Algorithmic Challenges in Link Streams: the case of clique computations

Clémence Magnien

work in collaboration with Tiphaine Viard, Matthieu Latapy, Phan Thi Ha Duong, Binh-Minh Bui-Xuan, Pierre Meyer

> ComplexNetworks(.fr) LIP6 (CNRS, Sorbonne Université)

> > first.last@lip6.fr

July 9th, 2018

Introduction Maximal cliques in link streams

Outline

2 Maximal cliques in link streams

- Maximal Δ-cliques in instantaneous link stream
- Maximal cliques in link streams with durations

Link streams

Models of temporal interactions

$$L = (T, V, E)$$

•
$$T = [\alpha; \omega]$$

- V set of nodes
- $E \subseteq T \times V \otimes V$ set of links

Two cases of interest

- instantaneous link streams
- link streams with durations

One link = (t, uv)

Link streams

Models of temporal interactions

$$L = (T, V, E)$$

•
$$T = [\alpha; \omega]$$

- V set of nodes
- $E \subseteq T \times V \otimes V$ set of links

Two cases of interest

- instantaneous link streams
- link streams with durations

One link = (t, uv)

Link streams

Models of temporal interactions

$$L = (T, V, E)$$

•
$$T = [\alpha; \omega]$$

- V set of nodes
- $E \subseteq T \times V \otimes V$ set of links

Two cases of interest

- instantaneous link streams
- link streams with durations

One link =
$$(b, e, uv)$$

Definitions

Extensions of graph definitions

- Paths
- (Strongly) Connected components
- Betweenness Centrality
- Cores and shells
- . . .

Extensions of algorithms?

Outline

2 Maximal cliques in link streams

- Maximal Δ -cliques in instantaneous link stream
- Maximal cliques in link streams with durations

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Clique (in a graph)

$X \subseteq V$ Induced subgraph : all possible links exist

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Clique (in a graph)

$X \subseteq V$ Induced subgraph : all possible links exist Maximal clique : not included in any other clique

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Clique (in a graph)

$\label{eq:X} X \subseteq V$ Induced subgraph : all possible links exist Maximal clique : not included in any other clique

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Clique (in a graph)

$X \subseteq V$ Induced subgraph : all possible links exist Maximal clique : not included in any other clique

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Δ -clique in instantaneous link streams

$(X, [b; e]) \subseteq V \times T$

Induced sub-stream : all possible links exist all the time

All the time : at least every Δ Maximal if is not included in any other Examples for $\Delta = 3$:

Signatures of distributed applications, meetings, \ldots

Δ -clique in instantaneous link streams

$(X, [b; e]) \subseteq V \times T$

Induced sub-stream : all possible links exist all the time All the time : at least every Δ Maximal if is not included in any other Examples for $\Delta=3$:

Signatures of distributed applications, meetings, \ldots

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Cliques in link streams with duration

$$(X, [b; e]), \subseteq V \times T$$

Induced sub-stream : all possible links exist all the time Maximal if is not included in any other

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Cliques in link streams with duration

$$(X, [b; e]), \subseteq V \times T$$

Induced sub-stream : all possible links exist all the time Maximal if is not included in any other

Maximal Δ -cliques in instantaneous link stream Maximal cliques in link streams with durations

Outline

2 Maximal cliques in link streams

- Maximal Δ -cliques in instantaneous link stream
- Maximal cliques in link streams with durations

Enumerate maximal Δ -cliques in a link stream

Naive algorithm

Queue Q

• for all $(t, uv) \in E$, $(\{u, v\}, [t, t])$ is a Δ -clique $\longrightarrow Q$

While $Q \neq \emptyset$:

- pop C from Q :
- if a node or time can be added $\longrightarrow Q$
- otherwise C is maximal

Enumerate maximal Δ -cliques in a link stream

Naive algorithm

Queue Q

• for all $(t, uv) \in E$, $(\{u, v\}, [t, t])$ is a Δ -clique $\longrightarrow Q$

While $Q \neq \emptyset$:

- pop C from Q :
- if a node or time can be added $\longrightarrow Q$
- otherwise C is maximal

Maximal Δ -cliques in instantaneous link stream Maximal cliques in link streams with durations

Time extension

Maximal Δ -cliques in instantaneous link stream Maximal cliques in link streams with durations

Time extension

- for all links : latest occurrence
- earliest such occurrence

Maximal Δ -cliques in instantaneous link stream Maximal cliques in link streams with durations

Time extension

- for all links : latest occurrence
- earliest such occurrence
- add Δ

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Sketch of proof (1)

- **1** Initially, all elements of Q are Δ -cliques
- **2** one step : transforms a Δ -clique into (several) Δ -cliques
- (a) the output contains only maximal Δ -cliques

Sketch of proof (2)

• All maximal Δ -cliques of L are in the output

Let C = (X, [b, e]) be an arbitrary maximal Δ -clique. (*s*, *uv*) : earliest link of *C*

- $C_0 = (\{u, v\}, [s, s])$
- $C_1 = (\{u, v\}, [s, s + \Delta])$
- ... (add nodes)
- $C_k = (X, [s, s + \Delta])$
- ... (increase time on the right)

•
$$C_e = (X, [s, e])$$

• C = (X, [b, e])

Complexity

$O(2^n n^2 m^3 + 2^n n^3 m^2)$

Interesting observations

• No relation between *n* and *m*

small *n*, large $m \rightarrow$ reasonable running time

• 2^n : All subsets of nodes

In practice : of nodes linked at the same time

 \longrightarrow Running time increases with Δ

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Outline

2 Maximal cliques in link streams

- Maximal Δ -cliques in instantaneous link stream
- Maximal cliques in link streams with durations

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Same algorithm, except time extension

• earliest link end

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Same algorithm, except time extension

- earliest link end
- Extend time

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Same algorithm, except time extension

- earliest link end
- Extend time
- No time extension to the left

 $\label{eq:maximal} \begin{array}{l} \mathsf{Maximal}\ \Delta\text{-cliques in instantaneous link stream}\\ \mathsf{Maximal}\ cliques\ in\ link\ streams\ with\ durations \end{array}$

Same algorithm, except time extension

- earliest link end
- Extend time
- No time extension to the left

Small complexity gain

from
$$\mathcal{O}(2^n n^2 m^3 + 2^n n^3 m^2)$$
 to $\mathcal{O}(2^n n^2 m^2 \log m + 2^n n^3 m^2)$

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Running times

Algorithms

- Δ -cliques in instantaneous linkstreams
- cliques in linkstreams with durations
- Bron-Kerbosch algorithm [HMNS, 2017]

ullet Our algorithm fastest for many relevant values of Δ

Maximal $\Delta\text{-cliques}$ in instantaneous link stream Maximal cliques in link streams with durations

Case studies

Physical proximity in high school

 Detected structures not observable in the aggregated graph (e.g., students from different classes meeting before class starts)

IP traffic (bipartite)

- Dataset too large to compute all maximal cliques
- Sampling strategy for finding balanced cliques
- Correlation between cliques and malevolent activity

Outline

2 Maximal cliques in link streams

- Maximal Δ -cliques in instantaneous link stream
- Maximal cliques in link streams with durations

3 Link stream edition problems

Link Stream Edition problems

Sparse Split Link Stream Edtion Problem

Given a link stream L and an integer k:

- possible to transform *L* into a clique (+isolated vertices) in *k* editions?
- Well studied in graphs, NP-complete
- $\bullet\,$ Possible to adapt existing algorithms \longrightarrow kernel algorithm

Conclusion and perspectives

- Maximal cliques in link streams
 - Algorithms and code
 - Application to : social interactions description, IP traffic
- Sparse-split and Bi-Sparse-split
 - Algorithms
- Currently
 - clique edge cover problem
 - betwenness centrality
 - strongly connected components
- many graph problems
- Link stream description and understanding
 - anomaly detection

Configuration space

Enumerate maximal cliques in link streams

[Himmel, Molter, Niedermeier, Sorge 2016, 2017]

Adaptation of the Bron-Kerbosch algoritmh to maximal Δ -cliques

Enumerate maximal cliques in graphs

R : clique (not maximal) $P \cup X$: all vertices adjacent to all vertices of *R* Compute all maximal cliques $\supseteq R$ containing no vertex in *X* :

Bron-Kerbosch algorithm

- if $P \cup X = \emptyset \longrightarrow R$ is maximal
- for each $v \in P$
 - Bron-Kerbosch $(P \cap N(v), R \cup \{v\}, X \cap N(v))$

•
$$P \leftarrow P \setminus \{v\}$$

•
$$X \leftarrow X \cup \{v\}$$

Enumerate maximal cliques in link streams

[Himmel, Molter, Niedermeier, Sorge 2016, 2017]

- (R, I) : time maximal clique
- P, X : sets of (v, l') such that $(R \cup \{v\}, l')$ is a time maximal clique

Enumerate maximal cliques in link streams

[Himmel, Molter, Niedermeier, Sorge 2016, 2017]

- (R, I) : time maximal clique
- P, X : sets of (v, l') such that $(R \cup \{v\}, l')$ is a time maximal clique

Example : *k*-core

k-core in a graph : largest induced subgraph s.t. all nodes have degree $\geq t.$

Example : k-core

k-core in a graph : largest induced subgraph s.t. all nodes have degree $\geq t.$

Possible to compute the graph k-core at each relevant time-step

Path from (α, u) to (ω, v)

Sequence $(u_0, u_1, t_0), (u_1, u_2, t_1), \dots (u_{-1}, u_k, t_{k-1})$ s.t.

- $u_0 = u, u_k = v$
- $(t_i, u_i, u_{i+1}) \in E$

•
$$t_i \leq t_{i+1}, t_0 \geq \alpha, t_{k-1} \leq \omega$$

Not possible to consider graphs induced by time instants

Extensions from graph algorithms exist, not direct

Path from (α, u) to (ω, v)

Sequence $(u_0, u_1, t_0), (u_1, u_2, t_1), \dots (u_{-1}, u_k, t_{k-1})$ s.t.

- $u_0 = u, u_k = v$
- $(t_i, u_i, u_{i+1}) \in E$

•
$$t_i \leq t_{i+1}, t_0 \geq \alpha, t_{k-1} \leq \omega$$

Not possible to consider graphs induced by time instants Extensions from graph algorithms exist, not direct