An Axiomatic Approach to Time-Dependent Shortest Paths

Christos Zaroliagis

zaro@ceid.upatras.gr

Dept. of Computer Engineering \& Informatics
University of Patras, Greece

Computer Technology Institute \& Press
"Diophantus"

Time-Dependent Arc-Delay and Arrival Functions

- Directed graph $G=(V, A), n=|V|, m=|A|$
- $\operatorname{Arc}(u, v)$

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)? Eg: $t_{0}=0$

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)? Eg: $\quad t_{0}=1$

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Q2 What if you are not sure about the departure time? shortest od-path $= \begin{cases}\text { orange path, if } & t_{0} \in[0,0.03) \\ \text { yellow path, if } & t_{0} \in[0.03,2.9) \\ \text { purple path, if } & t_{0} \in[2.9,+\infty)\end{cases}$

Raw traffic (speed probe) data
 TOMTOM 比

Raw traffic (speed probe) data

- 70 Million contributing users provide periodic measurements

Raw traffic (speed probe) data
 TOMTOM 水

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)

Raw traffic (speed probe) data
 томтоm «上゙

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week

Raw traffic (speed probe) data TOMTOM *é

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km

Raw traffic (speed probe) data
 томтоm *゙

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

Raw traffic (speed probe) data
 томтоm *゙

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

Raw traffic (speed probe) data

томтом 出

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

Raw traffic (speed probe) data

томтом ※゙

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

Main Issue: time-dependence

Time-Dependent Shortest Paths

Time-Dependent Shortest Paths

- $P_{o, d}$: od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$

Time-Dependent Shortest Paths

- $P_{o, d}$: od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path arrival / travel-time functions
$\operatorname{Arr}[p]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right] \bullet \cdots \bullet \operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right)$ (function composition)
$D[p]\left(t_{0}\right)=\operatorname{Arr}[p]\left(t_{0}\right)-t_{0}$

Time-Dependent Shortest Paths

- $P_{o, d}$: od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path arrival / travel-time functions
$\operatorname{Arr}[p]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right] \bullet \cdots \bullet \operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right)$ (function composition)
$D[p]\left(t_{0}\right)=\operatorname{Arr}[p]\left(t_{0}\right)-t_{0}$
- Earliest-arrival / Shortest-travel-time functions
$\operatorname{Arr}[o, d]\left(t_{0}\right)=\min _{p \in P_{o, d}}\left\{\operatorname{Arr}[p]\left(t_{0}\right)\right\}$
$D[o, d]\left(t_{0}\right)=\operatorname{Arr}[o, d]\left(t_{0}\right)-t_{0}$

Time-Dependent Shortest Paths

- $P_{o, d}$: od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path arrival / travel-time functions
$\operatorname{Arr}[p]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right] \bullet \cdots \bullet \operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right)$ (function composition)
$D[p]\left(t_{0}\right)=\operatorname{Arr}[p]\left(t_{0}\right)-t_{0}$
- Earliest-arrival / Shortest-travel-time functions
$\operatorname{Arr}[o, d]\left(t_{0}\right)=\min _{p \in P_{o, d}}\left\{\operatorname{Arr}[p]\left(t_{0}\right)\right\}$
$D[o, d]\left(t_{0}\right)=\operatorname{Arr}[o, d]\left(t_{0}\right)-t_{0}$

Goals

(1) For departure-time t_{0} from o, determine $t_{d}=\operatorname{Arr}[o, d]\left(t_{o}\right)$
(2) Provide a succinct representation of $\operatorname{Arr}[0, d]$ (or $D[o, d]$)

FIFO vs non-FIFO Arc Delays

- FIFO Arc-Delays: slopes of arc-delay functions ≥-1 \equiv non-decreasing arc-arrival functions

FIFO vs non-FIFO Arc Delays

- FIFO Arc-Delays: slopes of arc-delay functions ≥-1
\equiv non-decreasing arc-arrival functions
- Non-FIFO Arc-Delays
- Forbidden waiting: \#\# subpath optimality; NP-hard [Orda-Rom (1990)]
- Unrestricted waiting: इ FIFO (arbitrary waiting) [Dreyfus (1969)]

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{0} from o : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{0} from 0 : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling \& Wagner 2009; Batz etal, 2009]

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{0} from 0 : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
- Open till recently ...

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
- Open till recently ...
- $\operatorname{Arr}[0, d]: O\left((K+1) \cdot n^{\Theta(\log (n))}\right)$ space [Foschini-Hershberger-Suri (2011)]

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
- Open till recently ...
- $\operatorname{Arr}[0, d]: O\left((K+1) \cdot n^{\Theta(\log (n))}\right)$ space [Foschini-Hershberger-Suri (2011)]

Exact Succinct Representation

Why so high complexity ?

- Primitive Breakpoint (PB)

Departure-time $b_{x y}$ from x at which $\operatorname{Arr}[x y]$ changes slope

Exact Succinct Representation

Why so high complexity ?

- Primitive Breakpoint (PB)

Departure-time $b_{x y}$ from x at which $\operatorname{Arr}[x y]$ changes slope

- Minimization Breakpoint (MB)

Departure-time b_{x} from o s.t. Arr $[0, x]$ changes slope due to min operator at x

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Given od-pair and departure time t_{0} from 0 : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
- Open till recently ...
- $\operatorname{Arr}[0, d]: O\left((K+1) \cdot n^{\Theta(\log (n))}\right)$ space [Foschini-Hershberger-Suri (2011)]
- $D[o, d]: O(K+1)$ space for point-to-point $(1+\varepsilon)$-approximation [Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Question 1: \exists data structure (oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Question 1: \exists data structure (oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?
- Trivial solution I: Precompute all $(1+\varepsilon)$-approximate distance summaries for every od-pair
\# $\mathrm{O}\left(n^{2}(K+1)\right)$ space
道 $\mathrm{O}(\log \log (K))$ query time
: $(1+\varepsilon)$-stretch

Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Question 1: \exists data structure (oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?
- Trivial solution I: Precompute all $(1+\varepsilon)$-approximate distance summaries for every od-pair
\# $\mathrm{O}\left(n^{2}(K+1)\right)$ space
- $\mathrm{O}(\log \log (K))$ query time

这 $(1+\varepsilon)$-stretch

- Trivial solution II: No preprocessing, respond to queries with TD-Dijkstra

```
. \(\mathrm{O}(n+m+K)\) space
! \(\mathrm{O}([m+n \log (n)] \cdot \log \log (K))\) query time
: 1-stretch
```


Complexity of TDSP

D : FIFO, piecewise-linear functions; K : total \# of breakpoints

- Question 1: \exists data structure (oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?
- Trivial solution I: Precompute all $(1+\varepsilon)$-approximate distance summaries for every od-pair
\# $\mathrm{O}\left(n^{2}(K+1)\right)$ space
- $\mathrm{O}(\log \log (K))$ query time

这 $(1+\varepsilon)$-stretch

- Trivial solution II: No preprocessing, respond to queries with TD-Dijkstra

```
- \(\mathrm{O}(n+m+K)\) space
! \(\mathrm{O}([m+n \log (n)] \cdot \log \log (K))\) query time
: 1-stretch
```

- Question 2: can we do better?
- subquadratic space \& sublinear query time
- ヨ smooth tradeoff among space / query time / stretch ?

Towards Time-Dependent Distance Oracles

 Generic Framework for Static Landmark-based Oracles
(1) Choose a set $L \subset V$ of landmarks
(2) $\forall \ell \in L$, compute distance summaries from ℓ to all $v \in V$
(3) Employ a query algorithm that uses the pre-computed distance summaries to answer arbitrary (o, d) distance queries

Towards Time-Dependent Distance Oracles

An Axiomatic Approach - Network Properties

Q Static \& undirected world \longrightarrow time-dependent \& directed world?

Towards Time-Dependent Distance Oracles

An Axiomatic Approach - Network Properties

Q Static \& undirected world \longrightarrow time-dependent \& directed world?
Property 1 (bounded travel time slopes)
Slopes of $D[0, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

Towards Time-Dependent Distance Oracles

An Axiomatic Approach - Network Properties

Q Static \& undirected world \longrightarrow time-dependent \& directed world?
Property 1 (bounded travel time slopes)
Slopes of $D[0, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

Property 2 (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T], D[o, d](t) \leq \zeta \cdot D[d, o](t)$

Towards Time-Dependent Distance Oracles

An Axiomatic Approach - Network Properties

Q Static \& undirected world \longrightarrow time-dependent \& directed world?
Property 1 (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

Property 2 (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T], D[o, d](t) \leq \zeta \cdot D[d, o](t)$
Property 3 (Dij.Rank and TD time are within polynomial factors)
$\exists \lambda, c_{1}, c_{2} \in \mathrm{O}(1), f(n) \leq \log ^{c_{1}}(n), g(n) \leq c_{2} \log (n)$:
$\Gamma[o, d]\left(t_{0}\right) \leq f(n) \cdot\left(D[o, d]\left(t_{0}\right)\right)^{\lambda}$ and $D[o, d]\left(t_{0}\right) \leq g(n) \cdot\left(\Gamma[o, d]\left(t_{0}\right)\right)^{1 / \lambda}$

Towards Time-Dependent Distance Oracles

An Axiomatic Approach - Network Properties

Q Static \& undirected world \longrightarrow time-dependent \& directed world ?
Property 1 (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

Property 2 (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T], D[o, d](t) \leq \zeta \cdot D[d, o](t)$
Property 3 (Dij.Rank and TD time are within polynomial factors)
$\exists \lambda, c_{1}, c_{2} \in \mathrm{O}(1), f(n) \leq \log ^{c_{1}}(n), g(n) \leq c_{2} \log (n)$:
$\Gamma[o, d]\left(t_{0}\right) \leq f(n) \cdot\left(D[o, d]\left(t_{0}\right)\right)^{\lambda}$ and $D[o, d]\left(t_{0}\right) \leq g(n) \cdot\left(\Gamma[o, d]\left(t_{0}\right)\right)^{1 / \lambda}$

Property 4 (no. of arcs linear in no. of vertices)

$$
m=O(n)
$$

Towards Time-Dependent Distance Oracles

An Axiomatic Approach - Network Properties

Validation of Properties

Data Set	Type (source)	n	m	$\Lambda_{\max }$	$\zeta_{\max }$	λ
Berlin	real (TomTom)	480 K	1135 K	0.19	1.19	$[1.3,1.6]$
Germany	real (PTV)	4690 K	11183 K	0.22	1.05	$[1.4,1.7]$
WEurope	bench. (PTV)	18010 K	42188 K	3.60	1.13	$[1.4,1.7]$

First Efficient Time-Dependent Distance Oracle

[Kontogiannis \& Zaroliagis, 2014]
(1) Choose a set L of landmarks

First Efficient Time-Dependent Distance Oracle

[Kontogiannis \& Zaroliagis, 2014]
(1) Choose a set L of landmarks
(2) $\forall(\ell, v) \in L \times V$, compute distance summaries $\Delta[\ell, v]$, $D[\ell, v] \leq \Delta[\ell, v] \leq(1+\varepsilon) \cdot D[\ell, v]$

- BIS (bisection-based) approach, one-to-all $(1+\varepsilon)$-approximation

First Efficient Time-Dependent Distance Oracle

[Kontogiannis \& Zaroliagis, 2014]
(1) Choose a set L of landmarks
(2) $\forall(\ell, v) \in L \times V$, compute distance summaries $\Delta[\ell, v]$, $D[\ell, v] \leq \Delta[\ell, v] \leq(1+\varepsilon) \cdot D[\ell, v]$

- BIS (bisection-based) approach, one-to-all ($1+\varepsilon$)-approximation
(3) Answer arbitrary queries $\left(o, d, t_{0}\right)$ using FCA \& RQA query algorithms

First Efficient Time-Dependent Distance Oracle

[Kontogiannis \& Zaroliagis, 2014]

(1) Choose a set L of landmarks
(2) $\forall(\ell, v) \in L \times V$, compute distance summaries $\Delta[\ell, v]$, $D[\ell, v] \leq \Delta[\ell, v] \leq(1+\varepsilon) \cdot D[\ell, v]$

- BIS (bisection-based) approach, one-to-all ($1+\varepsilon$)-approximation
(3) Answer arbitrary queries (o, d, t_{0}) using FCA \& RQA query algorithms

	Time	Stretch
Preprocessing	$O\left(K^{*} \cdot n^{2-\beta+\alpha(1)}\right)$	
FCA	$O\left(n^{\delta}\right)$	$1+\varepsilon+\psi$
RQA	$O\left(n^{\delta+o(1)}\right)$	$1+\varepsilon \cdot \frac{(\varepsilon / \psi)^{r+1}}{(\varepsilon / \psi)^{r+1}-1}$

- K^{*} : concavity spoiling breakpoints $\left(0 \leq K^{*} \leq K\right)$
- $\beta, \delta \in(0,1) ; \psi=O(1)$ depends on network characteristics
- $r=O(1)$: recursion depth (budget)

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

For continuous, pwl arc-delays
(1) Run Reverse TD-Dijkstra to project each concavity-spoiling PB to a PI of the origin 0
(2) For each pair of consecutive PIs at o, run BIS for the corresponding departure-times interval

(3) Return the concatenation of approximate distance summaries

Landmark Selection and Preprocessing

$K^{*}(<K)$: total \# of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1),|L|=\rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using BIS

Landmark Selection and Preprocessing

$K^{*}(<K)$: total \# of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1),|L|=\rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using BIS

Preprocessing complexity $\left(\rho=n^{-\beta}\right)$

Landmark Selection and Preprocessing

$K^{*}(<K)$: total \# of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1),|L|=\rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using BIS

Preprocessing complexity $\left(\rho=n^{-\beta}\right)$

- Space

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot|L| \cdot n \cdot \frac{1}{\varepsilon} \cdot \log (n / \varepsilon)\right)=\mathrm{O}\left(K^{*} \cdot n^{2-\beta+o(1)}\right)
$$

Landmark Selection and Preprocessing

$K^{*}(<K)$: total \# of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1),|L|=\rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using BIS

Preprocessing complexity $\left(\rho=n^{-\beta}\right)$

- Space

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot|L| \cdot n \cdot \frac{1}{\varepsilon} \cdot \log (n / \varepsilon)\right)=\mathrm{O}\left(K^{*} \cdot n^{2-\beta+o(1)}\right)
$$

- Time

$$
\mathrm{O}\left(|L| \cdot \frac{K^{*}}{\varepsilon} \log ^{2}\left(\frac{n}{\varepsilon}\right) \cdot n \log n\right)=\mathrm{O}\left(K^{*} \cdot n^{2-\beta+o(1)}\right)
$$

FCA: constant-approximation query algorithm

[Kontogiannis \& Zaroliagis, 2014]

return sol $l_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA: constant-approximation query algorithm

[Kontogiannis \& Zaroliagis, 2014]

return $\mathrm{sol}_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA complexity

FCA: constant-approximation query algorithm

[Kontogiannis \& Zaroliagis, 2014]

return $\mathrm{sol}_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA complexity

- Approximation guarantee: $\leq(1+\varepsilon+\psi) \cdot D[0, d]\left(t_{0}\right)$

$$
\psi=1+\Lambda_{\max }(1+\varepsilon)\left(1+2 \zeta+\Lambda_{\max } \zeta\right)+(1+\varepsilon) \zeta
$$

FCA: constant-approximation query algorithm

[Kontogiannis \& Zaroliagis, 2014]

return sol ${ }_{0}=D\left[o, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[o, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA complexity

- Approximation guarantee: $\leq(1+\varepsilon+\psi) \cdot D[0, d]\left(t_{0}\right)$

$$
\psi=1+\Lambda_{\max }(1+\varepsilon)\left(1+2 \zeta+\Lambda_{\max } \zeta\right)+(1+\varepsilon) \zeta
$$

- Query-time: $O\left(n^{\delta}\right)(0<\delta<1)$

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level- 1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted
- return best among

$$
\mathrm{sol}_{i}=D\left[o, w_{i}\right]\left(t_{o}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)
$$

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted
- return best among

$$
s o l_{i}=D\left[o, w_{i}\right]\left(t_{o}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)
$$

RQA Complexity

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted
- return best among

$$
s o l_{i}=D\left[o, w_{i}\right]\left(t_{o}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)
$$

RQA Complexity

- Approximation guarantee: $1+\sigma=1+\varepsilon \cdot \frac{(1+\varepsilon / \psi)^{r+1}}{(1+\varepsilon / \psi)^{r+1}-1}$

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis \& Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted
- return best among

$$
s o l_{i}=D\left[o, w_{i}\right]\left(t_{o}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)
$$

RQA Complexity

- Approximation guarantee: $1+\sigma=1+\varepsilon \cdot \frac{(1+\varepsilon / 4)^{r+1}}{(1+\varepsilon / \psi)^{r+1}-1}$
- Query-time: $O\left(n^{\delta+\alpha(1)}\right) ; 0<\delta<1$

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^{*} \in \Theta(n)(!)$

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$
- Experimental analysis in Berlin [KMPPWz, 2015] : $K^{*} \in \Theta(n)(!)$ \Downarrow

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$
- Experimental analysis in Berlin [KMPPWz, 2015] : $K^{*} \in \Theta(n)(!)$
\Downarrow
- Space blow-up

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$
- Experimental analysis in Berlin [KMPPWz, 2015] : $K^{*} \in \Theta(n)(!)$
\Downarrow
- Space blow-up
- Can we avoid dependence on K^{*} and still maintain

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$
- Experimental analysis in Berlin [KMPPWz, 2015] : $K^{*} \in \Theta(n)(!)$
\Downarrow
- Space blow-up
- Can we avoid dependence on K^{*} and still maintain
- Subquadratic preprocessing?

Towards More Efficient Time-Dependent Oracles

- Previous TD oracle efficient only when $K^{*} \in O(n)$
- Experimental analysis in Berlin [KMPPWz, 2015] : $K^{*} \in \Theta(n)(!)$
\Downarrow
- Space blow-up
- Can we avoid dependence on K^{*} and still maintain
- Subquadratic preprocessing?
- Sublinear query time (also on Dijkstra rank) ?

TRAP: New Approximation Method

 $T \leq n^{\alpha}(0<\alpha<1)$: period; [Kontogiannis, Wagner \& Zaroliagis, 2016]

- Split $[0, T)$ into $\left\lceil\frac{T}{\tau}\right\rceil$ length $-\tau$ subintervals, for a suitable choice of τ
- Compute $(1+\varepsilon)$-upper approximation per subinterval
- $\bar{\Delta}[\ell, v]$ (of $D[o, d]:[0, T) \mapsto \mathbb{R}_{>_{0}}$): concatenation of all upper approximations per subinterval

TRAP: New Approximation Method

 $T \leq n^{\alpha}(0<\alpha<1)$: period; [Kontogiannis, Wagner \& Zaroliagis, 2016]

- Split $[0, T)$ into $\left\lceil\frac{T}{\tau}\right\rceil$ length- τ subintervals, for a suitable choice of τ
- Compute $(1+\varepsilon)$-upper approximation per subinterval
- $\bar{\Delta}[\ell, v]$ (of $D[o, d]:[0, T) \mapsto \mathbb{R}_{>0}$): concatenation of all upper approximations per subinterval

TRAP Complexity

- O($\left.n^{\alpha}\right)$ TDSP-Calls

BIS vs TRAP Approximation Methods

BIS

BIS (+)	BIS (-)
@ Simplicity	@ Linear depen-
@ Space-	dence on degree
optimal for	of disconcavity
concave func-	K^{*}
tions	
ϱ First one-to-	
all approximation	

BIS vs TRAP Approximation Methods

TRAPONLY Oracle

Preprocessing

- Compute distance summaries from $\forall \ell \in L$ to all $v \in V$ using TRAP (guarantees $(1+\varepsilon)$-approximate distances to "faraway" vertices)

TRAPONLY Oracle

Preprocessing

- Compute distance summaries from $\forall \ell \in L$ to all $v \in V$ using TRAP (guarantees $(1+\varepsilon)$-approximate distances to "faraway" vertices)

Query Algorithm

- RQA+

TRAPONLY Oracle

Preprocessing

- Compute distance summaries from $\forall \ell \in L$ to all $v \in V$ using TRAP (guarantees $(1+\varepsilon)$-approximate distances to "faraway" vertices)

Query Algorithm

- RQA+
- Similar to RQA, but in addition ...

TRAPONLY Oracle

Preprocessing

- Compute distance summaries from $\forall \ell \in L$ to all $v \in V$ using TRAP (guarantees $(1+\varepsilon)$-approximate distances to "faraway" vertices)

Query Algorithm

- RQA+
- Similar to RQA, but in addition ...
- for every $\ell \in L$ discovered by RQA, grow a TD-Dijkstra ball of appropriate size to compute distances to "nearby" vertices

FLAT Oracle

[Kontogiannis, Wagner \& Zaroliagis, 2016]

Preprocessing

- compute distance summaries from $\ell \in L$ to all $v \in V$ using TRAP (BIS) for "faraway" ("nearby") vertices

Query Algorithms

- Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees

FLAT Oracle

[Kontogiannis, Wagner \& Zaroliagis, 2016]

Preprocessing

- compute distance summaries from $\ell \in L$ to all $v \in V$ using TRAP (BIS) for "faraway" ("nearby") vertices

Query Algorithms

- Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees

FLAT Oracle

[Kontogiannis, Wagner \& Zaroliagis, 2016]

Preprocessing

- compute distance summaries from $\ell \in L$ to all $v \in V$ using TRAP (BIS) for "faraway" ("nearby") vertices

Query Algorithms

- Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees

HORN (Hierarchical ORacle for TD Networks)

 Idea - [Kontogiannis, Wagner \& Zaroliagis, 2016]

HORN (Hierarchical ORacle for TD Networks)

Idea - [Kontogiannis, Wagner \& Zaroliagis, 2016]

- Selection of landmark sets (colors indicate coverage sizes)

HORN (Hierarchical ORacle for TD Networks)

Idea - [Kontogiannis, Wagner \& Zaroliagis, 2016]

- Selection of landmark sets (colors indicate coverage sizes)
- Small-coverage landmarks "learn" travel-time functions to their (only short-range) destinations

HORN (Hierarchical ORacle for TD Networks)

Idea - [Kontogiannis, Wagner \& Zaroliagis, 2016]

- Selection of landmark sets (colors indicate coverage sizes)
- Small-coverage landmarks "learn" travel-time functions to their (only short-range) destinations
- Medium-coverage landmarks "learn" travel-time functions to their (up to medium-range) destinations

HORN (Hierarchical ORacle for TD Networks)

Idea - [Kontogiannis, Wagner \& Zaroliagis, 2016]

- Selection of landmark sets (colors indicate coverage sizes)
- Small-coverage landmarks "learn" travel-time functions to their (only short-range) destinations
- Medium-coverage landmarks "learn" travel-time functions to their (up to medium-range) destinations
- Global-coverage landmarks "learn" travel-time functions to their (up to long-range) destinations

HORN (Hierarchical ORacle for TD Networks) Idea

HORN (Hierarchical ORacle for TD Networks)

Preprocessing

- Depending on its level, each landmark has its own coverage, a given-size set of surrounding vertices for which it is informed
- Exponentially decreasing sequence of landmark set sizes
- Exponentially increasing sequence of coverages per landmark
$\therefore \mathrm{O}(\log \log (n))$ levels \Rightarrow Subquadratic preprocessing space/time

HORN (Hierarchical ORacle for TD Networks)

Preprocessing

- Depending on its level, each landmark has its own coverage, a given-size set of surrounding vertices for which it is informed
- Exponentially decreasing sequence of landmark set sizes
- Exponentially increasing sequence of coverages per landmark
$\therefore \mathrm{O}(\log \log (n))$ levels \Rightarrow Subquadratic preprocessing space/time

HORN Preprocessing Complexity

Appropriate construction of the hierarchy ensures subquadratic preprocessing space and time $\mathrm{O}\left(n^{2-\beta+o(1)}\right) ; \beta \in(0,1)$

HORN (Hierarchical ORacle for TD Networks)

Rationale of the hierarchy

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_{1}=n^{(\gamma-1) / \gamma}$	N_{1}^{δ}	$c_{1}=N_{1} \cdot n^{\xi_{1}}$	$\sqrt{c_{1}}$	$N_{1}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
2	$N_{2}=n^{\left(\gamma^{2}-1\right) / \gamma^{2}}$	N_{2}^{δ}	$c_{2}=N_{2} \cdot n^{\xi_{2}}$	$\sqrt{c_{2}}$	$N_{2}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
\vdots					
k	$N_{k}=n^{\left(\gamma^{k}-1\right) / \gamma^{k}}$	N_{k}^{δ}	$c_{k}=N_{k} \cdot n^{\xi_{k}}$	$\sqrt{c_{k}}$	$N_{k}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
$\mathrm{k}+1$	$N_{k+1}=n$	n^{δ}	$c_{k+1}=n$	\sqrt{n}	$\left(N_{k}^{\delta /(r+1)} \cdot \ln (n), n\right]$

HORN (Hierarchical ORacle for TD Networks)

Rationale of the hierarchy

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_{1}=n^{(\gamma-1) / \gamma}$	N_{1}^{δ}	$c_{1}=N_{1} \cdot n^{\xi / 1}$	$\sqrt{C_{1}}$	$N_{1}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
2	$N_{2}=n^{\left(\gamma^{2}-1\right) / \gamma^{2}}$	N_{2}^{δ}	$c_{2}=N_{2} \cdot n^{\xi_{2}}$	$\sqrt{C_{2}}$	$N_{2}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
\vdots					
k	$N_{k}=n^{\left(\gamma^{k}-1\right) / \gamma^{k}}$	N_{k}^{δ}	$c_{k}=N_{k} \cdot n^{\xi_{k}}$	$\sqrt{c_{k}}$	$N_{k}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
$\mathrm{k}+1$	$N_{k+1}=n$	n^{δ}	$c_{k+1}=n$	\sqrt{n}	$\left(N_{k}^{\delta /(r+1)} \cdot \ln (n), n\right]$

(1) Mimic FLAT in each level i : all level- i landmarks are informed about c_{i} destinations around them

HORN (Hierarchical ORacle for TD Networks)

Rationale of the hierarchy

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_{1}=n^{(\gamma-1) / \gamma}$	N_{1}^{δ}	$C_{1}=N_{1} \cdot n^{\xi_{1}}$	$\sqrt{C_{1}}$	$N_{1}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
2	$N_{2}=n^{\left(\gamma^{2}-1\right) / \gamma^{2}}$	N_{2}^{δ}	$C_{2}=N_{2} \cdot n^{\xi_{2}}$	$\sqrt{C_{2}}$	$N_{2}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
\vdots					
k	$N_{k}=n^{\left(\gamma^{k}-1\right) / \gamma^{k}}$	N_{k}^{δ}	$c_{k}=N_{k} \cdot n^{\xi_{k}}$	$\sqrt{c_{k}}$	$N_{k}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
$\mathrm{k}+1$	$N_{k+1}=n$	n^{δ}	$c_{k+1}=n$	\sqrt{n}	$\left(N_{k}^{\delta /(r+1)} \cdot \ln (n), n\right]$

(1) Mimic FLAT in each level i : all level- i landmarks are informed about c_{i} destinations around them
(2) The density of level-i landmarks is such that ALL queries of Dijkstra rank $\leq N_{i}$ can be answered by using ONLY level- i landmarks

HORN (Hierarchical ORacle for TD Networks)

Rationale of the hierarchy

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_{1}=n^{(\gamma-1) / \gamma}$	N_{1}^{δ}	$c_{1}=N_{1} \cdot n^{\xi_{1}}$	$\sqrt{C_{1}}$	$N_{1}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
2	$N_{2}=n^{\left(\gamma^{2}-1\right) / \gamma^{2}}$	N_{2}^{δ}	$c_{2}=N_{2} \cdot n^{\xi_{2}}$	$\sqrt{c_{2}}$	$N_{2}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
\vdots					
k	$N_{k}=n^{\left(\gamma^{k}-1\right) / \gamma^{k}}$	N_{k}^{δ}	$c_{k}=N_{k} \cdot n^{\xi_{k}}$	$\sqrt{c_{k}}$	$N_{k}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
$\mathrm{k}+1$	$N_{k+1}=n$	n^{δ}	$c_{k+1}=n$	\sqrt{n}	$\left(N_{k}^{\delta /(r+1)} \cdot \ln (n), n\right]$

(1) Mimic FLAT in each level i : all level- i landmarks are informed about c_{i} destinations around them
(2) The density of level-i landmarks is such that ALL queries of Dijkstra rank $\leq N_{i}$ can be answered by using ONLY level- i landmarks
(3) Fact: Running RQA at the appropriate level of the hierarchy would yield a good approximation

HORN (Hierarchical ORacle for TD Networks)

Rationale of the hierarchy

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_{1}=n^{(\gamma-1) / \gamma}$	N_{1}^{δ}	$c_{1}=N_{1} \cdot n^{\xi / 1}$	$\sqrt{C_{1}}$	$N_{1}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
2	$N_{2}=n^{\left(\gamma^{2}-1\right) / \gamma^{2}}$	N_{2}^{δ}	$c_{2}=N_{2} \cdot n^{\xi_{2}}$	$\sqrt{C_{2}}$	$N_{2}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
\vdots					
k	$N_{k}=n^{\left(\gamma^{k}-1\right) / \gamma^{k}}$	N_{k}^{δ}	$c_{k}=N_{k} \cdot n^{\xi_{k}}$	$\sqrt{c_{k}}$	$N_{k}^{\delta /(r+1)} \cdot\left(\frac{1}{\ln (n)}, \ln (n)\right]$
$\mathrm{k}+1$	$N_{k+1}=n$	n^{δ}	$c_{k+1}=n$	\sqrt{n}	$\left(N_{k}^{\delta /(r+1)} \cdot \ln (n), n\right]$

(1) Mimic FLAT in each level i : all level- i landmarks are informed about c_{i} destinations around them
(2) The density of level-i landmarks is such that ALL queries of Dijkstra rank $\leq N_{i}$ can be answered by using ONLY level- i landmarks
(3) Fact: Running RQA at the appropriate level of the hierarchy would yield a good approximation
(4) Challenge: "Guess" the appropriate level; sublinearity on N_{i} (rather than n) can then be achieved

HORN (Hierarchical ORacle for TD Networks)

Hierarchical Query Algorithm (HQA)

- level-1 landmark $\ell_{1,0}$ is uninformed
- level-3 landmark $\ell_{3,0}$, although informed, came too early
- level-2 landmark $\ell_{2,0}$ is informed and within the right distance

HORN (Hierarchical ORacle for TD Networks)

Hierarchical Query Algorithm (HQA)

- level-1 landmark $\ell_{1,0}$ is uninformed
- level-3 landmark $\ell_{3,0}$, although informed, came too early
- level-2 landmark $\ell_{2,0}$ is informed and within the right distance
\therefore RQA will use only level-(≥ 2) landmarks from now on

Summary of Time-Dependent Distance Oracles

[Kontogiannis, Wagner \& Zaroliagis, 2016]

	preprocessing	query	recursion budget (depth) r
$[\mathrm{KZ}, 2014]$	$\mathrm{K}^{*} \cdot n^{2-\beta+\alpha(1)}$	$n^{\delta+\alpha(1)}$	$r \in \mathrm{O}(1)$
TRAPONLY	$n^{2-\beta+\phi(1)}$	$n^{\delta+\alpha(1)}$	$r \approx \frac{\delta}{\alpha}-1$
FLAT	$n^{2-\beta+\phi(1)}$	$n^{\delta+\alpha(1)}$	$r \approx \frac{2 \delta}{\alpha}-1$
HORN	$n^{2-\beta+\phi(1)}$	$\approx \Gamma^{\delta+\alpha(1)}$	$r \approx \frac{2 \delta}{\alpha}-1$

- HORN: hierarchical version of FLAT
- 「: Dijsktra rank
- $T=n^{\alpha} ; \alpha, \beta, \delta \in(0,1)$
- Stretch of all query algorithms: $1+\varepsilon \cdot \frac{(\varepsilon / \psi)^{r+1}}{(\varepsilon / \psi)^{r+1}-1}$

Experimental Evaluation

Berlin ($n=480 K, m=1135 K$)

Algorithm	$\|L\|$	Query (ms)	Rel. Error (\%)
TDD	-	110.02	0
FLAT	2 K	0.081	0.771
CFLAT	$4 \mathrm{~K}(1)$	0.075	0.521
CFLAT	$16 \mathrm{~K}(4)$	0.151	0.022

Germany ($n=4690 K, m=11183 K$)

Algorithm	$\|L\|$	Query (ms)	Rel. Error (\%)
TDD	-	1190.8	0
FLAT	2 K	1.269	1.444
CFLAT	$4 \mathrm{~K}(1)$	0.588	0.791
CFLAT	$4 \mathrm{~K}(2)$	1.242	0.206

Rel. error $1 \% \Rightarrow$ extra delay of $36 \mathrm{sec} / 1$ hour of optimal travel time

Distance Oracle: Practical Issues

Distance Oracle: Practical Issues

Google Maps, Tuesday 15:45

Conclusions \& Future Work

Conclusions \& Future Work

Conclusions

- First Time-Dependent Distance Oracles
- Subquadratic preprocessing
- Sublinear query time (also on Dijkstra rank)
- Provable approximation guarantee
- Fully-scalable; work well in practice

Conclusions \& Future Work

Conclusions

- First Time-Dependent Distance Oracles
- Subquadratic preprocessing
- Sublinear query time (also on Dijkstra rank)
- Provable approximation guarantee
- Fully-scalable; work well in practice

Future Work

- Explore new landmark sets
- Improve space through new compression schemes
- Exploit algorithmic parallelism to further reduce preprocessing time

Publications

CSE Uni loan.

 CTI \& CEID Uni Patras KIT

(1) S. Kontogiannis, G. Papastavrou, D. Wagner, C. Zaroliagis: Improved oracles for time-dependent road networks. In ATMOS 2017.
(2) S. Kontogiannis, D. Wagner, C. Zaroliagis: Hierarchical Oracles for Time-Dependent Networks. In ISAAC 2016.
(3) S. Kontogiannis, C. Zaroliagis: Distance Oracles for Time-Dependent Networks. Algorithmica Vol. 74 (2016), No. 4, pp. 1404-1434. Prel. version in ICALP 2014.
(4) K. Giannakopoulou, S. Kontogiannis, G. Papastavrou, and C. Zaroliagis: A Cloud-based Time-Dependent Routing Service. In ALGOCLOUD 2016.
(5) S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis. Engineering Oracles for Time-Dependent Road Networks. In ALENEX 2016.
(6) S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis. Analysis and Experimental Evaluation of Time-Dependent Distance Oracles. In ALENEX 2015.

Thank you for your attention

