
An Axiomatic Approach to Time-Dependent

Shortest Paths

Christos Zaroliagis

zaro@ceid.upatras.gr

Dept. of Computer Engineering & Informatics

University of Patras, Greece

Computer Technology Institute & Press

“Diophantus”

1 / 36

Time-Dependent Arc-Delay and Arrival Functions

Directed graph G = (V ,A), n = |V |, m = |A |
Arc (u, v)

D[uv](tu)
v

= Arr[uv](tu)

= tu +

D[uv](tu)

u

2 / 36

Time-Dependent Shortest Paths

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

3 / 36

Time-Dependent Shortest Paths

0.9

0.1

0.3

2.1

2

1

0

0.1

0.4

1.3

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)? Eg: to = 0

3 / 36

Time-Dependent Shortest Paths

8.1

2.1

9.3

5.1

3

1

1

3.1

4

8.2

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)? Eg: to = 1

3 / 36

Time-Dependent Shortest Paths

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Q2 What if you are not sure about the departure time?

3 / 36

Time-Dependent Shortest Paths

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Q2 What if you are not sure about the departure time?

3 / 36

Time-Dependent Shortest Paths

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1

Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Q2 What if you are not sure about the departure time?

3 / 36

Time-Dependent Shortest Paths

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1

Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03)
yellow path, if to ∈ [0.03, 2.9)
purple path, if to ∈ [2.9,+∞)

3 / 36

4 / 36

Raw traffic (speed probe) data

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

5 Trillion measurements in historic data over 140 Billion Km

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

5 Trillion measurements in historic data over 140 Billion Km

4 Billion new measurements per day

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

5 Trillion measurements in historic data over 140 Billion Km

4 Billion new measurements per day

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

5 Trillion measurements in historic data over 140 Billion Km

4 Billion new measurements per day

4 / 36

Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

5 Trillion measurements in historic data over 140 Billion Km

4 Billion new measurements per day

Main Issue: time-dependence 4 / 36

Time-Dependent Shortest Paths

D[uv](tu)
v

= Arr[uv](tu)

= tu +

D[uv](tu)

u

5 / 36

Time-Dependent Shortest Paths

D[uv](tu)
v

= Arr[uv](tu)

= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

5 / 36

Time-Dependent Shortest Paths

D[uv](tu)
v

= Arr[uv](tu)

= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions

Arr[p](t0) = Arr[ak] • · · · • Arr[a1](t0) (function composition)

D[p](t0) = Arr[p](t0) − t0

5 / 36

Time-Dependent Shortest Paths

D[uv](tu)
v

= Arr[uv](tu)

= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions

Arr[p](t0) = Arr[ak] • · · · • Arr[a1](t0) (function composition)

D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions

Arr[o, d](t0) = minp∈Po,d

{

Arr[p](t0)
}

D[o, d](t0) = Arr[o, d](t0) − t0

5 / 36

Time-Dependent Shortest Paths

D[uv](tu)
v

= Arr[uv](tu)

= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions

Arr[p](t0) = Arr[ak] • · · · • Arr[a1](t0) (function composition)

D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions

Arr[o, d](t0) = minp∈Po,d

{

Arr[p](t0)
}

D[o, d](t0) = Arr[o, d](t0) − t0

Goals

1 For departure-time to from o, determine td = Arr[o, d](to)
2 Provide a succinct representation of Arr[o, d] (or D[o, d])

5 / 36

FIFO vs non-FIFO Arc Delays

FIFO Arc-Delays: slopes of arc-delay functions ≥ −1

≡ non-decreasing arc-arrival functions

6 / 36

FIFO vs non-FIFO Arc Delays

FIFO Arc-Delays: slopes of arc-delay functions ≥ −1

≡ non-decreasing arc-arrival functions

Non-FIFO Arc-Delays

◮ Forbidden waiting: ∄ subpath optimality; NP-hard [Orda-Rom (1990)]

◮ Unrestricted waiting: ≡ FIFO (arbitrary waiting) [Dreyfus (1969)]

6 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

7 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

7 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

7 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

7 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

◮ Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

7 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

◮ Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

7 / 36

Exact Succinct Representation
Why so high complexity ?

v

d

u

s
A[s-u]

t

t1

A[u-d]

t1

t2

A[v-d]
t
′

1

t
′

2

A[s-v]

t

t
′

1

A[s-u-d]

t

t2

A[s-v-d]

t

t
′

2

A[s, d]

t

t2

t
′

2

u v

o

d

Arr[o,d]Arr[o-u-d] Arr[o-v-d]

Arr[ov] Arr[vd]Arr[ou]Arr[ud]

Primitive Breakpoint (PB)

Departure-time bxy from x at which Arr[xy] changes slope

8 / 36

Exact Succinct Representation
Why so high complexity ?

v

d

u

s
A[s-u]

t

t1

A[u-d]

t1

t2

A[v-d]
t
′

1

t
′

2

A[s-v]

t

t
′

1

A[s-u-d]

t

t2

A[s-v-d]

t

t
′

2

A[s, d]

t

t2

t
′

2

u v

o

d

Arr[o,d]Arr[o-u-d] Arr[o-v-d]

Arr[ov] Arr[vd]Arr[ou]Arr[ud]

Primitive Breakpoint (PB)

Departure-time bxy from x at which Arr[xy] changes slope

Minimization Breakpoint (MB)

Departure-time bx from o s.t. Arr[o, x] changes slope due to min

operator at x

8 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

◮ Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

◮ D[o, d]: O(K + 1) space for point-to-point (1 + ε)−approximation

[Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]

9 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Question 1: ∃ data structure (oracle) that

◮ requires reasonable space ?
◮ allows answering distance queries efficiently ?

10 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Question 1: ∃ data structure (oracle) that

◮ requires reasonable space ?
◮ allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O

(

n2(K + 1)
)

space

O(log log(K)) query time

(1 + ε)−stretch

10 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Question 1: ∃ data structure (oracle) that

◮ requires reasonable space ?
◮ allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O

(

n2(K + 1)
)

space

O(log log(K)) query time

(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space

O([m + n log(n)] · log log(K)) query time

1−stretch

10 / 36

Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Question 1: ∃ data structure (oracle) that

◮ requires reasonable space ?
◮ allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O

(

n2(K + 1)
)

space

O(log log(K)) query time

(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space

O([m + n log(n)] · log log(K)) query time

1−stretch

Question 2: can we do better ?

◮ subquadratic space & sublinear query time
◮ ∃ smooth tradeoff among space / query time / stretch ?

10 / 36

Towards Time-Dependent Distance Oracles
Generic Framework for Static Landmark-based Oracles

1 Choose a set L ⊂ V of landmarks

2 ∀ℓ ∈ L , compute distance summaries from ℓ to all v ∈ V

3 Employ a query algorithm that uses the pre-computed distance

summaries to answer arbitrary (o, d) distance queries

11 / 36

Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Q Static & undirected world −→ time-dependent & directed world ?

12 / 36

Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Q Static & undirected world −→ time-dependent & directed world ?

Property 1 (bounded travel time slopes)

Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

12 / 36

Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Q Static & undirected world −→ time-dependent & directed world ?

Property 1 (bounded travel time slopes)

Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

Property 2 (bounded opposite trips)

∃ ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](t)

12 / 36

Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Q Static & undirected world −→ time-dependent & directed world ?

Property 1 (bounded travel time slopes)

Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

Property 2 (bounded opposite trips)

∃ ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](t)

Property 3 (Dij.Rank and TD time are within polynomial factors)

∃ λ, c1, c2 ∈ O(1), f(n) ≤ logc1(n), g(n) ≤ c2 log(n):
Γ[o, d](to) ≤ f(n) · (D[o, d](to))

λ and D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ

12 / 36

Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Q Static & undirected world −→ time-dependent & directed world ?

Property 1 (bounded travel time slopes)

Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

Property 2 (bounded opposite trips)

∃ ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](t)

Property 3 (Dij.Rank and TD time are within polynomial factors)

∃ λ, c1, c2 ∈ O(1), f(n) ≤ logc1(n), g(n) ≤ c2 log(n):
Γ[o, d](to) ≤ f(n) · (D[o, d](to))

λ and D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ

Property 4 (no. of arcs linear in no. of vertices)

m = O(n)

12 / 36

Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Validation of Properties

Data Set Type (source) n m Λmax ζmax λ

Berlin real (TomTom) 480 K 1135 K 0.19 1.19 [1.3,1.6]

Germany real (PTV) 4690 K 11183 K 0.22 1.05 [1.4,1.7]

WEurope bench. (PTV) 18010 K 42188 K 3.60 1.13 [1.4,1.7]

13 / 36

First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

14 / 36

First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

2 ∀(ℓ, v) ∈ L × V , compute distance summaries ∆[ℓ, v],
D[ℓ, v] ≤ ∆[ℓ, v] ≤ (1 + ε) · D[ℓ, v]

◮ BIS (bisection-based) approach, one-to-all (1 + ε)-approximation

14 / 36

First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

2 ∀(ℓ, v) ∈ L × V , compute distance summaries ∆[ℓ, v],
D[ℓ, v] ≤ ∆[ℓ, v] ≤ (1 + ε) · D[ℓ, v]

◮ BIS (bisection-based) approach, one-to-all (1 + ε)-approximation

3 Answer arbitrary queries (o, d, to) using FCA & RQA query

algorithms

14 / 36

First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

2 ∀(ℓ, v) ∈ L × V , compute distance summaries ∆[ℓ, v],
D[ℓ, v] ≤ ∆[ℓ, v] ≤ (1 + ε) · D[ℓ, v]

◮ BIS (bisection-based) approach, one-to-all (1 + ε)-approximation

3 Answer arbitrary queries (o, d, to) using FCA & RQA query

algorithms

Time Stretch

Preprocessing O(K ∗ · n2−β+o(1))

FCA O(nδ) 1 + ε+ ψ

RQA O(nδ+o(1)) 1 + ε · (ε/ψ)r+1

(ε/ψ)r+1−1

K ∗: concavity spoiling breakpoints (0 ≤ K ∗ ≤ K)

β, δ ∈ (0, 1); ψ = O(1) depends on network characteristics

r = O(1): recursion depth (budget) 14 / 36

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time

intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0

15 / 36

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time

intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound

t1t0

D1

D0

15 / 36

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time

intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : Level-1 Recursion

t1t0

D1

D0

t2

D2

15 / 36

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time

intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3

D3

15 / 36

Approximating Distance Functions via Bisection

For continuous, pwl arc-delays

1 Run Reverse TD-Dijkstra to

project each

concavity-spoiling PB to a PI

of the origin o

2 For each pair of consecutive

PIs at o, run BIS for the

corresponding

departure-times interval
departure time from u = tail[uv]

t1

ea
rl

ie
st

-a
rr

iv
a

l
ti

m
es

 a
t

v
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

3 Return the concatenation of approximate distance summaries

16 / 36

Landmark Selection and Preprocessing
K ∗(< K): total # of concavity-spoiling breakpoints;

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1), |L | = ρ · n
[correctness is independent of the landmark selection]

Preprocessing: ∀ℓ ∈ L , compute (1 + ε)−approximate distance functions

∆[ℓ, v] to all v ∈ V using BIS

17 / 36

Landmark Selection and Preprocessing
K ∗(< K): total # of concavity-spoiling breakpoints;

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1), |L | = ρ · n
[correctness is independent of the landmark selection]

Preprocessing: ∀ℓ ∈ L , compute (1 + ε)−approximate distance functions

∆[ℓ, v] to all v ∈ V using BIS

Preprocessing complexity (ρ = n−β)

17 / 36

Landmark Selection and Preprocessing
K ∗(< K): total # of concavity-spoiling breakpoints;

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1), |L | = ρ · n
[correctness is independent of the landmark selection]

Preprocessing: ∀ℓ ∈ L , compute (1 + ε)−approximate distance functions

∆[ℓ, v] to all v ∈ V using BIS

Preprocessing complexity (ρ = n−β)

Space

O

(

(K ∗ + 1) · |L | · n · 1
ε
· log(n/ε)

)

= O

(

K ∗ · n2−β+o(1)
)

17 / 36

Landmark Selection and Preprocessing
K ∗(< K): total # of concavity-spoiling breakpoints;

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1), |L | = ρ · n
[correctness is independent of the landmark selection]

Preprocessing: ∀ℓ ∈ L , compute (1 + ε)−approximate distance functions

∆[ℓ, v] to all v ∈ V using BIS

Preprocessing complexity (ρ = n−β)

Space

O

(

(K ∗ + 1) · |L | · n · 1
ε
· log(n/ε)

)

= O

(

K ∗ · n2−β+o(1)
)

Time

O

(

|L | · K ∗

ε
log2(n

ε
) · n log n

)

= O

(

K ∗ · n2−β+o(1)
)

17 / 36

FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

td = to + D[o,d](to)

Ro

x

lo

w od

P SP[o,d](to)
to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

return solo = D[o, ℓo](to) + ∆[ℓo , d](to + D[o, ℓo](to))

18 / 36

FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

td = to + D[o,d](to)

Ro

x

lo

w od

P SP[o,d](to)
to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

return solo = D[o, ℓo](to) + ∆[ℓo , d](to + D[o, ℓo](to))

FCA complexity

18 / 36

FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

td = to + D[o,d](to)

Ro

x

lo

w od

P SP[o,d](to)
to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

return solo = D[o, ℓo](to) + ∆[ℓo , d](to + D[o, ℓo](to))

FCA complexity

Approximation guarantee: ≤ (1 + ε+ ψ) · D[o, d](to)
ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

18 / 36

FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

td = to + D[o,d](to)

Ro

x

lo

w od

P SP[o,d](to)
to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

return solo = D[o, ℓo](to) + ∆[ℓo , d](to + D[o, ℓo](to))

FCA complexity

Approximation guarantee: ≤ (1 + ε+ ψ) · D[o, d](to)
ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time: O(nδ) (0 < δ < 1)

18 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

do
to

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

d

w3

w1o
to

w2

Growing level-0 ball...

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

w1

t4

o

w4

to

w2

Growing level-0 ball...

Growing level-1 balls...

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l2

w1

t4

o

w4

to

w2

Growing level-0 ball...

Growing level-1 balls...

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l3

l2

w1

t4

o

w4

to

w2

Growing level-0 ball...

Growing level-1 balls...

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

... until recursion

budget r is exhausted

return best among

soli = D[o,wi](to) + D[wi , ℓi](ti) + ∆[ℓi , d](ti + D[wi , ℓi](ti))

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

... until recursion

budget r is exhausted

return best among

soli = D[o,wi](to) + D[wi , ℓi](ti) + ∆[ℓi , d](ti + D[wi , ℓi](ti))

RQA Complexity

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

... until recursion

budget r is exhausted

return best among

soli = D[o,wi](to) + D[wi , ℓi](ti) + ∆[ℓi , d](ti + D[wi , ℓi](ti))

RQA Complexity

Approximation guarantee: 1 + σ = 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1

19 / 36

RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]

t1

t2

t3
lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

... until recursion

budget r is exhausted

return best among

soli = D[o,wi](to) + D[wi , ℓi](ti) + ∆[ℓi , d](ti + D[wi , ℓi](ti))

RQA Complexity

Approximation guarantee: 1 + σ = 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1

Query-time: O(nδ+o(1)); 0 < δ < 1

19 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

20 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ(n) (!)

20 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ(n) (!)

⇓

20 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ(n) (!)

⇓

Space blow-up

20 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ(n) (!)

⇓

Space blow-up

Can we avoid dependence on K ∗ and still maintain

20 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ(n) (!)

⇓

Space blow-up

Can we avoid dependence on K ∗ and still maintain

◮ Subquadratic preprocessing ?

20 / 36

Towards More Efficient Time-Dependent Oracles

Previous TD oracle efficient only when K ∗ ∈ o(n)

Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ(n) (!)

⇓

Space blow-up

Can we avoid dependence on K ∗ and still maintain

◮ Subquadratic preprocessing ?
◮ Sublinear query time (also on Dijkstra rank) ?

20 / 36

TRAP: New Approximation Method
T ≤ nα (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

Trapezoidal Approximation

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

departure time from landmark

ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

Split [0,T) into
⌈

T
τ

⌉

length-τ subintervals, for a suitable choice of τ

Compute (1 + ε)-upper approximation per subinterval

∆[ℓ, v] (of D[o, d] : [0,T) 7→ R>0): concatenation of all upper

approximations per subinterval

21 / 36

TRAP: New Approximation Method
T ≤ nα (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

Trapezoidal Approximation

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

departure time from landmark

ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

Split [0,T) into
⌈

T
τ

⌉

length-τ subintervals, for a suitable choice of τ

Compute (1 + ε)-upper approximation per subinterval

∆[ℓ, v] (of D[o, d] : [0,T) 7→ R>0): concatenation of all upper

approximations per subinterval

TRAP Complexity

O(nα) TDSP-Calls
21 / 36

BIS vs TRAP Approximation Methods

BIS

departure time from u = tail[uv]
t1

ea
rl

ie
st

-a
rr

iv
a

l
ti

m
es

 a
t

v
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

BIS (+) BIS (-)

Simplicity

Space-

optimal for

concave func-

tions

First one-to-

all approximation

Linear depen-

dence on degree

of disconcavity

K ∗

TRAP

22 / 36

BIS vs TRAP Approximation Methods

BIS

departure time from u = tail[uv]
t1

ea
rl

ie
st

-a
rr

iv
a

l
ti

m
es

 a
t

v
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

BIS (+) BIS (-)

Simplicity

Space-

optimal for

concave func-

tions

First one-to-

all approximation

Linear depen-

dence on degree

of disconcavity

K ∗

TRAP

Trapezoidal Approximation

sh
or

te
st

tra
ve

l t
im

e a
t v

sh
or

te
st

tra
ve

l t
im

e a
t v

departure time from landmark

ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

TRAP (+) TRAP (-)

Simplicity.

One-to-all

approximation

Indepen-

dence from

K ∗

No guaran-

tee of space-

optimality

Inappropriate

for “nearby”

vertices around

o

22 / 36

TRAPONLY Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP

(guarantees (1 + ε)-approximate distances to “faraway” vertices)

23 / 36

TRAPONLY Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP

(guarantees (1 + ε)-approximate distances to “faraway” vertices)

Query Algorithm

RQA+

23 / 36

TRAPONLY Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP

(guarantees (1 + ε)-approximate distances to “faraway” vertices)

Query Algorithm

RQA+

◮ Similar to RQA, but in addition ...

23 / 36

TRAPONLY Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP

(guarantees (1 + ε)-approximate distances to “faraway” vertices)

Query Algorithm

RQA+

◮ Similar to RQA, but in addition ...
◮ for every ℓ ∈ L discovered by RQA, grow a TD-Dijkstra ball of

appropriate size to compute distances to “nearby” vertices

23 / 36

FLAT Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

compute distance summaries from ℓ ∈ L to all v ∈ V

using TRAP (BIS) for “faraway” (“nearby”) vertices

Query Algorithms

Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better

than FCA; practice: remarkable stretch guarantees

do
to

24 / 36

FLAT Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

compute distance summaries from ℓ ∈ L to all v ∈ V

using TRAP (BIS) for “faraway” (“nearby”) vertices

Query Algorithms

Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better

than FCA; practice: remarkable stretch guarantees

lo

d
to

R0

o

24 / 36

FLAT Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

compute distance summaries from ℓ ∈ L to all v ∈ V

using TRAP (BIS) for “faraway” (“nearby”) vertices

Query Algorithms

Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better

than FCA; practice: remarkable stretch guarantees

lo

l1

d

l3

l2

l4

to

R0

R1R2

R3

R4

o

24 / 36

HORN (Hierarchical ORacle for TD Networks)
Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

25 / 36

HORN (Hierarchical ORacle for TD Networks)
Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

Selection of landmark sets (colors indicate coverage sizes)

25 / 36

HORN (Hierarchical ORacle for TD Networks)
Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

Selection of landmark sets (colors indicate coverage sizes)

Small-coverage landmarks “learn” travel-time functions to their (only

short-range) destinations

25 / 36

HORN (Hierarchical ORacle for TD Networks)
Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

Selection of landmark sets (colors indicate coverage sizes)

Small-coverage landmarks “learn” travel-time functions to their (only

short-range) destinations

Medium-coverage landmarks “learn” travel-time functions to their (up

to medium-range) destinations

. . .

25 / 36

HORN (Hierarchical ORacle for TD Networks)
Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

Selection of landmark sets (colors indicate coverage sizes)

Small-coverage landmarks “learn” travel-time functions to their (only

short-range) destinations

Medium-coverage landmarks “learn” travel-time functions to their (up

to medium-range) destinations

. . .

Global-coverage landmarks “learn” travel-time functions to their (up

to long-range) destinations

25 / 36

HORN (Hierarchical ORacle for TD Networks)
Idea

26 / 36

HORN (Hierarchical ORacle for TD Networks)
Preprocessing

Depending on its level, each landmark has its own coverage, a

given-size set of surrounding vertices for which it is informed

Exponentially decreasing sequence of landmark set sizes

Exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time

27 / 36

HORN (Hierarchical ORacle for TD Networks)
Preprocessing

Depending on its level, each landmark has its own coverage, a

given-size set of surrounding vertices for which it is informed

Exponentially decreasing sequence of landmark set sizes

Exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time

HORN Preprocessing Complexity

Appropriate construction of the hierarchy ensures subquadratic

preprocessing space and time O

(

n2−β+o(1)
)

; β ∈ (0, 1)

27 / 36

HORN (Hierarchical ORacle for TD Networks)
Rationale of the hierarchy

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · nξ1
√

c1 N
δ/(r+1)
1

·
(

1
ln(n)

, ln(n)
]

2 N2 = n(γ2−1)/γ2
Nδ

2
c2 = N2 · nξ2

√
c2 N

δ/(r+1)
2

·
(

1
ln(n)

, ln(n)
]

.

.

.

k Nk = n(γk−1)/γk
Nδ

k
ck = Nk · nξk

√
ck N

δ/(r+1)

k
·
(

1
ln(n)

, ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(

N
δ/(r+1)

k
· ln(n), n

]

28 / 36

HORN (Hierarchical ORacle for TD Networks)
Rationale of the hierarchy

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · nξ1
√

c1 N
δ/(r+1)
1

·
(

1
ln(n)

, ln(n)
]

2 N2 = n(γ2−1)/γ2
Nδ

2
c2 = N2 · nξ2

√
c2 N

δ/(r+1)
2

·
(

1
ln(n)

, ln(n)
]

.

.

.

k Nk = n(γk−1)/γk
Nδ

k
ck = Nk · nξk

√
ck N

δ/(r+1)

k
·
(

1
ln(n)

, ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(

N
δ/(r+1)

k
· ln(n), n

]

1 Mimic FLAT in each level i: all level-i landmarks are informed about ci

destinations around them

28 / 36

HORN (Hierarchical ORacle for TD Networks)
Rationale of the hierarchy

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · nξ1
√

c1 N
δ/(r+1)
1

·
(

1
ln(n)

, ln(n)
]

2 N2 = n(γ2−1)/γ2
Nδ

2
c2 = N2 · nξ2

√
c2 N

δ/(r+1)
2

·
(

1
ln(n)

, ln(n)
]

.

.

.

k Nk = n(γk−1)/γk
Nδ

k
ck = Nk · nξk

√
ck N

δ/(r+1)

k
·
(

1
ln(n)

, ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(

N
δ/(r+1)

k
· ln(n), n

]

1 Mimic FLAT in each level i: all level-i landmarks are informed about ci

destinations around them

2 The density of level-i landmarks is such that ALL queries of Dijkstra

rank ≤ Ni can be answered by using ONLY level-i landmarks

28 / 36

HORN (Hierarchical ORacle for TD Networks)
Rationale of the hierarchy

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · nξ1
√

c1 N
δ/(r+1)
1

·
(

1
ln(n)

, ln(n)
]

2 N2 = n(γ2−1)/γ2
Nδ

2
c2 = N2 · nξ2

√
c2 N

δ/(r+1)
2

·
(

1
ln(n)

, ln(n)
]

.

.

.

k Nk = n(γk−1)/γk
Nδ

k
ck = Nk · nξk

√
ck N

δ/(r+1)

k
·
(

1
ln(n)

, ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(

N
δ/(r+1)

k
· ln(n), n

]

1 Mimic FLAT in each level i: all level-i landmarks are informed about ci

destinations around them

2 The density of level-i landmarks is such that ALL queries of Dijkstra

rank ≤ Ni can be answered by using ONLY level-i landmarks

3 Fact: Running RQA at the appropriate level of the hierarchy would

yield a good approximation

28 / 36

HORN (Hierarchical ORacle for TD Networks)
Rationale of the hierarchy

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · nξ1
√

c1 N
δ/(r+1)
1

·
(

1
ln(n)

, ln(n)
]

2 N2 = n(γ2−1)/γ2
Nδ

2
c2 = N2 · nξ2

√
c2 N

δ/(r+1)
2

·
(

1
ln(n)

, ln(n)
]

.

.

.

k Nk = n(γk−1)/γk
Nδ

k
ck = Nk · nξk

√
ck N

δ/(r+1)

k
·
(

1
ln(n)

, ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(

N
δ/(r+1)

k
· ln(n), n

]

1 Mimic FLAT in each level i: all level-i landmarks are informed about ci

destinations around them

2 The density of level-i landmarks is such that ALL queries of Dijkstra

rank ≤ Ni can be answered by using ONLY level-i landmarks

3 Fact: Running RQA at the appropriate level of the hierarchy would

yield a good approximation

4 Challenge: “Guess” the appropriate level; sublinearity on Ni (rather

than n) can then be achieved

28 / 36

HORN (Hierarchical ORacle for TD Networks)
Hierarchical Query Algorithm (HQA)

level-1 landmark ℓ1,o

is uninformed

level-3 landmark ℓ3,o ,

although informed,

came too early

level-2 landmark ℓ2,o

is informed and

within the right

distance

uninformed

informed and in-time

informed but too early

29 / 36

HORN (Hierarchical ORacle for TD Networks)
Hierarchical Query Algorithm (HQA)

level-1 landmark ℓ1,o

is uninformed

level-3 landmark ℓ3,o ,

although informed,

came too early

level-2 landmark ℓ2,o

is informed and

within the right

distance

∴ RQA will use only

level-(≥ 2) landmarks

from now on

uninformed

informed and in-time

informed but too early

29 / 36

Summary of Time-Dependent Distance Oracles
[Kontogiannis, Wagner & Zaroliagis, 2016]

preprocessing query recursion budget (depth) r

[KZ, 2014] K ∗ · n2−β+o(1) nδ+o(1) r ∈ O(1)

TRAPONLY n2−β+o(1) nδ+o(1) r ≈ δ
α
− 1

FLAT n2−β+o(1) nδ+o(1) r ≈ 2δ
α
− 1

HORN n2−β+o(1) ≈ Γδ+o(1) r ≈ 2δ
α
− 1

HORN: hierarchical version of FLAT

Γ: Dijsktra rank

T = nα; α, β, δ ∈ (0, 1)

Stretch of all query algorithms: 1 + ε · (ε/ψ)r+1

(ε/ψ)r+1−1

30 / 36

Experimental Evaluation

Berlin (n = 480K , m = 1135K)

Algorithm |L | Query (ms) Rel. Error (%)

TDD – 110.02 0

FLAT 2K 0.081 0.771

CFLAT 4K (1) 0.075 0.521

CFLAT 16K (4) 0.151 0.022

Germany (n = 4690K , m = 11183K)

Algorithm |L | Query (ms) Rel. Error (%)

TDD – 1190.8 0

FLAT 2K 1.269 1.444

CFLAT 4K (1) 0.588 0.791

CFLAT 4K (2) 1.242 0.206

Rel. error 1%⇒ extra delay of 36 sec / 1 hour of optimal travel time
31 / 36

Distance Oracle: Practical Issues

32 / 36

Distance Oracle: Practical Issues
Google Maps, Tuesday 15:45

05.12.2013 102nd eCOMPASS Review, Brussels, BE

33 / 36

Conclusions & Future Work

34 / 36

Conclusions & Future Work

Conclusions

First Time-Dependent Distance Oracles

◮ Subquadratic preprocessing
◮ Sublinear query time (also on Dijkstra rank)
◮ Provable approximation guarantee
◮ Fully-scalable; work well in practice

34 / 36

Conclusions & Future Work

Conclusions

First Time-Dependent Distance Oracles

◮ Subquadratic preprocessing
◮ Sublinear query time (also on Dijkstra rank)
◮ Provable approximation guarantee
◮ Fully-scalable; work well in practice

Future Work

Explore new landmark sets

Improve space through new compression schemes

Exploit algorithmic parallelism to further reduce preprocessing time

34 / 36

Publications

CSE Uni Ioan. CTI & CEID Uni Patras KIT

1 S. Kontogiannis, G. Papastavrou, D. Wagner, C. Zaroliagis: Improved oracles for

time-dependent road networks. In ATMOS 2017.

2 S. Kontogiannis, D. Wagner, C. Zaroliagis: Hierarchical Oracles for Time-Dependent

Networks. In ISAAC 2016.

3 S. Kontogiannis, C. Zaroliagis: Distance Oracles for Time-Dependent Networks.

Algorithmica Vol. 74 (2016), No. 4, pp. 1404-1434. Prel. version in ICALP 2014.

4 K. Giannakopoulou, S. Kontogiannis, G. Papastavrou, and C. Zaroliagis: A Cloud-based

Time-Dependent Routing Service. In ALGOCLOUD 2016.

5 S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C.

Zaroliagis. Engineering Oracles for Time-Dependent Road Networks. In ALENEX

2016.

6 S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C.

Zaroliagis. Analysis and Experimental Evaluation of Time-Dependent Distance

Oracles. In ALENEX 2015.

35 / 36

Thank you for your attention

Questions

36 / 36

	Time-Dependent Route Planning

