On Separators in Temporal Graphs

Hendrik Molter

Algorithmics and Computational Complexity, TU Berlin, Germany

Algorithmic Aspects of Temporal Graphs, Satellite Workshop of ICALP 2018, Prague

Based on joint work with Till Fluschnik, Rolf Niedermeier and Philipp Zschoche.

Introduction

Motivation: Separators

- Disease Spreading

Introduction

Motivation: Separators

- Disease Spreading
- Rumor Spreading

Introduction

Motivation: Separators

- Disease Spreading
- Rumor Spreading
- Physical Proximity Networks

Introduction

Motivation: Separators

■ Disease Spreading

- Rumor Spreading

■ Physical Proximity Networks

- Robustness of Connections

Introduction

Motivation: Separators

■ Disease Spreading

- Rumor Spreading

■ Physical Proximity Networks

- Robustness of Connections
- Traffic Networks

Introduction

Motivation: Separators

■ Disease Spreading

- Rumor Spreading

■ Physical Proximity Networks

- Robustness of Connections
- Traffic Networks

Introduction

Motivation: Separators

■ Disease Spreading

- Rumor Spreading

■ Physical Proximity Networks

- Robustness of Connections

■ Traffic Networks

■ Malware Spreading

Introduction

Motivation: Separators

■ Disease Spreading
■ Rumor Spreading
■ Physical Proximity Networks

- Robustness of Connections

■ Traffic Networks

- Malware Spreading

■ Rumor Spreading

Introduction

Motivation: Separators

■ Disease Spreading
■ Rumor Spreading
■ Physical Proximity Networks

- Robustness of Connections

■ Traffic Networks

- Malware Spreading

■ Rumor Spreading
■ Social Networks / Computer Networks

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

Introduction

Temporal Graphs

Temporal Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, E_{2}, \ldots, E_{\tau}\right)$ is defined as vertex set V with a list of edge sets E_{1}, \ldots, E_{τ} over V, where τ is the lifetime of G.

layers

underlying graph

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}$.

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-) strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right)
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-) strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.
strict temporal (s, z)-paths:

temporal (s, z)-paths:

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-) strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.
strict temporal (s, z)-paths:

temporal (s, z)-paths:

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-) strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.
strict temporal (s, z)-paths:

temporal (s, z)-paths:

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-)strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.
strict temporal (s, z)-paths:

temporal (s, z)-paths:

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-) strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.
strict temporal (s, z)-paths:

temporal (s, z)-paths:

Introduction

Strict vs. Non-Strict Temporal Paths

Temporal Paths

A (non-) strict (s, z)-path of length ℓ in $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is a list

$$
P=\left(\left(\left\{s=v_{0}, v_{1}\right\}, t_{1}\right), \ldots,\left(\left\{v_{\ell-1}, v_{\ell}=z\right\}, t_{\ell}\right)\right),
$$

where $\left\{v_{i-1}, v_{i}\right\} \in E_{t_{i}}$ for all $i \in[\ell]$ and $v_{i} \neq v_{j}$ for all $i, j \in\{0, \ldots, \ell\}$ with $i \neq j$ and for all $i \in[\ell-1]: t_{i}<t_{i+1}\left(t_{i} \leq t_{i+1}\right)$.
strict temporal (s, z)-paths:

temporal (s, z)-paths:

Introduction

Temporal Separators: Definition and Related Work

Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct
vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no strict (s, z)-path in $\boldsymbol{G}-S$?

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct
vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct
vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

Introduction

Temporal Separators: Definition and Related Work

(Non-Strict (s, z)-Separation

Input: A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with two distinct vertices $s, z \in V$, and an integer k.
Question: Is there a subset $S \subseteq V \backslash\{s, z\}$ of size at most k such that there is no (non-)strict (s, z)-path in $G-S$?

Berman [1996, Networks] showed that for temporal graphs Menger's Theorem fails (vertex-variant).

The edge-deletion variant can be computed in polynomial-time.

Kempe, Kleinberg, and Kumar [2002, JCSS] showed that

- (Non-)Strict (s, z)-Separation is NP-hard.

Kempe, Kleinberg, and Kumar [2002, JCSS] showed that

- (Non-)Strict (s, z)-Separation is NP-hard.
- Menger's Theorem holds if the underlying graph excludes a fixed minor.

Introduction
 Related Work II

Kempe, Kleinberg, and Kumar [2002, JCSS] showed that

- (Non-)Strict (s, z)-Separation is NP-hard.
- Menger's Theorem holds if the underlying graph excludes a fixed minor.

Introduction

Kempe, Kleinberg, and Kumar [2002, JCSS] showed that

- (Non-)Strict (s, z)-Separation is NP-hard.
- Menger's Theorem holds if the underlying graph excludes a fixed minor.

This presentation is based on Fluschnik et al. [2018, WG] and Zschoche et al. [2018, MFCS]. (Both to appear, available on arXiv.)

Introduction

Parameterized Complexity Primer

Parameterized Tractability

- FPT (fixed-parameter tractable): Solvable in $f(k) \cdot n^{O(1)}$ time.
k: parameter

Introduction

Parameterized Complexity Primer

Parameterized Tractability

- FPT (fixed-parameter tractable): Solvable in $f(k) \cdot n^{O(1)}$ time.
- XP: Solvable in $n^{g(k)}$ time.
n : instance size
k : parameter

Introduction
 Parameterized Complexity Primer

Parameterized Tractability

- FPT (fixed-parameter tractable): Solvable in $f(k) \cdot n^{O(1)}$ time.
- XP: Solvable in $\eta^{g(k)}$ time.

Parameterized Hardness

■ W[1]-hard: Presumably no FPT algorithm (XP algorithm possible).
n : instance size
k : parameter

Introduction
 Parameterized Complexity Primer

Parameterized Tractability

- FPT (fixed-parameter tractable): Solvable in $f(k) \cdot n^{O(1)}$ time.

■ XP: Solvable in $n^{g(k)}$ time.

Parameterized Hardness

■ W[1]-hard: Presumably no FPT algorithm (XP algorithm possible).

- para-NP-hard: NP-hard for constant k (no XP algorithm).
n : instance size
k : parameter

Complexity of Finding Temporal Separators

Basic Results

Basic Results.

		(s, z)-Separation
Parameter	Strict	Non-Strict
$2 \leq \tau \leq 4$	poly-time	
$\tau \geq 5$	para-NP-hard	para-NP-hard

Complexity of Finding Temporal Separators

Basic Results.

		(s, z)-Separation
Non-Strict		

Complexity of Finding Temporal Separators

Basic Results.

		(s, z)-Separation
Non-Strict		

Complexity of Finding Temporal Separators

 Basic ResultsBasic Results.

Parameter	Strict	(s, z)-Separation
Non-Strict		

Complexity of Finding Temporal Separators

 Basic Results
Basic Results.

Parameter	Strict	(s, z)-Separation
Non-Strict		
$2 \leq \tau \leq 4$	poly-time	para-NP-hard
$\tau \geq 5$	para-NP-hard	
k	W[1]-hard	W[1]-hard
$\tau+k$	FPT	open

Canonical next step: Restrict input graphs.

Complexity of Finding Temporal Separators

 Basic Results
Basic Results.

Parameter	Strict	(s, z)-Separation
Non-Strict		

Canonical next step: Restrict input graphs.

- Restrict each layer.

Complexity of Finding Temporal Separators

 Basic Results
Basic Results.

Parameter	Strict	(s, z)-Separation
Non-Strict		

Canonical next step: Restrict input graphs.

- Restrict each layer.
- Restrict the underlying graph.

Complexity of Finding Temporal Separators

 Restricting each Layer(Non-)Strict (s, z)-Separation with restricted layers.

Layer Restriction
 | Complexity

Complexity of Finding Temporal Separators

 Restricting each Layer(Non-)Strict (s, z)-Separation with restricted layers.

Layer Restriction	Complexity
at most one edge	NP-hard and W[1]-hard wrt. k

Complexity of Finding Temporal Separators

 Restricting each Layer(Non-)Strict (s, z)-Separation with restricted layers.

Layer Restriction	Complexity
at most one edge	NP-hard and W[1]-hard wrt. k
forest unit interval	para-NP-hard wrt. τ

Complexity of Finding Temporal Separators

 Restricting each Layer(Non-)Strict (s, z)-Separation with restricted layers.

Layer Restriction	Complexity
at most one edge	NP-hard and W[1]-hard wrt. k
forest unit interval	para-NP-hard wrt. τ

Complexity of Finding Temporal Separators

 Restricting each Layer(Non-)Strict (s, z)-Separation with restricted layers.

Layer Restriction	Complexity
at most one edge	NP-hard and W[1]-hard wrt. k
forest unit interval	para-NP-hard wrt. τ

Take away message:
Layer restrictions do not help much.

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.
Underlying Graph Restriction | Complexity

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.
Underlying Graph Restriction | Complexity
bounded treewidth \mid poly-time (FPT wrt. tw $+\tau$)

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.

Underlying Graph Restriction	Complexity
bounded treewidth	poly-time (FPT wrt. tw $+\tau$)
bounded vertex cover	poly-time (FPT)

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.
Underlying Graph Restriction \mid Complexity

bounded treewidth	poly-time (FPT wrt. tw $+\tau$)
bounded vertex cover	poly-time (FPT)
complete $-\{s, z\}$ bipartite line graph	para-NP-h wrt. $\tau /$ W[1]-h wrt. k

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.
Underlying Graph Restriction \mid Complexity

bounded treewidth	poly-time (FPT wrt. tw $+\tau$)
bounded vertex cover	poly-time (FPT)
complete $-\{s, z\}$ bipartite line graph	para-NP-h wrt. $\tau /$ W[1]-h wrt. k
planar	NP-hard (Strict: FPT wrt. τ)

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.
Underlying Graph Restriction \mid Complexity

bounded treewidth	poly-time (FPT wrt. tw $+\tau$)
bounded vertex cover	poly-time (FPT)
complete $-\{s, z\}$ bipartite line graph	para-NP-h wrt. $\tau /$ W[1]-h wrt. k
planar	NP-hard (Strict: FPT wrt. τ)

Complexity of Finding Temporal Separators

 Restricting the Underlying Graph(Non-)Strict (s, z)-Separation with restricted underlying graph.
Underlying Graph Restriction \mid Complexity

bounded treewidth	poly-time (FPT wrt. tw $+\tau$)
bounded vertex cover	poly-time (FPT)
complete $-\{s, z\}$ bipartite line graph	para-NP-h wrt. $\tau /$ W[1]-h wrt. k
planar	NP-hard (Strict: FPT wrt. τ)

Take away message:
Underlying graph restrictions help sometimes.

Complexity of Finding Temporal Separators

First Summary

We have seen so far:

Complexity of Finding Temporal Separators

 First SummaryWe have seen so far:

- Layer restrictions:

Complexity of Finding Temporal Separators

 First SummaryWe have seen so far:

- Layer restrictions: do not seem to help.

Complexity of Finding Temporal Separators

We have seen so far:

- Layer restrictions: do not seem to help.
- Underlying graph restrictions:

Complexity of Finding Temporal Separators

 First SummaryWe have seen so far:

- Layer restrictions: do not seem to help.
- Underlying graph restrictions: help only in few cases.

Complexity of Finding Temporal Separators

We have seen so far:
■ Layer restrictions: do not seem to help.

- Underlying graph restrictions: help only in few cases.

Observation

All these restrictions are invariant under reordering of layers!

Complexity of Finding Temporal Separators

We have seen so far:

- Layer restrictions: do not seem to help.
- Underlying graph restrictions: help only in few cases.

Observation

All these restrictions are invariant under reordering of layers!

Idea: Restrict "temporality" of the input graph.

Complexity of Finding Temporal Separators

 Temporal RestrictionsTemporal graph classes with temporal aspects:

Restriction

$$
\begin{aligned}
& (s, z) \text {-Separation } \\
& \text { Non-Strict }
\end{aligned}
$$

p-monotone

Definition (cf. Khodaverdian et al. [2016]; Casteigts et al. [2012])
$\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is p-monotone if there are $1=i_{1}<\cdots<i_{p+1}=\tau$ such that for all $\ell \in[p]$ it holds that $E_{j} \subseteq E_{j+1}$ or $E_{j} \supseteq E_{j+1}$ for all $i_{\ell} \leq j<i_{\ell+1}$.

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$

Definition (cf. Khodaverdian et al. [2016]; Casteigts et al. [2012])
$\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is p-monotone if there are $1=i_{1}<\cdots<i_{p+1}=\tau$ such that for all $\ell \in[p]$ it holds that $E_{j} \subseteq E_{j+1}$ or $E_{j} \supseteq E_{j+1}$ for all $i_{\ell} \leq j<i_{\ell+1}$.

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation
Non-Strict		

q-periodic

Definition (cf. Liu and Wu [2009]; Casteigts et al. [2012]; Flocchini et al. [2013])
$\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is q-periodic if $E_{i}=E_{i+q}$ for all $i \in[\tau-q]$. We call $r:=\tau / q$ the number of periods.

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
q-periodic	NP-h for $q \geq 1$	poly-time for $q=1$, NP-h for $q \geq 2$

Definition (cf. Liu and Wu [2009]; Casteigts et al. [2012]; Flocchini et al. [2013])
$\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is q-periodic if $E_{i}=E_{i+q}$ for all $i \in[\tau-q]$. We call $r:=\tau / q$ the number of periods.

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
q-periodic	NP-h for $q \geq 1$ poly-time for $q=1$, NP-h for $q \geq 2$ poly-time if $r \geq n$	

Definition (cf. Liu and Wu [2009]; Casteigts et al. [2012]; Flocchini et al. [2013])
$\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is q-periodic if $E_{i}=E_{i+q}$ for all $i \in[\tau-q]$. We call $r:=\tau / q$ the number of periods.

Complexity of Finding Temporal Separators

 Temporal RestrictionsTemporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
Definition (Kuhn et al. [2010])		
$G=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is T-interval connected if for every $t \in[\tau-T+1]$ the graph $G=\left(V, \cap_{i=t}^{t+T-1} E_{i}\right)$ is connected.		

T-interval connected

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
Definition (Kuhn et al. [2010])		

$\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is T-interval connected if for every $t \in[\tau-T+1]$ the graph $G=\left(V, \cap_{i=t}^{t+T-1} E_{i}\right)$ is connected.
T-interval connected \mid NP-h for $T \geq 1 \quad$ NP-h for $T \geq 1$

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
Definition		
$G=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is λ-steady if for all $t \in[\tau-1]$ we have that $\left\|E_{t} \triangle E_{t+1}\right\| \leq \lambda$.		
T-interval connected	NP-h for $T \geq 1$	NP-h for $T \geq 1$
λ-steady		

Complexity of Finding Temporal Separators

Temporal Restrictions

Temporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
Definition		
$G=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is λ-steady if for all $t \in[\tau-1]$ we have that $\left\|E_{t} \triangle E_{t+1}\right\| \leq \lambda$.		
T-interval connected	NP-h for $T \geq 1$	NP-h for $T \geq 1$

Complexity of Finding Temporal Separators

 Temporal RestrictionsTemporal graph classes with temporal aspects:

Restriction	(s, z)-Separation	
	Strict	Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
q-periodic	NP-h for $q \geq 1$ po	poly-time for $q=1$, NP-h for $q \geq 2$ if $r \geq n$
T-interval connected	NP-h for $T \geq 1$	NP-h for $T \geq 1$
λ-steady	NP-h for $\lambda \geq 0$	poly-time for $\lambda=0$, NP-h for $\lambda \geq 1$

Complexity of Finding Temporal Separators

 Temporal RestrictionsTemporal graph classes with temporal aspects:

Restriction	Strict	(s, z)-Separation Non-Strict
p-monotone	NP-h for $p \geq 1$	poly-time for $p=1$, NP-h for $p \geq 2$
q-periodic	NP-h for $q \geq 1$	poly-time for $q=1$, NP-h for $q \geq 2$
poly-time if $r \geq n$		

Complexity of Finding Temporal Separators

 Second SummaryWe have seen so far:
■ Layer restrictions: do not seem to help.

- Underlying graph restrictions: help only in few cases.

Complexity of Finding Temporal Separators Second Summary

We have seen so far:
■ Layer restrictions: do not seem to help.

- Underlying graph restrictions: help only in few cases.
- Temporal restrictions:

Complexity of Finding Temporal Separators Second Summary

We have seen so far:
■ Layer restrictions: do not seem to help.
■ Underlying graph restrictions: help only in few cases.
■ Temporal restrictions: do not seem to help.

Complexity of Finding Temporal Separators Second Summary

We have seen so far:

- Layer restrictions: do not seem to help.
- Underlying graph restrictions: help only in few cases.
- Temporal restrictions: do not seem to help.

Idea: Tailored restrictions that do not fit into the above categories.

Complexity of Finding Temporal Separators Second Summary

We have seen so far:
■ Layer restrictions: do not seem to help.
■ Underlying graph restrictions: help only in few cases.
■ Temporal restrictions: do not seem to help.

Idea: Tailored restrictions that do not fit into the above categories.

- Order-Preserving Temporal Unit Interval Graphs.

Complexity of Finding Temporal Separators Second Summary

We have seen so far:
■ Layer restrictions: do not seem to help.
■ Underlying graph restrictions: help only in few cases.
■ Temporal restrictions: do not seem to help.

Idea: Tailored restrictions that do not fit into the above categories.

■ Order-Preserving Temporal Unit Interval Graphs.

- Temporal Graph with bounded-sized Temporal Core.

(s, z)-Separation on Temporal Unit Interval Graphs

 Order-Preserving Temporal Unit Interval Graph
Order-Preserving Temporal Unit Interval Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is an order-preserving temporal unit interval graph if

(s, z)-Separation on Temporal Unit Interval Graphs

 Order-Preserving Temporal Unit Interval Graph
Order-Preserving Temporal Unit Interval Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is an order-preserving temporal unit interval graph if

- each layer is a unit interval graph, and

(s, z)-Separation on Temporal Unit Interval Graphs Order-Preserving Temporal Unit Interval Graph

Order-Preserving Temporal Unit Interval Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is an order-preserving temporal unit interval graph if

- each layer is a unit interval graph, and
- there is a total ordering $<_{v}$ which is compatible with each layer.

(s, z)-Separation on Temporal Unit Interval Graphs

 Order-Preserving Temporal Unit Interval Graph
Order-Preserving Temporal Unit Interval Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is an order-preserving temporal unit interval graph if

- each layer is a unit interval graph, and
- there is a total ordering $<_{v}$ which is compatible with each layer.

Recall: $<_{v}$ is compatible with a unit interval graph $G=(V, E)$ if $\{x, y\} \in E$ with $x<v$ y implies $\left\{v \in V \mid x \leq_{v} v \leq_{v} y\right\}$ is a clique.

(s, z)-Separation on Temporal Unit Interval Graphs

 Order-Preserving Temporal Unit Interval Graph
Order-Preserving Temporal Unit Interval Graph

A temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is an order-preserving temporal unit interval graph if

- each layer is a unit interval graph, and
- there is a total ordering $<v$ which is compatible with each layer.

Recall: $<_{v}$ is compatible with a unit interval graph $G=(V, E)$ if $\{x, y\} \in E$ with $x<v$ y implies $\left\{v \in V \mid x \leq_{v} v \leq_{v} y\right\}$ is a clique.

Motivation: Physical proximity networks in one-dimensional spaces.

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

s	$\begin{gathered} v_{1} \\ \bullet \end{gathered}$	$\begin{gathered} v_{2} \\ 0 \end{gathered}$	$\begin{gathered} v_{3} \\ 0 \end{gathered}$	$\begin{gathered} v_{4} \\ 0 \end{gathered}$	$\begin{gathered} v_{5} \\ 0 \end{gathered}$	$\begin{gathered} v_{6} \\ 0 \end{gathered}$	v_{7}	$\begin{gathered} v_{8} \\ 0 \end{gathered}$	$\begin{aligned} & z \\ & 0 \end{aligned}$
			Vertex Ordering < v						

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

 Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

Observation

"Compatible" means these lines do not cross.

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

 Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs

Observation

There are always temporal paths that follow the vertex ordering.

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

DP-Table T :

(s, z)-Separation on Temporal Unit Interval Graphs

Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs

$T[i, t]:=\min .(s, z)$-separator for time t,

where no vertex "behind" v_{i}

DP-Table T :

Vertex Ordering $<v$

(s, z)-Separation on Temporal Unit Interval Graphs

 Poly-time Algo for Non-Strict (s, z)-Separation Order-Preserving Temporal Unit Interval Graphs$T[i, t]:=\min .(s, z)$-separator for time t,

where no vertex "behind" v_{i}

DP-Table T :

Vertex Ordering $<v$

- Guess earliest time t^{\prime} when v_{i} is reachable from s.

(s, z)-Separation on Temporal Unit Interval Graphs

$T[i, t]:=\min .(s, z)$-separator for time t,

where no vertex "behind" v_{i}

DP-Table T : is reachable from s

- Guess earliest time t^{\prime} when v_{i} is reachable from s.
- Guess furthest vertex v_{j} reachable from s in $t^{\prime}-1$.

(s, z)-Separation on Temporal Unit Interval Graphs

$T[i, t]:=\min .(s, z)$-separator for time t,

where no vertex "behind" v_{i}

DP-Table T : is reachable from s

- Guess earliest time t^{\prime} when v_{i} is reachable from s.
- Guess furthest vertex v_{j} reachable from s in $t^{\prime}-1$.
- $T[i, t]=T\left[j, t^{\prime}-1\right]$

(s, z)-Separation on Temporal Unit Interval Graphs

$T[i, t]:=\min .(s, z)$-separator for time t,

where no vertex "behind" v_{i}

DP-Table T : is reachable from s

- Guess earliest time t^{\prime} when v_{i} is reachable from s.
- Guess furthest vertex v_{j} reachable from s in $t^{\prime}-1$.

■ $T[i, t]=T\left[j, t^{\prime}-1\right] \cup$ max. "right" neighborhood of v_{i} in $\left[t^{\prime}, t\right]$.

(s, z)-Separation on Temporal Unit Interval Graphs

$T[i, t]:=\min .(s, z)$-separator for time t,

where no vertex "behind" v_{i}

DP-Table T : is reachable from s

Theorem

Non-Strict (s, z)-Separation on order-preserving temporal unit interval graphs is poly-time solvable.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

Observation

"Compatible" means these lines do not cross.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.

■ Brute-force the "regions" where crossings happen.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.
■ Brute-force the "regions" where crossings happen.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.

■ Brute-force the "regions" where crossings happen. Solve the rest with the poly-time algorithm.

(s, z)-Separation on Temporal Unit Interval Graphs Almost Order-Preserving Temporal Unit Interval Graphs

■ Idea: Bound number of crossings between consecutive time steps. \Leftrightarrow Vertex orderings have bounded Kendall tau distance κ.

■ Brute-force the "regions" where crossings happen. Solve the rest with the poly-time algorithm.

■ Size of regions bounded by κ and the lifetime τ.

(s, z)-Separation on Temporal Unit Interval Graphs Summary

Theorem

(Non-)Strict (s, z)-Separation on order-preserving temporal unit interval graphs is poly-time solvable.

(s, z)-Separation on Temporal Unit Interval Graphs Summary

Theorem

(Non-)Strict (s, z)-Separation on order-preserving temporal unit interval graphs is poly-time solvable.

Theorem

(Non-)Strict (s, z)-Separation on temporal unit interval graphs is FPT wrt. $(\kappa+\tau)$.

(s, z)-Separation on Temporal Unit Interval Graphs Summary

Theorem

(Non-)Strict (s, z)-Separation on order-preserving temporal unit interval graphs is poly-time solvable.

Theorem

(Non-)Strict (s, z)-Separation on temporal unit interval graphs is FPT wrt. $(\kappa+\tau)$.

Theorem

(Non-)Strict (s, z)-Separation on temporal unit interval graphs is para-NP-hard wrt. κ and para-NP-hard wrt. τ.

Temporal Core

Motivation and Definition

Temporal Core

The temporal core of $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is the vertex set

$$
W=\left\{v \in V \mid \exists\{v, w\} \in\left(\bigcup_{i=1}^{\tau} E_{i}\right) \backslash\left(\bigcap_{i=1}^{\tau} E_{i}\right)\right\} .
$$

Temporal Core

Motivation and Definition

Temporal Core

The temporal core of $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is the vertex set

$$
W=\left\{v \in V \mid \exists\{v, w\} \in\left(\bigcup_{i=1}^{\tau} E_{i}\right) \backslash\left(\bigcap_{i=1}^{\tau} E_{i}\right)\right\} .
$$

Temporal Core

Motivation and Definition

Temporal Core

The temporal core of $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is the vertex set

$$
W=\left\{v \in V \mid \exists\{v, w\} \in\left(\bigcup_{i=1}^{\tau} E_{i}\right) \backslash\left(\bigcap_{i=1}^{\tau} E_{i}\right)\right\} .
$$

Temporal Core

Motivation and Definition

Temporal Core

The temporal core of $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ is the vertex set

$$
W=\left\{v \in V \mid \exists\{v, w\} \in\left(\bigcup_{i=1}^{\tau} E_{i}\right) \backslash\left(\bigcap_{i=1}^{\tau} E_{i}\right)\right\} .
$$

Recall: Strict (s, z)-Separation is NP-hard even if $W=\emptyset$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :
■ Guess which core vertices are part of the separator.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator.
- Guess which core vertices need to be separated from each other.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator.
- Guess which core vertices need to be separated from each other.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator.
- Guess which core vertices need to be separated from each other.

■ Use an algorithm for Node Multiway Cut.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator.
- Guess which core vertices need to be separated from each other.

■ Use an algorithm for Node Multiway Cut.
$G:$

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Node Multiway Cut
Input: An undirected graph $G=(V, E)$, a set of terminal $T \subseteq V$, and an integer k.
Question: Is there a set $S \subseteq(V \backslash T)$ of size at most k such there is no $\left(t_{1}, t_{2}\right)$-path for every distinct $t_{1}, t_{2} \in T$?

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Node Multiway Cut

Input: An undirected graph $G=(V, E)$, a set of terminal $T \subseteq V$, and an integer k.
Question: Is there a set $S \subseteq(V \backslash T)$ of size at most k such there is no $\left(t_{1}, t_{2}\right)$-path for every distinct $t_{1}, t_{2} \in T$?

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in $2^{k-b} \cdot|V|^{O(1)}$ time, where $b=\max _{x \in T} \min \{|S| \mid S \subseteq V$ is an $(x, T \backslash\{x\})$-separator $\}$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"■ Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.

- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.
For all $i \in[r]$, add edge sets $\left\{\left\{v, w_{i}\right\} \mid v \in N_{G_{\downarrow}}\left(W_{i}\right) \backslash W\right\}$.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.
For all $i \in[r]$, add edge sets $\left\{\left\{v, w_{i}\right\} \mid v \in N_{G_{\downarrow}}\left(W_{i}\right) \backslash W\right\}$.
- Solve Node Multiway Cut instance $\left(G^{\prime},\left\{w_{1}, \ldots, w_{r}\right\}, k-\left|S_{w}\right|\right)$.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.
For all $i \in[r]$, add edge sets $\left\{\left\{v, w_{i}\right\} \mid v \in N_{G_{\downarrow}}\left(W_{i}\right) \backslash W\right\}$.
- Solve Node Multiway Cut instance $\left(G^{\prime},\left\{w_{1}, \ldots, w_{r}\right\}, k-\left|S_{w}\right|\right)$.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"■ Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.

- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.
For all $i \in[r]$, add edge sets $\left\{\left\{v, w_{i}\right\} \mid v \in N_{G_{\downarrow}}\left(W_{i}\right) \backslash W\right\}$.
- Solve Node Multiway Cut instance $\left(G^{\prime},\left\{w_{1}, \ldots, w_{r}\right\}, k-\left|S_{w}\right|\right)$.

■ Check whether the solution is correct.

Non-Strict (s, z)-Separation with small Temporal Cores

 FPT Algorithm for "Size of the Temporal Core"- Guess a set $S_{W} \subseteq(W \backslash\{s, z\})$ of size at most k.
- Guess a partition $\left\{W_{1}, \ldots, W_{r}\right\}$ of $W \backslash S_{W}$ such that s and z are not in the same part.
- Construct the graph G^{\prime} by copying $G_{\downarrow}-W$ and adding a vertex w_{i} for each part W_{i}.
For all $i \in[r]$, add edge sets $\left\{\left\{v, w_{i}\right\} \mid v \in N_{G_{\downarrow}}\left(W_{i}\right) \backslash W\right\}$.
- Solve Node Multiway Cut instance $\left(G^{\prime},\left\{w_{1}, \ldots, w_{r}\right\}, k-\left|S_{w}\right|\right)$.

- Check whether the solution is correct.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :
■ Guess which core vertices are part of the separator.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :
■ Guess which core vertices are part of the separator. Ok!

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!

■ Use an algorithm for Node Multiway Cut.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!

■ Use an algorithm for Node Multiway Cut.

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in $2^{k-b} \cdot|V|^{O(1)}$ time, where $b=\max _{x \in T} \min \{|S| \mid S \subseteq V$ is an $(x, T \backslash\{x\})$-separator $\}$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!

■ Use an algorithm for Node Multiway Cut.
$■$ Let L be a minimum (s, z)-separator in $G_{\downarrow}-(W \backslash\{s, z\})$.

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in $2^{k-b} \cdot|V|^{O(1)}$ time, where $b=\max _{x \in T} \min \{|S| \mid S \subseteq V$ is an $(x, T \backslash\{x\})$-separator $\}$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!

■ Use an algorithm for Node Multiway Cut.
■ Let L be a minimum (s, z)-separator in $G_{\downarrow}-(W \backslash\{s, z\})$.
■ If $k \geq|W \backslash\{s, z\}|+|L|$, Ok!

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in $2^{k-b} \cdot|V|^{O(1)}$ time, where $b=\max _{x \in T} \min \{|S| \mid S \subseteq V$ is an $(x, T \backslash\{x\})$-separator $\}$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!

■ Use an algorithm for Node Multiway Cut.
■ Let L be a minimum (s, z)-separator in $G_{\downarrow}-(W \backslash\{s, z\})$.
■ If $k \geq|W \backslash\{s, z\}|+|L|$, Ok! Otherwise, $k-b \leq k-|L|<|W|$.

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in $2^{k-b} \cdot|V|^{O(1)}$ time, where $b=\max _{x \in T} \min \{|S| \mid S \subseteq V$ is an $(x, T \backslash\{x\})$-separator $\}$.

Non-Strict (s, z)-Separation with small Temporal Cores FPT Algorithm for "Size of the Temporal Core"

Theorem

Non-Strict (s, z)-Separation is FPT wrt. $|W|$.
Given a temporal graph $\boldsymbol{G}=\left(V, E_{1}, \ldots, E_{\tau}\right)$ with temporal core W :

- Guess which core vertices are part of the separator. Ok!
- Guess which core vertices need to be separated from each other. Ok!
- Use an algorithm for Node Multiway Cut. Ok!

■ Let L be a minimum (s, z)-separator in $G_{\downarrow}-(W \backslash\{s, z\})$.
■ If $k \geq|W \backslash\{s, z\}|+|L|$, Ok! Otherwise, $k-b \leq k-|L|<|W|$.

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in $2^{k-b} \cdot|V|^{O(1)}$ time, where $b=\max _{x \in T} \min \{|S| \mid S \subseteq V$ is an $(x, T \backslash\{x\})$-separator $\}$.

Outlook

and Future Work

Summary:

Outlook

and Future Work

Summary:

- (Non-)Strict (s, z)-Separation is hard, even in very restricted cases.

Outlook

and Future Work

Summary:

- (Non-)Strict (s, z)-Separation is hard, even in very restricted cases.
- Tractable cases: Almost order-preserving temporal unit interval graphs and temporal graphs with bounded temporal core.

Outlook

Summary:

- (Non-)Strict (s, z)-Separation is hard, even in very restricted cases.
- Tractable cases: Almost order-preserving temporal unit interval graphs and temporal graphs with bounded temporal core.

Discussion:

Outlook

Summary:

- (Non-)Strict (s, z)-Separation is hard, even in very restricted cases.
- Tractable cases: Almost order-preserving temporal unit interval graphs and temporal graphs with bounded temporal core.

Discussion:

■ One-dimensional physical proximity not very interesting in practice. and Future Work

Summary:

- (Non-)Strict (s, z)-Separation is hard, even in very restricted cases.

■ Tractable cases: Almost order-preserving temporal unit interval graphs and temporal graphs with bounded temporal core.

Discussion:
■ One-dimensional physical proximity not very interesting in practice.

- Strict (s, z)-Separation seems to be more realistic, however many positive results only hold in the non-strict case. and Future Work

Summary:

- (Non-)Strict (s, z)-Separation is hard, even in very restricted cases.
- Tractable cases: Almost order-preserving temporal unit interval graphs and temporal graphs with bounded temporal core.

Discussion:
■ One-dimensional physical proximity not very interesting in practice.

- Strict (s, z)-Separation seems to be more realistic, however many positive results only hold in the non-strict case.

Thank you!

References I

Computer Icon on Slide 2 taken from https://commons.wikimedia.org/wiki/File:Blue_computer_icon.svg (CC BY-SA 3.0).
Berman, K. A. (1996). Vulnerability of scheduled networks and a generalization of Menger's Theorem. Networks, 28(3):125-134.
Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2012). Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387-408.

Cygan, M., Pilipczuk, M., Pilipczuk, M., and Wojtaszczyk, J. O. (2013). On multiway cut parameterized above lower bounds. ACM Transactions on Computation Theory, 5(1):3:1-3:11.
Flocchini, P., Mans, B., and Santoro, N. (2013). On the exploration of time-varying networks. Theoretical Computer Science, 469:53-68.

Fluschnik, T., Molter, H., Niedermeier, R., and Zschoche, P. (2018). Temporal graph classes: A view through temporal separators. In Proceedings of the 44th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'18), LNCS. Springer. Accepted for publication. To appear.

Kempe, D., Kleinberg, J., and Kumar, A. (2002). Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820-842.

Khodaverdian, A., Weitz, B., Wu, J., and Yosef, N. (2016). Steiner network problems on temporal graphs. CoRR, abs/1609.04918v2.

Kuhn, F., Lynch, N. A., and Oshman, R. (2010). Distributed computation in dynamic networks. In Proceedings of the $42 n$ nd Annual ACM Symposium on the Theory of Computing (STOC '10), pages 513-522. ACM.
Liu, C. and Wu, J. (2009). Scalable routing in cyclic mobile networks. IEEE Transactions on Parallel and Distributed Systems, 20(9):1325-1338.

Zschoche, P., Fluschnik, T., Molter, H., and Niedermeier, R. (2018). The complexity of finding small separators in temporal graphs. In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS'18), LIPIcs. Schloss Dagstuhl—Leibniz Center for Informatics. Accepted for publication. To appear.

