ+o(1) R ≈ 2δ
a
− 1

HORN

[ISAAC (2016)]

n2−β+o(1) ≈ Γ[o, d](to)
δ+o(1) R ≈ 2δ

a
− 1

...assuming TD-instances with period T = na for constant a ∈ (0, 1).

...achieving approx. guarantee 1 + ε ·
(ε/ψ)R+1

(ε/ψ)R+1−1
.

For all oracles, except for the first, we assume that β ↓ 0.
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Recap of travel-time oraclesRecap of travel-time oracles
...approximation, preprocessing and query algorithms......approximation, preprocessing and query algorithms...
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Approximation Algorithms for Path-Travel-Time Functions

GIVEN: Arc-traversal-time (continuous,

pwl) functions D[uv] : [0, T) 7→ R>0.

GOAL: Succinct representations of

(unknown, pwl,continuous)

min-travel-time functions.

D[o, d] = minπ∈Po,d
{ D[π] } : [0, T) 7→ R>0

PROBLEM: Superpolynomial time/space

complexities.

SOLUTION: Upper-approximations with

polynomial time complexity.

CHALLENGE: One-to-all construction of

succinct representations for the

approximate min-travel-time functions.
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Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Assume concavity (to

be removed later) of the

unknown functions

D[o, v] in an interval

[to, t1] of departure

times.

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0

Bisect on the common departure-times axis: Recursively keep sampling,

simultaneously for all active destinations v ∈ V , distance values from o, at

mid-points of currently unsatisfied intervals (wrt approximation guarantee).
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unknown functions
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times.

Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound

t1t0

D1

D0

Bisect on the common departure-times axis: Recursively keep sampling,

simultaneously for all active destinations v ∈ V , distance values from o, at

mid-points of currently unsatisfied intervals (wrt approximation guarantee).
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First Attempt: Bisection Algorithm (BIS)...

Assume concavity (to

be removed later) of the

unknown functions

D[o, v] in an interval

[to, t1] of departure

times.

Example of Bisection Execution : Level-1 Recursion

t1t0

D1

D0

t2

D2

Bisect on the common departure-times axis: Recursively keep sampling,

simultaneously for all active destinations v ∈ V , distance values from o, at

mid-points of currently unsatisfied intervals (wrt approximation guarantee).
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First Attempt: Bisection Algorithm (BIS)...

Assume concavity (to

be removed later) of the

unknown functions

D[o, v] in an interval

[to, t1] of departure

times.

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3

D3

Bisect on the common departure-times axis: Recursively keep sampling,

simultaneously for all active destinations v ∈ V , distance values from o, at

mid-points of currently unsatisfied intervals (wrt approximation guarantee).
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Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Assume concavity (to

be removed later) of the

unknown functions

D[o, v] in an interval

[to, t1] of departure

times.

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3

D3

Bisect on the common departure-times axis: Recursively keep sampling,

simultaneously for all active destinations v ∈ V , distance values from o, at

mid-points of currently unsatisfied intervals (wrt approximation guarantee).

Remark: Analysis based on closed-form expression of maximum absolute error

(length of purple line).
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Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

For each continuous, pwl, not necessarily concave arc-delay function:

1 Run Reverse

TD-Dijkstra on reversed

graph, to project each

concavity-spoiling PB to a

departure-time (called primitive

image -- PI) at the origin o.

departure time from u = tail[uv]
t1

ea
rl

ie
st

-a
rr

iv
a

l 
ti

m
es

 a
t 

v 
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

2 For each pair of consecutive PIs of o in [0, T), run Bisection for the

corresponding departure-times interval.

3 Return the concatenation of upper-approximating trravel-time summaries.
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Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection

For each (common) origin o ∈ V ,

SPACE:

O

(

(K ∗ + 1) · n · 1

ε
·maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})
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For each (common) origin o ∈ V ,

SPACE:

O

(

(K ∗ + 1) · n · 1

ε
·maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

TIME (in number of TDSP-Probes):

O

(

(K ∗ + 1)·maxv∈V

{

log
(

T ·(Λmax+1)
εDmin[o,v](0,T)

)}

· 1

ε
maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})
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Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection

For each (common) origin o ∈ V ,

SPACE:

O

(

(K ∗ + 1) · n · 1

ε
·maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

TIME (in number of TDSP-Probes):

O

(

(K ∗ + 1)·maxv∈V

{

log
(

T ·(Λmax+1)
εDmin[o,v](0,T)

)}

· 1

ε
maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

PROS CONS
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Theorem: Complexity of Bisection

For each (common) origin o ∈ V ,

SPACE:

O

(

(K ∗ + 1) · n · 1

ε
·maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

TIME (in number of TDSP-Probes):

O

(

(K ∗ + 1)·maxv∈V

{

log
(

T ·(Λmax+1)
εDmin[o,v](0,T)

)}

· 1

ε
maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

PROS CONS

Simplicity.

Space-optimal for concave functions.

First one-to-all approximation.

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 20 / 37



Approximation Algorithms for Path-Travel-Time Functions
First Attempt: Bisection Algorithm (BIS)...

Theorem: Complexity of Bisection

For each (common) origin o ∈ V ,

SPACE:

O

(

(K ∗ + 1) · n · 1

ε
·maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

TIME (in number of TDSP-Probes):

O

(

(K ∗ + 1)·maxv∈V

{

log
(

T ·(Λmax+1)
εDmin[o,v](0,T)

)}

· 1

ε
maxv∈V

{

log
(

Dmax[o,v](0,T)
Dmin[o,v](0,T)

)})

PROS CONS

Simplicity.

Space-optimal for concave functions.

First one-to-all approximation.

Linear

dependence on

degree of

disconcavity K ∗.
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Approximation Algorithms for Path-Travel-Time Functions
Second Attempt: Trapezoidal Algorithm (TRAP)...

TRAP samples simultaneously all

min-travel-time values from ℓ, for

ever-finer departure-points, until the

approximation guarantee is achieved

for all destinations.

Avoids dependence on the shape

of the function to approximate.

Exploits knowledge of min/max

slopes Λmin/Λmax of

min-travel-time functions.

m
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v

departure time from landmark

ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Additive Error

tm tm

D[l,v](tf)

D[l,v](ts)

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)
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Approximation Algorithms for Path-Travel-Time Functions
Second Attempt: Trapezoidal Algorithm (TRAP)...

TRAP samples simultaneously all

min-travel-time values from ℓ, for

ever-finer departure-points, until the

approximation guarantee is achieved

for all destinations.

Avoids dependence on the shape

of the function to approximate.

Exploits knowledge of min/max

slopes Λmin/Λmax of

min-travel-time functions.
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Max Additive Error
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D[l,v](ts)

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

Orange line: Upper-approximating function ∆[ℓ, v].

Green line: Lower-approximation.

Blue line: The unknown min-travel-time function D[ℓ, v].
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Approximation Algorithms for Path-Travel-Time Functions
Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split [0, T) into
⌈

T

τ

⌉

length-τ intervals.

TIME & SPACE: ∆[ℓ, v] = concatenation of approximations by TRAP for all

subintervals.⇒ O
(

T

τ

)

BPs and TDSP-probes.

APPROXIMABILITY:

IF mink∈N:kτ∈[0,T)
{

D[ℓ, v](kτ)
}

≥
(

1 + 1

ǫ

)

Λmax · τ

THEN ∆[ℓ, v] is (1 + ǫ)-approximation of D[ℓ, v] in [0, T).
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Theorem: Complexity of Trapezoidal Method (TRAP)

Split [0, T) into
⌈

T

τ

⌉

length-τ intervals.

TIME & SPACE: ∆[ℓ, v] = concatenation of approximations by TRAP for all

subintervals.⇒ O
(

T

τ

)

BPs and TDSP-probes.

APPROXIMABILITY:

IF mink∈N:kτ∈[0,T)
{

D[ℓ, v](kτ)
}

≥
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1 + 1

ǫ

)

Λmax · τ

THEN ∆[ℓ, v] is (1 + ǫ)-approximation of D[ℓ, v] in [0, T).

PROS CONS

Simplicity.

One-to-all approximation.

Independence from shape of

the function to approximate.

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 22 / 37



Approximation Algorithms for Path-Travel-Time Functions
Second Attempt: Trapezoidal Algorithm (TRAP)...

Theorem: Complexity of Trapezoidal Method (TRAP)

Split [0, T) into
⌈

T

τ

⌉

length-τ intervals.

TIME & SPACE: ∆[ℓ, v] = concatenation of approximations by TRAP for all

subintervals.⇒ O
(

T

τ

)

BPs and TDSP-probes.

APPROXIMABILITY:

IF mink∈N:kτ∈[0,T)
{

D[ℓ, v](kτ)
}

≥
(

1 + 1

ǫ

)

Λmax · τ

THEN ∆[ℓ, v] is (1 + ǫ)-approximation of D[ℓ, v] in [0, T).

PROS CONS

Simplicity.

One-to-all approximation.

Independence from shape of

the function to approximate.

No theoretical guarantee of

space-optimality.

Inappropriate (in theory) for

‘‘nearby’’ vertices around ℓ.
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Approximation Algorithms for Path-Travel-Time Functions
Third Attempt: Combinatorial Trapezoidal Algorithm (CTRAP)...

CTRAP samples and stores

shortest-path trees, rather than

travel-time functions.

Also avoids dependence on the

shape of the function to

approximate.

Exploits knowledge of min slope

Λmin of min-travel-time functions.

Constructs tighter

upper-approximating functions,

by composing approximate

arrival-time functions along

Shortest-Path trees (in BFS order).
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Recap of travel-time oraclesRecap of travel-time oracles
...approximation, preprocessing and query algorithms......approximation, preprocessing and query algorithms...
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FLAT: Preprocessing Phase

Rationale:
◮ Identify a (small) subset L of allegedly ‘‘important’’ vertices (landmarks) in

the network, which are assumed to be crucial for almost all optimal paths.

◮ Use the approximation algorithm (BIS, TRAP, or CTRAP) to compute

approximate travel-time summaries (upper-approximating functions)

∆[ℓ, v], ∀(ℓ, v) ∈ L × V , s.t.:

∀t ∈ [0, T), D[ℓ, v](t) ≤ ∆[ℓ, v](t) ≤ (1 + ǫ) · D[ℓ, v](t)
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the network, which are assumed to be crucial for almost all optimal paths.

◮ Use the approximation algorithm (BIS, TRAP, or CTRAP) to compute

approximate travel-time summaries (upper-approximating functions)

∆[ℓ, v], ∀(ℓ, v) ∈ L × V , s.t.:

∀t ∈ [0, T), D[ℓ, v](t) ≤ ∆[ℓ, v](t) ≤ (1 + ǫ) · D[ℓ, v](t)

Landmark Selection Policies:

◮ RANDOM (R): Independent and random selections, without repetitions.

◮ SPARSE-RANDOM (SR): Sequential and random selections, excluding nearby

vertices of already selected landmarks.

◮ SPARSE KAHIP (SK): Selection of boundary vertices in a given KaHIP partition,

excluding nearby vertices of already selected landmarks.

◮ BETWEENESS CENTRALITY (BC): Sequential selection according to the

BC-order, excluding nearby vertices of already selected landmarks.
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CFLAT: Preprocess trees rather than functions

Challenge for FLAT: Large preprocessing requirements (typical for

landmark-based algorithms).
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CFLAT: Preprocess trees rather than functions

Challenge for FLAT: Large preprocessing requirements (typical for

landmark-based algorithms).

The combinatorial structure of the optimal solution changes over time less

frequently than the corresponding min-travel-time function.

Combinatorial FLAT (CFLAT):

◮ Forget about (upper-approximations of) travel-time functions.

◮ Store only min-travel-time trees rooted at time-stamped landmarks (ℓ, tℓ).

◮ Avoid vertex IDs and represent parents in the trees only by their relative

order in the adjacency lists of incoming arcs.

◮ Store two different sequences per vertex v and landmark ℓ:

⋆ A sequence of departure-times from the landmark.

⋆ A sequence of predecessors, one per departure-time, in the corresponding

unique ℓv -path.
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CFLAT: Store only sampled trees & avoid duplicates

The CTRAP approximation algorithm:

◮ avoids storing travel-times, and only stores the departure-times and the

predecessors sequences for all (ℓ, v) pairs.

◮ avoids storing intermediate breakpoints, between pairs of consecutive

departure-time samples (saves 10M and 100M breakpoints per landmark in

BER and GER, respectively).
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◮ avoids storing travel-times, and only stores the departure-times and the

predecessors sequences for all (ℓ, v) pairs.

◮ avoids storing intermediate breakpoints, between pairs of consecutive

departure-time samples (saves 10M and 100M breakpoints per landmark in

BER and GER, respectively).

The CFLAT oracle:

◮ merges consecutive breakpoints with common predecessor.

◮ stores each sequence of departure times only once and lets all destinations

corresponding to it to just point at it.

◮ uses two random hash functions for fast recognition of identical sequences

of departure times. In case of positive answer, exhaustively check the

tautology of the two sequences.
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Recap of travel-time oraclesRecap of travel-time oracles
...approximation, preprocessing and query algorithms......approximation, preprocessing and query algorithms...
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FCA(N): A Simple Dijkstra-based Query Algorithm
[Kontogiannis-Papastavrou-Paraskevopoulos-Wagner-Zaroliagis (ALENEX 2016)]

Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks ℓo, . . . , ℓN−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{

soli = D[o, ℓi ](to) + ∆[ℓi , d](ti + D[o, ℓi ](to))
}
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Performance of FCA(N) for random landmarks

In theory: Constant-approximation, for a metric-dependent constant.
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Extended Forward Constant Approximation -- FCA(N)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks ℓo, . . . , ℓN−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}
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o

Performance of FCA(N) for random landmarks

In theory: Constant-approximation, for a metric-dependent constant.

In practice: Fast query-response times, optimal solutions in most cases.
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CFCA(N): A new query algorithm

procedure CFCA(N)

STEP 1: A TDD ball is grown from (o, to), until N landmarks are settled.

1.1: if d is already settled then return optimal solution.

1.2: For each settled landmark ℓ, tℓ = to + D[o, ℓ](to).

STEP 2: An appropriate subgraph is recursively created from d.

2.1: Q = { d } /∗ Q is a FIFO queue ∗/

2.2: while ¬Q.Empty() do :

2.3: if v = Q.Pop() is not explored from STEP 1’s TDD ball then :

2.4: for each settled landmark ℓ of STEP 1 do :

2.5: Mark the arcs 〈PRED[ℓ, v](t−
ℓ
), v〉 and 〈PRED[ℓ, v](t+

ℓ
), v〉 leading

to v , where [t−
ℓ
, t+
ℓ
) is the unique interval in DEP[ℓ, v] containing tℓ.

2.6: if any of the predecessors was not yet visited

then { Q.Push(PRED[ℓ, v](t−
ℓ
)); Q.Push(PRED[ℓ, v](t+

ℓ
)) }

2.7: endfor

2.8: endwhile

STEP 3: return optimal od-path in the induced subgraph by the TDD ball of STEP 1,

and the marked arcs of STEP 2.
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Significance of Path Construction

For time-independent instances, path construction is quite easy and has

essentially negligible contribution to the query-time.
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For time-dependent instances, path construction is not so easy anymore,

and usually contributes a significant amount to the query-time:

◮ During the (backward) path construction from the destination, one has to

deal with evaluations of continuous functions rather than just scalars.

◮ For the instance of Germany (see experiments), for both CFLAT and

KaTCH, the path-construction cost contributes more than 30% of the total

query-time.
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Significance of Path Construction

For time-independent instances, path construction is quite easy and has

essentially negligible contribution to the query-time.

For time-dependent instances, path construction is not so easy anymore,

and usually contributes a significant amount to the query-time:

◮ During the (backward) path construction from the destination, one has to

deal with evaluations of continuous functions rather than just scalars.

◮ For the instance of Germany (see experiments), for both CFLAT and

KaTCH, the path-construction cost contributes more than 30% of the total

query-time.

Steps 2 and 3 leave more room for (future) algorithm engineering.
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Experimental EvaluationExperimental Evaluation
...setup, instances, evaluation & comparison......setup, instances, evaluation & comparison...
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Instances

Instance #nodes #edges

BER 473,253 1,126,468

GER 4,692,091 10,805,429

EUR 18,010,173 42,188,664

GRID 5,400,976 11,045,894

Real-world Berlin instance (BER) -- kindly provided by TomTom.

Real-world Germany instance (GER) -- kindly provided by PTV AG.

Synthetic Europe instance (EUR) -- typical benchmark network of DIMACS

challenge.

Synthetic grid instance (GRID) -- constructed in this work.
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Experiment 1: Preprocessing times of TD-Oracles

Significant improvement by exploiting a time-dependent variant of the

Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.

Exploitation of a careful combination of data-parallelism and algorithmic

parallelism.

Exploitation of the amorphous-data-parallelism rationale, which also

boosted the preprocessing phase.

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 34 / 37



Experiment 1: Preprocessing times of TD-Oracles

Significant improvement by exploiting a time-dependent variant of the

Delta-Stepping algorithm (instead of TDD) as an SPT sampling algorithm.

Exploitation of a careful combination of data-parallelism and algorithmic

parallelism.

Exploitation of the amorphous-data-parallelism rationale, which also

boosted the preprocessing phase.

Spyros Kontogiannis (kontog@uoi.gr) Exploring earliest-arrival paths in large-scale TD networks via combinatorial oracles 34 / 37



Experiment 2: Query Response Times
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Thank You For Your Attention

Questions
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MDPI / ALGORITHMS : Promotion slide...
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