Exploration of temporal graphs with bounded degree

Thomas Erlebach and Jakob Spooner

University of Leicester {te17|jts21}@leicester.ac.uk

ICALP Workshop "Algorithmic Aspects of Temporal Graphs" 9 July 2018

- Temporal graphs
- Temporal graph exploration problem (TEXP)
- Shown results
 - Instances that require $\Omega(n^2)$ steps
- Saster exploration of degree-bounded graphs
- Sonclusions

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Step 1:

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Underlying graph

The graph with all edges that are present in at least one step.

Temporal (Time-Respecting) Path

Time edge

A pair (e, t) where e is an edge of the underlying graph and t is a time step when e is present.

Temporal path (journey)

A sequence of time edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that (e_1, e_2, \ldots, e_k) is a path in the underlying graph and $t_1 < t_2 < \cdots < t_k$.

Temporal (Time-Respecting) Path

Time edge

A pair (e, t) where e is an edge of the underlying graph and t is a time step when e is present.

Temporal path (journey)

A sequence of time edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that (e_1, e_2, \ldots, e_k) is a path in the underlying graph and $t_1 < t_2 < \cdots < t_k$.

Temporal walk: temporal path where vertices may repeat

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.

Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.

Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.

Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Michail and Spirakis [MFCS'14]

It is NP-complete to decide if a temporal graph can be explored if it need not be connected in each step.

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.

Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Michail and Spirakis [MFCS'14]

It is NP-complete to decide if a temporal graph can be explored if it need not be connected in each step.

⇒ Like Michail and Spirakis, we consider temporal graphs that are connected in each step and have lifetime $\ge n^2$. (Note: We consider undirected graphs only.)

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.

Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Reachability lemma: Let \mathcal{G} be a temporal graph with *n* vertices.

Agent can reach any vertex v from vertex u in n time steps.

Proof. Since \mathcal{G} always has a u-v path, the set of vertices reachable from u increases in each step until v is reached.

Starting at a given vertex s at time 0, find a fastest temporal walk that visits all vertices.

Equivalently: Schedule an agent: In each time step, traverse an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Reachability lemma: Let \mathcal{G} be a temporal graph with *n* vertices.

Agent can reach any vertex v from vertex u in n time steps.

Corollary

Any temporal graph can be explored in n^2 time steps.

Temporal exploration completed in Step 5.

Previous Work on TEXP

Avin, Koucký, Lotker, ICALP'08:

- Analyze cover time of random walk in temporal graph (with self-loops)
- Star construction shows that simple random walk may take Ω(2ⁿ) steps
- Lazy random walk that leaves v only with probability $\deg(v)/(\Delta + 1)$ has cover time $O(\Delta^2 n^3 \log^2 n)$

Michail and Spirakis, MFCS'14:

- D-approximation algorithm for temporal graph exploration, where D is the dynamic diameter Note: 1 ≤ D ≤ n − 1, can be equal to n − 1
- No (2ε) -approximation algorithm unless P = NP
- $(1.7 + \varepsilon)$ -approximation algorithm for temporal TSP with dynamic edge weights in $\{1, 2\}$

Previous Work on TEXP

E, Hoffmann, Kammer, ICALP'15:

- Instances of TEXP that require $\Omega(n^2)$ steps
- No $O(n^{1-\varepsilon})$ -approximation algorithm unless P = NP
- Results for restricted underlying graphs:
 - treewidth k: $O(n^{1.5}k^{1.5}\log n)$ steps
 - planar: $O(n^{1.8} \log n)$ steps
 - cycle, cycle with chord: O(n) steps
 - $2 \times n$ grid: $O(n \log^3 n)$ steps
 - Instances of TEXP where underlying graph is planar with $\Delta = 4$ that require $\Omega(n \log n)$ steps
- Further results on temporal graphs with randomly present edges or regularly present edges.

Consider the temporal graph below that is a star in each step. Let c_0 be the center of a star in step 0.

Consider the temporal graph below that is a star in each step. Let c_1 be the center of a star in step 1.

Consider the temporal graph below that is a star in each step. Let c_2 be the center of a star in step 2.

Consider the temporal graph below that is a star in each step. Let c_3 be the center of a star in step 3.

Consider the temporal graph below that is a star in each step. Let c_4 be the center of a star in step 4.

Consider the temporal graph below that is a star in each step. Let c_5 be the center of a star in step 5.

Consider the temporal graph below that is a star in each step. Let c_0 be the center of a star in step 6.

Consider the temporal graph below that is a star in each step. Let c_i be the center of a star in step $i, \frac{n}{2} + i, n + i, ...$

Consider the temporal graph below that is a star in each step. Let c_i be the center of a star in step $i, \frac{n}{2} + i, n + i, ...$ After returning to c_i , wait until c_i is center again.

Consider the temporal graph below that is a star in each step. Let c_i be the center of a star in step $i, \frac{n}{2} + i, n + i, ...$ After returning to c_i , wait until c_i is center again.

Consider the temporal graph below that is a star in each step. Let c_i be the center of a star in step $i, \frac{n}{2} + i, n + i, ...$ After returning to c_i , wait until c_i is center again. Each move from x to y with $x \neq y$: $\Omega(n)$ time steps.

Consider the temporal graph below that is a star in each step. Let c_i be the center of a star in step $i, \frac{n}{2} + i, n + i, ...$ After returning to c_i , wait until c_i is center again. Each move from x to y with $x \neq y$: $\Omega(n)$ time steps. In total, $\Omega(n^2)$ time steps.

The TEXP instances requiring $\Omega(n^2)$ steps have these properties:

- The underlying graph is very dense $(\Omega(n^2) \text{ edges})$.
- The graph in each step has a high-degree vertex (the center of the star has degree n 1).
- The graph changes in every step.

Questions

• What if we place a restriction on one of these?

The TEXP instances requiring $\Omega(n^2)$ steps have these properties:

- The underlying graph is very dense $(\Omega(n^2) \text{ edges})$.
- The graph in each step has a high-degree vertex (the center of the star has degree n-1).
- The graph changes in every step.

Questions

- What if we place a restriction on one of these?
- **Today:** What if the graph **in each step** has bounded degree?

Temporal graph of bounded degree

A temporal graph \mathcal{G} has degree bounded by Δ if the graph in each step has maximum degree at most Δ .

Question: What is the worst-case exploration time for temporal graphs of bounded degree?

We know:

- Upper bound $O(n^2)$ holds for arbitrary graphs.
- Lower bound Ω(n log n) for underlying planar graphs with maximum degree Δ = 4.

Theorem

A temporal graph ${\mathcal G}$ with degree bounded by Δ can always be explored in

$$O\left(\log\Delta\cdot\frac{n^2}{\log n}\right)$$

steps.

Remarks:

- For $\log \Delta = o(\log n)$, the exploration time is $o(n^2)$.
- For $\Delta = O(1)$, the exploration time is $O(\frac{n^2}{\log n})$.
- There is still a huge gap to the lower bound of $\Omega(n \log n)$.

Proof Overview

Theorem

A temporal graph \mathcal{G} with degree bounded by Δ can be explored in $O\left(\log \Delta \cdot \frac{n^2}{\log n}\right)$ steps.

Proof.

• While there are $\Omega(\frac{n}{\log_{\Delta} n})$ unexplored vertices, visit $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

$$\Rightarrow O\left(\frac{n}{\log_{\Delta} n} \cdot n\right) = O\left(\log \Delta \cdot \frac{n^2}{\log n}\right) \text{ steps}$$

 Visit the last O(ⁿ/_{log_Δ n}) unexplored vertices in O(n) steps per vertex.

$$\Rightarrow O\left(\frac{n}{\log_{\Delta} n} \cdot n\right) = O\left(\log \Delta \cdot \frac{n^2}{\log n}\right) \text{ steps}$$

Lemma (Main Lemma)

While there are $\Omega(\frac{n}{\log_{\Delta} n})$ unexplored vertices, we can visit $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

Proof idea.

- Assume current vertex is v, current step is t.
- Let *U* be the current set of unexplored vertices.
- Claim: There exists a walk W starting at some u ∈ U at time t + n that visits O(log_Δ n) unexplored vertices in O(n) steps.
- \Rightarrow Move from v to u during time t to t + n, then follow W.

Lemma (Auxiliary Lemma)

Let T be a set of k = |T| unexplored vertices. There are $\Omega(\frac{k}{\Delta})$ disjoint pairs $(u, v) \in T^2$ s.t. u can reach v in $O(\frac{\Delta n}{k})$ steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

There is a walk W starting at some $u \in U$ at time t + n that visits $O(\log_{\Delta} n)$ unexplored vertices in O(n) steps.

Lemma (Auxiliary Lemma)

Let T be a set of k = |T| unexplored vertices. There are $\Omega(\frac{k}{\Delta})$ disjoint pairs $(u, v) \in T^2$ s.t. u can reach v in $O(\frac{\Delta n}{k})$ steps.

Proof.

- Maintain a home set $H_v \subseteq T$ of each $v \in L = V \setminus T$:
 - $0 \le |H_v| \le 2$
 - Each $u \in H_v$ can reach v by the current time step.
- If a vertex $w \in T$ is adjacent to a vertex $v \in L$ with $u \in H_v$ for some $u \neq w$, a pair (u, w) is formed.

Potential function

- Potential function $\Phi = \sum_{v \in L} (|H_v| + 1) \le 3n$.
- We can show:
 - Φ increases by $\approx \frac{k}{2\Delta}$ in each step.
 - Formation of a pair decreases potential by at most $\frac{20\Delta n}{k}$.
- If fewer than $\frac{k}{20\Delta}$ pairs were formed in $\frac{10\Delta n}{k}$ steps, we would have

$$\Phi > \frac{10\Delta n}{k} \cdot \frac{k}{2\Delta} - \frac{k}{20\Delta} \cdot \frac{20\Delta n}{k} = 5n - n > 3n,$$

a contradiction.

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- Consider spanning tree T of current graph.
- Find $\Omega(\frac{k}{\Delta})$ disjoint paths $P_{u,w}$ between vertices $u, w \in T$.
- On path P_{u,w}, increase potential of one vertex v ∈ L by adding u or w to its home set H_v (and possibly adjusting other home sets).
- Example:

- We have shown that temporal graphs whose degree is bounded by Δ in each step can be explored in O(log Δ · ^{n²}/_{log n}) steps.
- The best known lower bound for small Δ is only $\Omega(n \log n)$ steps, so a large gap remains.
- We are still only at the beginning of understanding how restrictions on the underlying graph or on the graph in each step affect the worst-case exploration time.

Open Problems

- Close the gap for temporal graphs of bounded degree in each step.
- Exploration of temporal graphs whose underlying graph is planar:
 - What is the largest number of steps required?
 - Upper bound: $O(n^{1.8} \log n)$ steps
 - Lower bound: $\Omega(n \log n)$ steps
 - Approximation algorithms?
- Underlying graphs from other graph classes:
 - $n \times n$ grids
 - Planar graphs of bounded degree
 - Arbitrary graphs of bounded degree
- Instance-dependent lower bounds on exploration time
- Graphs that change only every c > 1 steps

Thank you!

ICALP Workshop, Prague, 9 July 2018