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Temporal Graphs

Temporal Graph

A temporal graph G = (V ,E1,E2, . . . ,Eτ) is defined as vertex set V
with a list of edge sets E1, . . . ,Eτ over V , where τ is the lifetime of G.
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Introduction
Strict vs. Non-Strict Temporal Paths

Temporal Paths

A strict (s,z)-path of length ` in G = (V ,E1, . . . ,Eτ) is a list

P = (({s = v0,v1}, t1), . . . ,({v`−1,v` = z}, t`)),

where {vi−1,vi} ∈ Eti for all i ∈ [`] and vi 6= vj for all i, j ∈ {0, . . . , `}
with i 6= j and for all i ∈ [`−1] : ti < ti+1 .
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Introduction
Temporal Separators: Definition and Related Work

Strict (s,z)-Separation

Input: A temporal graph G = (V ,E1, . . . ,Eτ) with two distinct
vertices s,z ∈ V , and an integer k .
Question: Is there a subset S ⊆ V \{s,z} of size at most k such that
there is no strict (s,z)-path in G−S?

Berman [1996, Networks] showed that for temporal graphs Menger’s
Theorem fails (vertex-variant).

G: s z
5
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The edge-deletion variant can be computed in polynomial-time.
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Introduction
Related Work II

Kempe, Kleinberg, and Kumar [2002, JCSS] showed that

(Non-)Strict (s,z)-Separation is NP-hard.

Menger’s Theorem holds if the underlying graph excludes a fixed minor.

s z

This presentation is based on Fluschnik et al. [2018, WG] and
Zschoche et al. [2018, MFCS]. (Both to appear, available on arXiv.)
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Introduction
Parameterized Complexity Primer

Parameterized Tractability

FPT (fixed-parameter tractable): Solvable in f (k) ·nO(1) time.

XP: Solvable in ng(k) time.

Parameterized Hardness

W[1]-hard: Presumably no FPT algorithm (XP algorithm possible).

para-NP-hard: NP-hard for constant k (no XP algorithm).

n: instance size k : parameter
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Complexity of Finding Temporal Separators
Basic Results

Basic Results.

(s,z)-Separation
Parameter Strict Non-Strict

2≤ τ ≤ 4 poly-time
τ ≥ 5 para-NP-hard

para-NP-hard

k

τ + k open

Canonical next step: Restrict input graphs.

Restrict each layer. Restrict the underlying graph.
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Complexity of Finding Temporal Separators
Restricting each Layer

(Non-)Strict (s,z)-Separation with restricted layers.

Layer Restriction Complexity

at most one edge

forest
unit interval

Take away message:
Layer restrictions do not help much.
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First Summary

We have seen so far:

Layer restrictions: do not seem to help.

Underlying graph restrictions: help only in few cases.

Observation

All these restrictions are invariant under reordering of layers!

Idea: Restrict “temporality” of the input graph.
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Complexity of Finding Temporal Separators
Temporal Restrictions

Temporal graph classes with temporal aspects:

(s,z)-Separation
Restriction Strict Non-Strict

p-monotone

q-periodic

T -interval connected

λ -steady
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Definition (cf. Khodaverdian et al. [2016]; Casteigts et al. [2012])

G = (V ,E1, . . . ,Eτ) is p-monotone if there are 1 = i1 < · · ·< ip+1 = τ

such that for all ` ∈ [p] it holds that Ej ⊆ Ej+1 or Ej ⊇ Ej+1 for all
i` ≤ j < i`+1.
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Definition (cf. Liu and Wu [2009]; Casteigts et al. [2012]; Flocchini et al. [2013])

G = (V ,E1, . . . ,Eτ) is q-periodic if Ei = Ei+q for all i ∈ [τ−q]. We
call r := τ/q the number of periods.
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Definition (Kuhn et al. [2010])

G = (V ,E1, . . . ,Eτ) is T -interval connected if for every
t ∈ [τ−T +1] the graph G = (V ,∩t+T−1

i=t Ei) is connected.
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G = (V ,E1, . . . ,Eτ) is λ -steady if for all t ∈ [τ−1] we have that
|Et4Et+1| ≤ λ .
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Complexity of Finding Temporal Separators
Second Summary

We have seen so far:

Layer restrictions: do not seem to help.

Underlying graph restrictions: help only in few cases.

Temporal restrictions: do not seem to help.

Idea: Tailored restrictions that do not fit into the above categories.

Order-Preserving Temporal
Unit Interval Graphs.

Temporal Graph with
bounded-sized Temporal Core.
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A temporal graph G = (V ,E1, . . . ,Eτ) is an order-preserving
temporal unit interval graph if

each layer is a unit interval graph, and

there is a total ordering <V which is compatible with each layer.

Recall: <V is compatible with a unit interval graph G = (V ,E)
if {x ,y} ∈ E with x <V y implies {v ∈ V | x ≤V v ≤V y} is a clique.

Motivation: Physical proximity networks in one-dimensional spaces.
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(s,z)-Separation on Temporal Unit Interval Graphs
Poly-time Algo for Non-Strict (s,z)-Separation Order-Preserving Temporal Unit Interval Graphs

Vertex Ordering <V

s v1 v2 v3 v4 v5 v6 v7 v8 z

Guess earliest time t ′ when vi is reachable from s.

Guess furthest vertex vj reachable from s in t ′−1.

T [i, t] = T [j, t ′−1]

∪ max. “right” neighborhood of vi in [t ′, t].
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Observation

“Compatible” means these lines do not cross.
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Observation

There are always temporal paths that follow the vertex ordering.
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Theorem

Non-Strict (s,z)-Separation on order-preserving temporal unit interval
graphs is poly-time solvable.
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Idea: Bound number of crossings between consecutive time steps.

⇔ Vertex orderings have bounded Kendall tau distance κ .

Brute-force the “regions” where crossings happen.

Solve the rest with the poly-time algorithm.

Size of regions bounded by κ and the lifetime τ .
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Theorem
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(Non-)Strict (s,z)-Separation on temporal unit interval graphs is FPT
wrt. (κ + τ).
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Temporal Core
Motivation and Definition

Temporal Core

The temporal core of G = (V ,E1, . . . ,Eτ) is the vertex set

W = {v ∈ V | ∃{v ,w} ∈ (
τ⋃

i=1

Ei)\ (
τ⋂

i=1

Ei)}.

G: s z
1,2,3

1,2,3 1

1

2

1,2,3

1,2,3

Recall: Strict (s,z)-Separation is NP-hard even if W = /0.
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Non-Strict (s,z)-Separation with small Temporal Cores
FPT Algorithm for “Size of the Temporal Core”

Given a temporal graph G = (V ,E1, . . . ,Eτ) with temporal core W :

Guess which core vertices are part of the separator.

Guess which core vertices need to be separated from each other.

Use an algorithm for Node Multiway Cut.

W2

s z

G:
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Non-Strict (s,z)-Separation with small Temporal Cores
FPT Algorithm for “Size of the Temporal Core”

Node Multiway Cut

Input: An undirected graph G = (V ,E), a set of terminal T ⊆ V , and
an integer k .
Question: Is there a set S ⊆ (V \T ) of size at most k such there is
no (t1, t2)-path for every distinct t1, t2 ∈ T?

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in 2k−b · |V |O(1) time,
where b = maxx∈T min{|S| | S ⊆ V is an (x ,T \{x})-separator}.
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Non-Strict (s,z)-Separation with small Temporal Cores
FPT Algorithm for “Size of the Temporal Core”

Guess a set SW ⊆ (W \{s,z}) of
size at most k .

Guess a partition {W1, . . . ,Wr}
of W \SW such that s and z are not
in the same part.

Construct the graph G′ by
copying G↓−W and adding a
vertex wi for each part Wi .

For all i ∈ [r ], add edge sets
{{v ,wi} | v ∈ NG↓(Wi)\W}.

Solve Node Multiway Cut instance
(G′,{w1, . . . ,wr},k−|SW |).

Check whether the solution is
correct.

W2

W1

W1

W3

W3

w2

w1

w3

W2
w2

w1

w3

W2

s z

G:
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Non-Strict (s,z)-Separation with small Temporal Cores
FPT Algorithm for “Size of the Temporal Core”

Theorem

Non-Strict (s,z)-Separation is FPT wrt. |W |.

Given a temporal graph G = (V ,E1, . . . ,Eτ) with temporal core W :

Guess which core vertices are part of the separator.

Ok!

Guess which core vertices need to be separated from each other.

Ok!

Use an algorithm for Node Multiway Cut.

Ok!

Let L be a minimum (s,z)-separator in G↓− (W \{s,z}).
If k ≥ |W \{s,z}|+ |L|, Ok!

Otherwise, k−b ≤ k−|L|< |W |.

Theorem (Cygan et al. [2013], TOCT)

Node Multiway Cut can be solved in 2k−b · |V |O(1) time,
where b = maxx∈T min{|S| | S ⊆ V is an (x ,T \{x})-separator}.
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Outlook
and Future Work

Summary:

(Non-)Strict (s,z)-Separation is hard, even in very restricted cases.

Tractable cases: Almost order-preserving temporal unit interval graphs
and temporal graphs with bounded temporal core.

Discussion:

One-dimensional physical proximity not very interesting in practice.

Strict (s,z)-Separation seems to be more realistic, however many
positive results only hold in the non-strict case.

Thank you!
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