An Axiomatic Approach to Time-Dependent Shortest Paths

Christos Zaroliagis

zaro@ceid.upatras.gr

Dept. of Computer Engineering & Informatics University of Patras, Greece

Computer Technology Institute & Press "Diophantus"

Time-Dependent Arc-Delay and Arrival Functions

- Directed graph G = (V, A), n = |V|, m = |A|
- Arc (*u*, *v*)

Q1 How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)?

All How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)? Eg: $t_o = 0$

All How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)? Eg: $t_o = 1$

Q1 How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)?

Q1 How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)?

3/36

- Q1 How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)?
- Q2 What if you are not sure about the departure time?

Α

- How would you commute **as fast as possible** from *o* to *d*, for a given departure time (from *o*)?
- Q2 What if you are not sure about the departure time?

	orange path, if	$t_o \in [0, 0.03)$
shortest od-path = {	yellow path, if	$t_o \in [0.03, 2.9)$
	purple path, if	$t_o \in [2.9, +\infty)$

Raw traffic (speed probe) data

Raw traffic (speed probe) data TOMTOM

• 70 Million contributing users provide periodic measurements

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

Har Le

Raw traffic (speed probe) data TOMTOM

- 70 Million contributing users provide periodic measurements
- Measured speed and position every 5-mins (for each road segment)
- Every road segment measured ~ 2000 times per week
- 5 Trillion measurements in historic data over 140 Billion Km
- 4 Billion new measurements per day

Main Issue: time-dependence

• $P_{o,d}$: od-paths; $p = (a_1, ..., a_k) \in P_{o,d}$

- $P_{o,d}$: od-paths; $p = (a_1, ..., a_k) \in P_{o,d}$
- Path arrival / travel-time functions $Arr[p](t_0) = Arr[a_k] \bullet \cdots \bullet Arr[a_1](t_0)$ (function composition) $D[p](t_0) = Arr[p](t_0) - t_0$

- $P_{o,d}$: od-paths; $p = (a_1, ..., a_k) \in P_{o,d}$
- Path arrival / travel-time functions $Arr[p](t_0) = Arr[a_k] \bullet \cdots \bullet Arr[a_1](t_0)$ (function composition) $D[p](t_0) = Arr[p](t_0) - t_0$
- Earliest-arrival / Shortest-travel-time functions $Arr[o, d](t_0) = \min_{p \in P_{o,d}} \{ Arr[p](t_0) \}$ $D[o, d](t_0) = Arr[o, d](t_0) - t_0$

- $P_{o,d}$: od-paths; $p = (a_1, ..., a_k) \in P_{o,d}$
- Path arrival / travel-time functions $Arr[p](t_0) = Arr[a_k] \bullet \cdots \bullet Arr[a_1](t_0)$ (function composition) $D[p](t_0) = Arr[p](t_0) - t_0$
- Earliest-arrival / Shortest-travel-time functions $Arr[o, d](t_0) = \min_{p \in P_{o,d}} \{ Arr[p](t_0) \}$ $D[o, d](t_0) = Arr[o, d](t_0) - t_0$

Goals

- For departure-time t_o from o, determine $t_d = Arr[o, d](t_o)$
- Provide a succinct representation of Arr[o, d] (or D[o, d])

FIFO Arc-Delays: slopes of arc-delay functions ≥ -1
≡ non-decreasing arc-arrival functions

FIFO Arc-Delays: slopes of arc-delay functions ≥ -1
≡ non-decreasing arc-arrival functions

• Non-FIFO Arc-Delays

- ► Forbidden waiting: ∄ subpath optimality; NP-hard [Orda-Rom (1990)]
- ► Unrestricted waiting: = FIFO (arbitrary waiting) [Dreyfus (1969)]

D: FIFO, piecewise-linear functions; K: total # of breakpoints

• Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

- Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009]

- Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?

- Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
 - Open till recently ...

- Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
 - Open till recently ...
 - $Arr[o, d]: O((K + 1) \cdot n^{\Theta(\log(n))})$ space [Foschini-Hershberger-Suri (2011)]

- Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
 - Open till recently ...
 - $Arr[o, d]: O((K + 1) \cdot n^{\Theta(\log(n))})$ space [Foschini-Hershberger-Suri (2011)]

Exact Succinct Representation

Why so high complexity ?

• Primitive Breakpoint (PB)

Departure-time b_{xy} from x at which Arr[xy] changes slope

Exact Succinct Representation

Why so high complexity ?

• Primitive Breakpoint (PB)

Departure-time b_{xy} from x at which Arr[xy] changes slope

• Minimization Breakpoint (MB)

Departure-time b_x from *o* s.t. Arr[o, x] changes slope due to **min** operator at *x*

- Given *od*-pair and departure time *t_o* from *o*: **time-dependent** Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ?
 - Open till recently ...
 - $Arr[o, d]: O((K + 1) \cdot n^{\Theta(\log(n))})$ space [Foschini-Hershberger-Suri (2011)]
 - ▷ D[o, d]: O(K + 1) space for point-to-point (1 + ε)-approximation [Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]

- Question 1: \exists data structure (oracle) that
 - requires reasonable space ?
 - allows answering distance queries efficiently ?
Complexity of TDSP

D: FIFO, piecewise-linear functions; K: total # of breakpoints

- Question 1: ∃ data structure (oracle) that
 - requires reasonable space ?
 - allows answering distance queries efficiently ?
- Trivial solution I: Precompute all (1 + ε)-approximate distance summaries for every *od*-pair
 - $\square O(n^2(K+1))$ space
 - \bigcirc O(log log(K)) query time
 - $(1 + \varepsilon)$ -stretch

Complexity of TDSP

D: FIFO, piecewise-linear functions; K: total # of breakpoints

- Question 1: \exists data structure (oracle) that
 - requires reasonable space ?
 - allows answering distance queries efficiently ?
- Trivial solution I: Precompute all (1 + ε)-approximate distance summaries for every *od*-pair
 - $\square O(n^2(K+1))$ space
 - \bigcirc O(log log(K)) query time
 - $(1 + \varepsilon)$ -stretch
- **Trivial solution II:** No preprocessing, respond to queries with TD-Dijkstra
 - \bigcirc O(n + m + K) space
 - \square O([$m + n \log(n)$] · log log(K)) query time
 - 1-stretch

Complexity of TDSP

D: FIFO, piecewise-linear functions; K: total # of breakpoints

- Question 1: ∃ data structure (oracle) that
 - requires reasonable space ?
 - allows answering distance queries efficiently ?
- Trivial solution I: Precompute all (1 + ε)-approximate distance summaries for every *od*-pair
 - \square O($n^2(K+1)$) space
 - \bigcirc O(log log(K)) query time
 - $(1 + \varepsilon)$ -stretch
- **Trivial solution II:** No preprocessing, respond to queries with TD-Dijkstra
 - \bigcirc O(n + m + K) space
 - \square O([$m + n \log(n)$] · log log(K)) query time
 - 1-stretch
- Question 2: can we do better ?
 - subquadratic space & sublinear query time
 - ► ∃ smooth tradeoff among space / query time / stretch ?

Generic Framework for Static Landmark-based Oracles

- **1** Choose a set $L \subset V$ of landmarks
- **2** $\forall \ell \in L$, compute **distance summaries** from ℓ to all $v \in V$
- Employ a query algorithm that uses the pre-computed distance summaries to answer arbitrary (o, d) distance queries

An Axiomatic Approach – Network Properties

An Axiomatic Approach – Network Properties

 $\mathsf{Q} \left| \text{Static \& undirected world} \longrightarrow \textbf{time-dependent \& directed world ?} \right.$

Property 1 (bounded travel time slopes) Slopes of $D[o, d] \in [-1, \Lambda_{max}]$, for some constant $\Lambda_{max} > 0$

An Axiomatic Approach – Network Properties

 $\mathsf{Q} \left| \text{Static \& undirected world} \longrightarrow \textbf{time-dependent \& directed world ?} \right.$

Property 1 (bounded travel time slopes) Slopes of $D[o, d] \in [-1, \Lambda_{max}]$, for some constant $\Lambda_{max} > 0$

Property 2 (bounded opposite trips) $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \ \forall t \in [0, T], D[o, d](t) \le \zeta \cdot D[d, o](t)$

An Axiomatic Approach – Network Properties

 $\mathsf{Q} \left| \text{Static \& undirected world} \longrightarrow \textbf{time-dependent \& directed world ?} \right.$

Property 1 (bounded travel time slopes) Slopes of $D[o, d] \in [-1, \Lambda_{max}]$, for some constant $\Lambda_{max} > 0$

Property 2 (bounded opposite trips) $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \forall t \in [0, T], D[o, d](t) \le \zeta \cdot D[d, o](t)$

Property 3 (Dij.Rank and TD time are within polynomial factors) $\exists \lambda, c_1, c_2 \in O(1), f(n) \leq \log^{c_1}(n), g(n) \leq c_2 \log(n):$ $\Gamma[o, d](t_0) \leq f(n) \cdot (D[o, d](t_0))^{\lambda}$ and $D[o, d](t_0) \leq g(n) \cdot (\Gamma[o, d](t_0))^{1/\lambda}$

An Axiomatic Approach – Network Properties

Q Static & undirected world \rightarrow time-dependent & directed world ?

Property 1 (bounded travel time slopes) Slopes of $D[o, d] \in [-1, \Lambda_{max}]$, for some constant $\Lambda_{max} > 0$

Property 2 (bounded opposite trips) $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \forall t \in [0, T], D[o, d](t) \le \zeta \cdot D[d, o](t)$

Property 3 (Dij.Rank and TD time are within polynomial factors) $\exists \lambda, c_1, c_2 \in O(1), f(n) \leq \log^{c_1}(n), g(n) \leq c_2 \log(n):$ $\Gamma[o, d](t_o) \leq f(n) \cdot (D[o, d](t_o))^{\lambda}$ and $D[o, d](t_o) \leq g(n) \cdot (\Gamma[o, d](t_o))^{1/\lambda}$

Property 4 (no. of arcs linear in no. of vertices) m = O(n)

An Axiomatic Approach – Network Properties

Validation of Properties

Data Set	Type (source)	n	т	Λ_{max}	ζ_{max}	λ
Berlin	real (TomTom)	480 K	1135 K	0.19	1.19	[1.3,1.6]
Germany	real (PTV)	4690 K	11183 K	0.22	1.05	[1.4,1.7]
WEurope	bench. (PTV)	18010 K	42188 K	3.60	1.13	[1.4,1.7]

- Choose a set L of landmarks
- ② $\forall (\ell, v) \in L \times V$, compute distance summaries $\Delta[\ell, v]$, $D[\ell, v] \leq \Delta[\ell, v] \leq (1 + \varepsilon) \cdot D[\ell, v]$
 - ▶ BIS (bisection-based) approach, one-to-all $(1 + \varepsilon)$ -approximation

- Choose a set L of landmarks
- ② $\forall (\ell, v) \in L \times V$, compute distance summaries $\Delta[\ell, v]$, $D[\ell, v] \leq \Delta[\ell, v] \leq (1 + \varepsilon) \cdot D[\ell, v]$
 - ▶ BIS (bisection-based) approach, one-to-all $(1 + \varepsilon)$ -approximation
- Answer arbitrary queries (o, d, t_o) using FCA & RQA query algorithms

- Choose a set L of landmarks
- ② $\forall (\ell, v) \in L \times V$, compute distance summaries $\Delta[\ell, v]$, $D[\ell, v] \leq \Delta[\ell, v] \leq (1 + \varepsilon) \cdot D[\ell, v]$
 - ► BIS (bisection-based) approach, one-to-all $(1 + \varepsilon)$ -approximation
- Answer arbitrary queries (o, d, t_o) using FCA & RQA query algorithms

	Time	Stretch
Preprocessing	$O(K^* \cdot n^{2-\beta+o(1)})$	
FCA	$O(n^{\delta})$	$1 + \varepsilon + \psi$
RQA	$O(n^{\delta+\alpha(1)})$	$1 + arepsilon \cdot rac{(arepsilon/\psi)^{r+1}}{(arepsilon/\psi)^{r+1}-1}$

- K^* : concavity spoiling breakpoints ($0 \le K^* \le K$)
- $\beta, \delta \in (0, 1); \psi = O(1)$ depends on network characteristics
- r = O(1): recursion depth (budget)

For continuous, pwl arc-delays

- Run Reverse TD-Dijkstra to project each concavity-spoiling PB to a PI of the origin o
- For each pair of consecutive Pls at o, run BIS for the corresponding departure-times interval

Return the concatenation of approximate distance summaries

 $K^*(\langle K)$: total # of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V$, $\Pr[v \in L] = \rho \in (0, 1)$, $|L| = \rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1 + \varepsilon)$ -approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using **BIS**

 $K^*(< K)$: total # of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V$, $\Pr[v \in L] = \rho \in (0, 1)$, $|L| = \rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1 + \varepsilon)$ -approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using **BIS**

Preprocessing complexity ($\rho = n^{-\beta}$)

 $K^*(\langle K)$: total # of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V$, $\Pr[v \in L] = \rho \in (0, 1)$, $|L| = \rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1 + \varepsilon)$ -approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using **BIS**

Preprocessing complexity ($\rho = n^{-\beta}$)

Space

$$O((K^*+1) \cdot |L| \cdot n \cdot \frac{1}{\varepsilon} \cdot \log(n/\varepsilon)) = O(K^* \cdot n^{2-\beta+o(1)})$$

 $K^*(< K)$: total # of concavity-spoiling breakpoints;

- Landmark selection: $\forall v \in V$, $\Pr[v \in L] = \rho \in (0, 1)$, $|L| = \rho \cdot n$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1 + \varepsilon)$ -approximate distance functions $\Delta[\ell, v]$ to all $v \in V$ using **BIS**

Preprocessing complexity ($\rho = n^{-\beta}$)

Space

$$O((K^*+1) \cdot |L| \cdot n \cdot \frac{1}{\varepsilon} \cdot \log(n/\varepsilon)) = O(K^* \cdot n^{2-\beta+o(1)})$$

Time

$$O(|L| \cdot \frac{K^*}{\varepsilon} \log^2(\frac{n}{\varepsilon}) \cdot n \log n) = O(K^* \cdot n^{2-\beta+o(1)})$$

[Kontogiannis & Zaroliagis, 2014]

 $\text{return } sol_o = D[o, \ell_o](t_o) + \Delta[\ell_o, d](t_o + D[o, \ell_o](t_o))$

[Kontogiannis & Zaroliagis, 2014]

return $sol_o = D[o, \ell_o](t_o) + \Delta[\ell_o, d](t_o + D[o, \ell_o](t_o))$

FCA complexity

[Kontogiannis & Zaroliagis, 2014]

return $sol_o = D[o, \ell_o](t_o) + \Delta[\ell_o, d](t_o + D[o, \ell_o](t_o))$

FCA complexity

• Approximation guarantee: $\leq (1 + \varepsilon + \psi) \cdot D[o, d](t_o)$ $\psi = 1 + \Lambda_{\max}(1 + \varepsilon)(1 + 2\zeta + \Lambda_{\max}\zeta) + (1 + \varepsilon)\zeta$

[Kontogiannis & Zaroliagis, 2014]

return $sol_o = D[o, \ell_o](t_o) + \Delta[\ell_o, d](t_o + D[o, \ell_o](t_o))$

FCA complexity

• Approximation guarantee: $\leq (1 + \varepsilon + \psi) \cdot D[o, d](t_o)$ $\psi = 1 + \Lambda_{\max}(1 + \varepsilon)(1 + 2\zeta + \Lambda_{\max}\zeta) + (1 + \varepsilon)\zeta$

• Query-time: $O(n^{\delta})$ (0 < δ < 1)

[Kontogiannis & Zaroliagis, 2014]

Growing level-0 ball...

- Growing level-0 ball...
- Growing level-1 balls...

- Growing level-0 ball...
- Growing level-1 balls...

- Growing level-0 ball...
- Growing level-1 balls...

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...

[Kontogiannis & Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted

• return best among $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$

[Kontogiannis & Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted

• return best among $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$

RQA Complexity
RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis & Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted

• return best among $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$

RQA Complexity

• Approximation guarantee: $1 + \sigma = 1 + \varepsilon \cdot \frac{(1 + \varepsilon/\psi)^{r+1}}{(1 + \varepsilon/\psi)^{r+1} - 1}$

RQA: Boosting the Approximation Guarantee - PTAS

[Kontogiannis & Zaroliagis, 2014]

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...
- ... until recursion budget r is exhausted

• return best among $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$

RQA Complexity

- Approximation guarantee: $1 + \sigma = 1 + \varepsilon \cdot \frac{(1 + \varepsilon/\psi)^{r+1}}{(1 + \varepsilon/\psi)^{r+1} 1}$
- Query-time: $O(n^{\delta + c(1)}); 0 < \delta < 1$

• Previous TD oracle efficient only when $K^* \in o(n)$

- Previous TD oracle efficient only when $K^* \in o(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^* \in \Theta(n)$ (!)

- Previous TD oracle efficient only when $K^* \in o(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^* \in \Theta(n)$ (!)

↓

- Previous TD oracle efficient only when $K^* \in o(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^* \in \Theta(n)$ (!)

↓

Space blow-up

- Previous TD oracle efficient only when $K^* \in o(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^* \in \Theta(n)$ (!)

∜

- Space blow-up
- Can we avoid dependence on K* and still maintain

- Previous TD oracle efficient only when $K^* \in o(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^* \in \Theta(n)$ (!)

∜

- Space blow-up
- Can we avoid dependence on K* and still maintain
 - Subquadratic preprocessing ?

- Previous TD oracle efficient only when $K^* \in o(n)$
- Experimental analysis in Berlin [KMPPWZ, 2015] : $K^* \in \Theta(n)$ (!)

∜

- Space blow-up
- Can we avoid dependence on K* and still maintain
 - Subquadratic preprocessing ?
 - Sublinear query time (also on Dijkstra rank) ?

TRAP: New Approximation Method

 $T \le n^{\alpha}$ (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

- Split [0, T) into $\left[\frac{T}{\tau}\right]$ length- τ subintervals, for a suitable choice of τ
- Compute $(1 + \varepsilon)$ -upper approximation per subinterval

TRAP: New Approximation Method

 $T \le n^{\alpha}$ (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

- Split [0, T) into $\left[\frac{T}{\tau}\right]$ length- τ subintervals, for a suitable choice of τ
- Compute $(1 + \dot{\varepsilon})$ -upper approximation per subinterval

TRAP Complexity

O(n^a) TDSP-Calls

BIS vs TRAP Approximation Methods

BIS (+)	BIS (-)
Simplicity	🥯 Linear depen-
Space-	dence on degree
optimal for	of disconcavity
concave func-	<i>K</i> *
tions	
Sirst one-to-	
all approximation	

TRAP

BIS vs TRAP Approximation Methods

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

 Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP (guarantees (1 + ε)-approximate distances to "faraway" vertices)

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

 Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP (guarantees (1 + ε)-approximate distances to "faraway" vertices)

Query Algorithm

RQA+

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

 Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP (guarantees (1 + ε)-approximate distances to "faraway" vertices)

Query Algorithm

- RQA+
 - Similar to RQA, but in addition ...

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

 Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP (guarantees (1 + ε)-approximate distances to "faraway" vertices)

Query Algorithm

- RQA+
 - Similar to RQA, but in addition ...
 - For every ℓ ∈ L discovered by RQA, grow a TD-Dijkstra ball of appropriate size to compute distances to "nearby" vertices

FLAT Oracle

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

 compute distance summaries from ℓ ∈ L to all v ∈ V using TRAP (BIS) for "faraway" ("nearby") vertices

Query Algorithms

- Query: FCA, RQA, FCA+(N)
 - FCA+(N) Run FCA until *N* landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees

FLAT Oracle

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

 compute distance summaries from ℓ ∈ L to all v ∈ V using TRAP (BIS) for "faraway" ("nearby") vertices

Query Algorithms

• Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until *N* landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees

FLAT Oracle

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

compute distance summaries from ℓ ∈ L to all v ∈ V using TRAP (BIS) for "faraway" ("nearby") vertices

Query Algorithms

- Query: FCA, RQA, FCA+(N)
 - FCA+(N) Run FCA until *N* landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees

Idea - [Kontogiannis, Wagner & Zaroliagis, 2016]

Idea - [Kontogiannis, Wagner & Zaroliagis, 2016]

• Selection of landmark sets (colors indicate coverage sizes)

Idea - [Kontogiannis, Wagner & Zaroliagis, 2016]

- Selection of landmark sets (colors indicate coverage sizes)
- Small-coverage landmarks "learn" travel-time functions to their (only short-range) destinations

Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

. . .

- Selection of landmark sets (colors indicate coverage sizes)
- Small-coverage landmarks "learn" travel-time functions to their (only short-range) destinations
- Medium-coverage landmarks "learn" travel-time functions to their (up to medium-range) destinations

Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]

. . .

- Selection of landmark sets (colors indicate coverage sizes)
- Small-coverage landmarks "learn" travel-time functions to their (only short-range) destinations
- Medium-coverage landmarks "learn" travel-time functions to their (up to medium-range) destinations
- Global-coverage landmarks "learn" travel-time functions to their (up to long-range) destinations

Idea

Preprocessing

- Depending on its level, each landmark has its own coverage, a given-size set of surrounding vertices for which it is *informed*
- Exponentially decreasing sequence of landmark set sizes
- Exponentially increasing sequence of coverages per landmark
- $\therefore O(\log \log(n)) \text{ levels } \Rightarrow \textbf{Subquadratic preprocessing space/time}$

Preprocessing

- Depending on its level, each landmark has its own coverage, a given-size set of surrounding vertices for which it is *informed*
- Exponentially decreasing sequence of landmark set sizes
- Exponentially increasing sequence of coverages per landmark
- $\therefore |O(\log \log(n)) | \text{evels} | \Rightarrow \textbf{Subquadratic preprocessing space/time}$

HORN Preprocessing Complexity

Appropriate construction of the hierarchy ensures **subquadratic** preprocessing space and time $O(n^{2-\beta+o(1)})$; $\beta \in (0, 1)$

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_1 = n^{(\gamma-1)/\gamma}$	N_1^δ	$c_1 = N_1 \cdot n^{\xi_1}$	$\sqrt{c_1}$	$N_1^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
2	$N_2 = n^{(\gamma^2 - 1)/\gamma^2}$	N_2^δ	$c_2 = N_2 \cdot n^{\xi_2}$	$\sqrt{c_2}$	$N_2^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
			÷		
k	$N_k = n^{(\gamma^k - 1)/\gamma^k}$	N_k^δ	$c_k = N_k \cdot n^{\xi_k}$	$\sqrt{C_k}$	$N_k^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
k+1	$N_{k+1} = n$	n ^δ	$c_{k+1} = n$	\sqrt{n}	$\left(N_k^{\delta/(r+1)}\cdot\ln(n),n\right]$

Rationale of the hierarchy

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_1 = n^{(\gamma-1)/\gamma}$	N_1^δ	$c_1 = N_1 \cdot n^{\xi_1}$	$\sqrt{c_1}$	$N_1^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
2	$N_2 = n^{(\gamma^2 - 1)/\gamma^2}$	N_2^δ	$c_2 = N_2 \cdot n^{\xi_2}$	$\sqrt{c_2}$	$N_2^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
			:		
k	$N_k = n^{(\gamma^k - 1)/\gamma^k}$	N_k^δ	$c_k = N_k \cdot n^{\xi_k}$	$\sqrt{C_k}$	$N_k^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
k+1	$N_{k+1} = n$	n ^δ	$c_{k+1} = n$	\sqrt{n}	$\left(N_k^{\delta/(r+1)} \cdot \ln(n), n\right]$

Mimic FLAT in each level *i*: all level-*i* landmarks are informed about *c_i* destinations around them

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_1 = n^{(\gamma-1)/\gamma}$	N_1^δ	$c_1 = N_1 \cdot n^{\xi_1}$	$\sqrt{c_1}$	$N_1^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
2	$N_2 = n^{(\gamma^2 - 1)/\gamma^2}$	N_2^δ	$c_2 = N_2 \cdot n^{\xi_2}$	$\sqrt{c_2}$	$N_2^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
			÷		
k	$N_k = n^{(\gamma^k - 1)/\gamma^k}$	N_k^δ	$c_k = N_k \cdot n^{\xi_k}$	$\sqrt{C_k}$	$N_k^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
k+1	$N_{k+1} = n$	n^{δ}	$c_{k+1} = n$	\sqrt{n}	$\left(N_k^{\delta/(r+1)}\cdot\ln(n),n\right]$

- Mimic FLAT in each level i: all level-i landmarks are informed about c_i destinations around them
- 2 The density of level-*i* landmarks is such that ALL queries of Dijkstra rank $\leq N_i$ can be answered by using ONLY level-*i* landmarks

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_1 = n^{(\gamma-1)/\gamma}$	N_1^δ	$c_1 = N_1 \cdot n^{\xi_1}$	$\sqrt{c_1}$	$N_1^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
2	$N_2 = n^{(\gamma^2 - 1)/\gamma^2}$	N_2^δ	$c_2 = N_2 \cdot n^{\xi_2}$	$\sqrt{c_2}$	$N_2^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
			÷		
k	$N_k = n^{(\gamma^k - 1)/\gamma^k}$	N_k^δ	$c_k = N_k \cdot n^{\xi_k}$	$\sqrt{C_k}$	$N_k^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
k+1	$N_{k+1} = n$	n^{δ}	$c_{k+1} = n$	\sqrt{n}	$\left(N_k^{\delta/(r+1)}\cdot\ln(n),n\right]$

- Mimic FLAT in each level i: all level-i landmarks are informed about c_i destinations around them
- 2 The density of level-*i* landmarks is such that ALL queries of Dijkstra rank $\leq N_i$ can be answered by using ONLY level-*i* landmarks
- Fact: Running RQA at the appropriate level of the hierarchy would yield a good approximation

level	targeted DR	Q-time	coverage	TRAP	Ring
1	$N_1 = n^{(\gamma-1)/\gamma}$	N_1^δ	$c_1 = N_1 \cdot n^{\xi_1}$	$\sqrt{c_1}$	$N_1^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
2	$N_2 = n^{(\gamma^2 - 1)/\gamma^2}$	N_2^δ	$c_2 = N_2 \cdot n^{\xi_2}$	$\sqrt{c_2}$	$N_2^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
			÷		
k	$N_k = n^{(\gamma^k - 1)/\gamma^k}$	N_k^δ	$c_k = N_k \cdot n^{\xi_k}$	$\sqrt{C_k}$	$N_k^{\delta/(r+1)} \cdot \left(\frac{1}{\ln(n)}, \ln(n)\right)$
k+1	$N_{k+1} = n$	n^{δ}	$c_{k+1} = n$	\sqrt{n}	$\left(N_k^{\delta/(r+1)}\cdot\ln(n),n\right]$

- Mimic FLAT in each level i: all level-i landmarks are informed about c_i destinations around them
- 2 The density of level-*i* landmarks is such that ALL queries of Dijkstra rank $\leq N_i$ can be answered by using ONLY level-*i* landmarks
- Fact: Running RQA at the appropriate level of the hierarchy would yield a good approximation
- Challenge: "Guess" the appropriate level; sublinearity on N_i (rather than n) can then be achieved

Hierarchical Query Algorithm (HQA)

- level-1 landmark l_{1,o}
 is uninformed
 - level-3 landmark l_{3,0}, although informed, came too early
 - level-2 landmark $\ell_{2,o}$ is informed and within the right distance

Hierarchical Query Algorithm (HQA)

- level-1 landmark l_{1,o}
 is uninformed
- level-3 landmark l_{3,0}, although informed, came too early
- level-2 landmark $\ell_{2,o}$ is **informed** and within the **right distance**
- ∴ RQA will use only level-(≥ 2) landmarks from now on

Summary of Time-Dependent Distance Oracles

[Kontogiannis, Wagner & Zaroliagis, 2016]

	preprocessing	query	recursion budget (depth) r
[KZ, 2014]	$K^* \cdot n^{2-\beta+o(1)}$	$n^{\delta+o(1)}$	<i>r</i> ∈ O(1)
TRAPONLY	$n^{2-\beta+o(1)}$	$n^{\delta+o(1)}$	$r \approx \frac{\delta}{\alpha} - 1$
FLAT	$n^{2-\beta+o(1)}$	$n^{\delta+o(1)}$	$r \approx \frac{2\delta}{\alpha} - 1$
HORN	$n^{2-\beta+o(1)}$	$\approx \Gamma^{\delta+o(1)}$	$r \approx \frac{2\delta}{\alpha} - 1$

- HORN: hierarchical version of FLAT
- Γ: Dijsktra rank
- $T = n^{\alpha}; \alpha, \beta, \delta \in (0, 1)$
- Stretch of all query algorithms: $1 + \varepsilon \cdot \frac{(\varepsilon/\psi)^{r+1}}{(\varepsilon/\psi)^{r+1}-1}$
Experimental Evaluation

Berlin (*n* = 480*K***,** *m* = 1135*K***)**

Algorithm	<i>L</i>	Query (ms)	Rel. Error (%)
TDD	_	110.02	0
FLAT	2K	0.081	0.771
CFLAT	4K (1)	0.075	0.521
CFLAT	16K (4)	0.151	0.022

Germany (*n* = 4690*K*, *m* = 11183*K***)**

Algorithm	<i>L</i>	Query (ms)	Rel. Error (%)
TDD	_	1190.8	0
FLAT	2K	1.269	1.444
CFLAT	4K (1)	0.588	0.791
CFLAT	4K (2)	1.242	0.206

Rel. error $1\% \Rightarrow$ extra delay of 36 sec / 1 hour of optimal travel time

Distance Oracle: Practical Issues

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- First Time-Dependent Distance Oracles
 - Subquadratic preprocessing
 - Sublinear query time (also on Dijkstra rank)
 - Provable approximation guarantee
 - Fully-scalable; work well in practice

Conclusions & Future Work

Conclusions

- First Time-Dependent Distance Oracles
 - Subquadratic preprocessing
 - Sublinear query time (also on Dijkstra rank)
 - Provable approximation guarantee
 - Fully-scalable; work well in practice

Future Work

- Explore new landmark sets
- Improve space through new compression schemes
- Exploit algorithmic parallelism to further reduce preprocessing time

Publications

- S. Kontogiannis, G. Papastavrou, D. Wagner, C. Zaroliagis: Improved oracles for time-dependent road networks. In ATMOS 2017.
- S. Kontogiannis, D. Wagner, C. Zaroliagis: Hierarchical Oracles for Time-Dependent Networks. In ISAAC 2016.
- S. Kontogiannis, C. Zaroliagis: Distance Oracles for Time-Dependent Networks. Algorithmica Vol. 74 (2016), No. 4, pp. 1404-1434. Prel. version in ICALP 2014.
- K. Giannakopoulou, S. Kontogiannis, G. Papastavrou, and C. Zaroliagis: A Cloud-based Time-Dependent Routing Service. In ALGOCLOUD 2016.
- S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis. Engineering Oracles for Time-Dependent Road Networks. In ALENEX 2016.
- S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis. Analysis and Experimental Evaluation of Time-Dependent Distance Oracles. In ALENEX 2015.

Thank you for your attention

