Exploration of temporal graphs with bounded degree

Thomas Erlebach and Jakob Spooner
University of Leicester \{te17|jts21\}@leicester.ac.uk

ICALP Workshop
"Algorithmic Aspects of Temporal Graphs"

$$
9 \text { July } 2018
$$

Outline

(1) Temporal graphs
(2) Temporal graph exploration problem (TEXP)
(3) Known results

- Instances that require $\Omega\left(n^{2}\right)$ steps
(1) Faster exploration of degree-bounded graphs
(0) Conclusions

Temporal Graphs

Temporal graph (Dynamic, time-varying graph)
A graph in which the edge set can change in every (time) step.

Step 0:

Temporal Graphs

Temporal graph (Dynamic, time-varying graph)
A graph in which the edge set can change in every (time) step.

Step 1:

Temporal Graphs

Temporal graph (Dynamic, time-varying graph)
A graph in which the edge set can change in every (time) step.

Step 2:

Temporal Graphs

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Underlying graph

The graph with all edges that are present in at least one step.

Temporal (Time-Respecting) Path

Time edge

A pair (e, t) where e is an edge of the underlying graph and t is a time step when e is present.

Temporal path (journey)

A sequence of time edges $\left(e_{1}, t_{1}\right), \ldots,\left(e_{k}, t_{k}\right)$ such that $\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ is a path in the underlying graph and $t_{1}<t_{2}<\cdots<t_{k}$.

Example:

Temporal (Time-Respecting) Path

Time edge

A pair (e, t) where e is an edge of the underlying graph and t is a time step when e is present.

Temporal path (journey)

A sequence of time edges $\left(e_{1}, t_{1}\right), \ldots,\left(e_{k}, t_{k}\right)$ such that $\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ is a path in the underlying graph and $t_{1}<t_{2}<\cdots<t_{k}$.

Example:

Temporal walk: temporal path where vertices may repeat

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0 , find a fastest temporal walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Michail and Spirakis [MFCS'14]

It is NP-complete to decide if a temporal graph can be explored if it need not be connected in each step.

Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Michail and Spirakis [MFCS'14]

It is NP-complete to decide if a temporal graph can be explored if it need not be connected in each step.
\Rightarrow Like Michail and Spirakis, we consider temporal graphs that are connected in each step and have lifetime $\geq n^{2}$.
(Note: We consider undirected graphs only.)

Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.
Reachability lemma: Let \mathcal{G} be a temporal graph with n vertices.
Agent can reach any vertex v from vertex u in n time steps.
Proof. Since \mathcal{G} always has a $u-v$ path, the set of vertices reachable from u increases in each step until v is reached.

Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.
Reachability lemma: Let \mathcal{G} be a temporal graph with n vertices.
Agent can reach any vertex v from vertex u in n time steps.

Corollary

Any temporal graph can be explored in n^{2} time steps.

Example

Instance of Temporal Graph Exploration problem:

Step 2

Step 5

Example

Instance of Temporal Graph Exploration problem:

Step 2

Step 5

Example

Instance of Temporal Graph Exploration problem:

Step 2

Step 5

Example

Instance of Temporal Graph Exploration problem:

Step 2

Step 5

Example

Instance of Temporal Graph Exploration problem:

Step 2

Step 5

Example

Temporal exploration completed in Step 5.

Avin, Koucký, Lotker, ICALP'08:

- Analyze cover time of random walk in temporal graph (with self-loops)
- Star construction shows that simple random walk may take $\Omega\left(2^{n}\right)$ steps
- Lazy random walk that leaves v only with probability $\operatorname{deg}(v) /(\Delta+1)$ has cover time $O\left(\Delta^{2} n^{3} \log ^{2} n\right)$
Michail and Spirakis, MFCS'14:
- D-approximation algorithm for temporal graph exploration, where D is the dynamic diameter Note: $1 \leq D \leq n-1$, can be equal to $n-1$
- No $(2-\varepsilon)$-approximation algorithm unless $P=N P$
- $(1.7+\varepsilon)$-approximation algorithm for temporal TSP with dynamic edge weights in $\{1,2\}$

E, Hoffmann, Kammer, ICALP'15:

- Instances of TEXP that require $\Omega\left(n^{2}\right)$ steps
- No $O\left(n^{1-\varepsilon}\right)$-approximation algorithm unless $P=N P$
- Results for restricted underlying graphs:
- treewidth $k: O\left(n^{1.5} k^{1.5} \log n\right)$ steps
- planar: $O\left(n^{1.8} \log n\right)$ steps
- cycle, cycle with chord: $O(n)$ steps
- $2 \times n$ grid: $O\left(n \log ^{3} n\right)$ steps
- Instances of TEXP where underlying graph is planar with $\Delta=4$ that require $\Omega(n \log n)$ steps
- Further results on temporal graphs with randomly present edges or regularly present edges.

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{0} be the center of a star in step 0 .

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{1} be the center of a star in step 1 .

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{2} be the center of a star in step 2 .

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{3} be the center of a star in step 3.

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{4} be the center of a star in step 4.

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{5} be the center of a star in step 5 .

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{0} be the center of a star in step 6.

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ Agent starts in c_{0}. Let us only focus on exploring \qquad

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ Agent starts in c_{0}. Let us only focus on exploring \qquad

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ Agent starts in c_{0}. Let us only focus on exploring \qquad

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ Agent starts in c_{0}. Let us only focus on exploring \square

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ Agent starts in c_{0}. Let us only focus on exploring \qquad

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ Agent starts in c_{0}. Let us only focus on exploring \bigcirc.

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ After returning to c_{i}, wait until c_{i} is center again.

TEXP instances that require $\Omega\left(n^{2}\right)$ steps

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ After returning to c_{i}, wait until c_{i} is center again.

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ After returning to c_{i}, wait until c_{i} is center again. Each move from x to y with $x \neq y: \Omega(n)$ time steps.

Consider the temporal graph below that is a star in each step. Let c_{i} be the center of a star in step $i, \frac{n}{2}+i, n+i, \ldots$ After returning to c_{i}, wait until c_{i} is center again. Each move from X to $(y$ with $x \neq y: \Omega(n)$ time steps. In total, $\Omega\left(n^{2}\right)$ time steps.

Observations

The TEXP instances requiring $\Omega\left(n^{2}\right)$ steps have these properties:

- The underlying graph is very dense $\left(\Omega\left(n^{2}\right)\right.$ edges $)$.
- The graph in each step has a high-degree vertex (the center of the star has degree $n-1$).
- The graph changes in every step.

Questions

- What if we place a restriction on one of these?

Observations

The TEXP instances requiring $\Omega\left(n^{2}\right)$ steps have these properties:

- The underlying graph is very dense ($\Omega\left(n^{2}\right)$ edges).
- The graph in each step has a high-degree vertex (the center of the star has degree $n-1$).
- The graph changes in every step.

Questions

- What if we place a restriction on one of these?
- Today: What if the graph in each step has bounded degree?

Bounded Degree Graph Exploration

Temporal graph of bounded degree
A temporal graph \mathcal{G} has degree bounded by Δ if the graph in each step has maximum degree at most Δ.

Question: What is the worst-case exploration time for temporal graphs of bounded degree?

We know:

- Upper bound $O\left(n^{2}\right)$ holds for arbitrary graphs.
- Lower bound $\Omega(n \log n)$ for underlying planar graphs with maximum degree $\Delta=4$.

Main Result

Theorem

A temporal graph \mathcal{G} with degree bounded by Δ can always be explored in

$$
O\left(\log \Delta \cdot \frac{n^{2}}{\log n}\right)
$$

steps.

Remarks:

- For $\log \Delta=o(\log n)$, the exploration time is $o\left(n^{2}\right)$.
- For $\Delta=O(1)$, the exploration time is $O\left(\frac{n^{2}}{\log n}\right)$.
- There is still a huge gap to the lower bound of $\Omega(n \log n)$.

Theorem

A temporal graph \mathcal{G} with degree bounded by Δ can be explored in $O\left(\log \Delta \cdot \frac{n^{2}}{\log n}\right)$ steps.

Proof.

- While there are $\Omega\left(\frac{n}{\log _{\Delta} n}\right)$ unexplored vertices, visit $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

$$
\Rightarrow O\left(\frac{n}{\log _{\Delta} n} \cdot n\right)=O\left(\log \Delta \cdot \frac{n^{2}}{\log n}\right) \text { steps }
$$

- Visit the last $O\left(\frac{n}{\log _{\Delta} n}\right)$ unexplored vertices in $O(n)$ steps per vertex.

$$
\Rightarrow O\left(\frac{n}{\log _{\Delta} n} \cdot n\right)=O\left(\log \Delta \cdot \frac{n^{2}}{\log n}\right) \text { steps }
$$

Visiting many vertices quickly

Lemma (Main Lemma)

While there are $\Omega\left(\frac{n}{\log _{\Delta} n}\right)$ unexplored vertices, we can visit $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof idea.

- Assume current vertex is v, current step is t.
- Let U be the current set of unexplored vertices.
- Claim: There exists a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.
\Rightarrow Move from v to u during time t to $t+n$, then follow W.

Auxiliary Lemma

Lemma (Auxiliary Lemma)

Let T be a set of $k=|T|$ unexplored vertices. There are $\Omega\left(\frac{k}{\Delta}\right)$ disjoint pairs $(u, v) \in T^{2}$ s.t. u can reach v in $O\left(\frac{\Delta n}{k}\right)$ steps.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Claim

There is a walk W starting at some $u \in U$ at time $t+n$ that visits $O\left(\log _{\Delta} n\right)$ unexplored vertices in $O(n)$ steps.

Proof sketch.

Lemma (Auxiliary Lemma)

Let T be a set of $k=|T|$ unexplored vertices. There are $\Omega\left(\frac{k}{\Delta}\right)$ disjoint pairs $(u, v) \in T^{2}$ s.t. u can reach v in $O\left(\frac{\Delta n}{k}\right)$ steps.

Proof.

- Maintain a home set $H_{v} \subseteq T$ of each $v \in L=V \backslash T$:
- $0 \leq\left|H_{v}\right| \leq 2$
- Each $u \in H_{v}$ can reach v by the current time step.
- If a vertex $w \in T$ is adjacent to a vertex $v \in L$ with $u \in H_{v}$ for some $u \neq w$, a pair (u, w) is formed.

- Potential function $\Phi=\sum_{v \in L}\left(\left|H_{v}\right|+1\right) \leq 3 n$.
- We can show:
- Φ increases by $\approx \frac{k}{2 \Delta}$ in each step.
- Formation of a pair decreases potential by at most $\frac{20 \Delta n}{k}$.
- If fewer than $\frac{k}{20 \Delta}$ pairs were formed in $\frac{10 \Delta n}{k}$ steps, we would have

$$
\Phi>\frac{10 \Delta n}{k} \cdot \frac{k}{2 \Delta}-\frac{k}{20 \Delta} \cdot \frac{20 \Delta n}{k}=5 n-n>3 n
$$

a contradiction.

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Obtaining the potential increase

- Consider spanning tree T of current graph.
- Find $\Omega\left(\frac{k}{\Delta}\right)$ disjoint paths $P_{u, w}$ between vertices $u, w \in T$.
- On path $P_{u, w}$, increase potential of one vertex $v \in L$ by adding u or w to its home set H_{v} (and possibly adjusting other home sets).
- Example:

Conclusions

- We have shown that temporal graphs whose degree is bounded by Δ in each step can be explored in $O\left(\log \Delta \cdot \frac{n^{2}}{\log n}\right)$ steps.
- The best known lower bound for small Δ is only $\Omega(n \log n)$ steps, so a large gap remains.
- We are still only at the beginning of understanding how restrictions on the underlying graph or on the graph in each step affect the worst-case exploration time.

Open Problems

- Close the gap for temporal graphs of bounded degree in each step.
- Exploration of temporal graphs whose underlying graph is planar:
- What is the largest number of steps required?
- Upper bound: $O\left(n^{1.8} \log n\right)$ steps
- Lower bound: $\Omega(n \log n)$ steps
- Approximation algorithms?
- Underlying graphs from other graph classes:
- $n \times n$ grids
- Planar graphs of bounded degree
- Arbitrary graphs of bounded degree
- Instance-dependent lower bounds on exploration time
- Graphs that change only every $c>1$ steps

Thank you!

