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Time-Dependent Arc-Delay and Arrival Functions

Directed graph G = (V ,A), n = |V |, m = |A |
Arc (u, v)

D[uv](tu)   
v

= Arr[uv](tu )

= tu + 

D[uv](tu)

u
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Time-Dependent Shortest Paths
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A shortest od−path =



















orange path, if to ∈ [0, 0.03)
yellow path, if to ∈ [0.03, 2.9)
purple path, if to ∈ [2.9,+∞)
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Raw traffic (speed probe) data

70 Million contributing users provide periodic measurements

Measured speed and position every 5-mins (for each road segment)

Every road segment measured ∼ 2000 times per week

5 Trillion measurements in historic data over 140 Billion Km

4 Billion new measurements per day

Main Issue: time-dependence 4 / 36
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= Arr[uv](tu )
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D[uv](tu)
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Po,d : od-paths; p = (a1, . . . , ak ) ∈ Po,d

Path arrival / travel-time functions

Arr[p](t0) = Arr[ak ] • · · · • Arr[a1](t0) (function composition)

D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions

Arr[o, d](t0) = minp∈Po,d

{

Arr[p](t0)
}

D[o, d](t0) = Arr[o, d](t0) − t0

Goals

1 For departure-time to from o, determine td = Arr[o, d](to)
2 Provide a succinct representation of Arr[o, d] (or D[o, d])
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FIFO vs non-FIFO Arc Delays

FIFO Arc-Delays: slopes of arc-delay functions ≥ −1

≡ non-decreasing arc-arrival functions
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FIFO vs non-FIFO Arc Delays

FIFO Arc-Delays: slopes of arc-delay functions ≥ −1

≡ non-decreasing arc-arrival functions

Non-FIFO Arc-Delays

◮ Forbidden waiting: ∄ subpath optimality; NP-hard [Orda-Rom (1990)]

◮ Unrestricted waiting: ≡ FIFO (arbitrary waiting) [Dreyfus (1969)]
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Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

7 / 36



Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

7 / 36



Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

7 / 36



Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

7 / 36



Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

◮ Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

7 / 36



Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

◮ Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

7 / 36



Exact Succinct Representation
Why so high complexity ?
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Arr[o,d]Arr[o-u-d] Arr[o-v-d]

Arr[ov] Arr[vd]Arr[ou]Arr[ud]

Primitive Breakpoint (PB)

Departure-time bxy from x at which Arr[xy] changes slope

Minimization Breakpoint (MB)

Departure-time bx from o s.t. Arr[o, x] changes slope due to min

operator at x
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Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Given od−pair and departure time to from o: time-dependent

Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence

[Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ?

◮ Open till recently ...

◮ Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

◮ D[o, d]: O(K + 1) space for point-to-point (1 + ε)−approximation

[Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]
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D: FIFO, piecewise-linear functions; K : total # of breakpoints

Question 1: ∃ data structure (oracle) that

◮ requires reasonable space ?
◮ allows answering distance queries efficiently ?
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Complexity of TDSP
D: FIFO, piecewise-linear functions; K : total # of breakpoints

Question 1: ∃ data structure (oracle) that

◮ requires reasonable space ?
◮ allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O

(

n2(K + 1)
)

space

O(log log(K)) query time

(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space

O([m + n log(n)] · log log(K)) query time

1−stretch

Question 2: can we do better ?

◮ subquadratic space & sublinear query time
◮ ∃ smooth tradeoff among space / query time / stretch ?
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Towards Time-Dependent Distance Oracles
Generic Framework for Static Landmark-based Oracles

1 Choose a set L ⊂ V of landmarks

2 ∀ℓ ∈ L , compute distance summaries from ℓ to all v ∈ V

3 Employ a query algorithm that uses the pre-computed distance

summaries to answer arbitrary (o, d) distance queries
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Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Q Static & undirected world −→ time-dependent & directed world ?
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Property 3 (Dij.Rank and TD time are within polynomial factors)

∃ λ, c1, c2 ∈ O(1), f(n) ≤ logc1(n), g(n) ≤ c2 log(n):
Γ[o, d](to) ≤ f(n) · (D[o, d](to))

λ and D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ

Property 4 (no. of arcs linear in no. of vertices)

m = O(n)
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Towards Time-Dependent Distance Oracles
An Axiomatic Approach – Network Properties

Validation of Properties

Data Set Type (source) n m Λmax ζmax λ

Berlin real (TomTom) 480 K 1135 K 0.19 1.19 [1.3,1.6]

Germany real (PTV) 4690 K 11183 K 0.22 1.05 [1.4,1.7]

WEurope bench. (PTV) 18010 K 42188 K 3.60 1.13 [1.4,1.7]
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First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

14 / 36



First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

2 ∀(ℓ, v) ∈ L × V , compute distance summaries ∆[ℓ, v],
D[ℓ, v] ≤ ∆[ℓ, v] ≤ (1 + ε) · D[ℓ, v]

◮ BIS (bisection-based) approach, one-to-all (1 + ε)-approximation

14 / 36



First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

2 ∀(ℓ, v) ∈ L × V , compute distance summaries ∆[ℓ, v],
D[ℓ, v] ≤ ∆[ℓ, v] ≤ (1 + ε) · D[ℓ, v]

◮ BIS (bisection-based) approach, one-to-all (1 + ε)-approximation

3 Answer arbitrary queries (o, d, to) using FCA & RQA query

algorithms

14 / 36



First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

1 Choose a set L of landmarks

2 ∀(ℓ, v) ∈ L × V , compute distance summaries ∆[ℓ, v],
D[ℓ, v] ≤ ∆[ℓ, v] ≤ (1 + ε) · D[ℓ, v]

◮ BIS (bisection-based) approach, one-to-all (1 + ε)-approximation

3 Answer arbitrary queries (o, d, to) using FCA & RQA query

algorithms

Time Stretch

Preprocessing O(K ∗ · n2−β+o(1))

FCA O(nδ) 1 + ε+ ψ

RQA O(nδ+o(1)) 1 + ε · (ε/ψ)r+1

(ε/ψ)r+1−1

K ∗: concavity spoiling breakpoints (0 ≤ K ∗ ≤ K)

β, δ ∈ (0, 1); ψ = O(1) depends on network characteristics

r = O(1): recursion depth (budget) 14 / 36



Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time

intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0
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Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time

intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3
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Approximating Distance Functions via Bisection

For continuous, pwl arc-delays

1 Run Reverse TD-Dijkstra to

project each

concavity-spoiling PB to a PI

of the origin o

2 For each pair of consecutive

PIs at o, run BIS for the

corresponding

departure-times interval
departure time from u = tail[uv]

t1
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rl

ie
st

-a
rr

iv
a

l 
ti

m
es

 a
t 

v 
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

3 Return the concatenation of approximate distance summaries

16 / 36



Landmark Selection and Preprocessing
K ∗(< K): total # of concavity-spoiling breakpoints;

Landmark selection: ∀v ∈ V , Pr[v ∈ L ] = ρ ∈ (0, 1), |L | = ρ · n
[correctness is independent of the landmark selection]

Preprocessing: ∀ℓ ∈ L , compute (1 + ε)−approximate distance functions

∆[ℓ, v] to all v ∈ V using BIS
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FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

td = to + D[o,d](to)

Ro

x

lo

w od

P  SP[o,d](to)
to

Q  SP[o,lo](to)

Π  ASP[lo,d](to+Ro)

return solo = D[o, ℓo](to) + ∆[ℓo , d](to + D[o, ℓo](to))
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RQA: Boosting the Approximation Guarantee – PTAS
[Kontogiannis & Zaroliagis, 2014]
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TRAP: New Approximation Method
T ≤ nα (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

Trapezoidal Approximation
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approximations per subinterval
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TRAP Complexity

O(nα) TDSP-Calls
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BIS vs TRAP Approximation Methods

BIS

departure time from u = tail[uv]
t1

ea
rl

ie
st

-a
rr

iv
a

l 
ti

m
es

 a
t 

v 
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

BIS (+) BIS (-)

Simplicity

Space-

optimal for

concave func-

tions

First one-to-

all approximation

Linear depen-

dence on degree

of disconcavity

K ∗

TRAP

22 / 36



BIS vs TRAP Approximation Methods

BIS

departure time from u = tail[uv]
t1

ea
rl

ie
st

-a
rr

iv
a

l 
ti

m
es

 a
t 

v 
=

 h
e
a

d
[u

v]

t2 t3 t4 t5 T0

BIS (+) BIS (-)

Simplicity

Space-

optimal for

concave func-

tions

First one-to-

all approximation

Linear depen-

dence on degree

of disconcavity

K ∗

TRAP

Trapezoidal Approximation

sh
or

te
st 

tra
ve

l t
im

e a
t v

sh
or

te
st 

tra
ve

l t
im

e a
t v

departure time from landmark

ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

TRAP (+) TRAP (-)

Simplicity.

One-to-all

approximation

Indepen-

dence from

K ∗

No guaran-

tee of space-

optimality

Inappropriate

for “nearby”

vertices around

o

22 / 36



TRAPONLY Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

Compute distance summaries from ∀ℓ ∈ L to all v ∈ V using TRAP

(guarantees (1 + ε)-approximate distances to “faraway” vertices)
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(guarantees (1 + ε)-approximate distances to “faraway” vertices)

Query Algorithm

RQA+

◮ Similar to RQA, but in addition ...
◮ for every ℓ ∈ L discovered by RQA, grow a TD-Dijkstra ball of

appropriate size to compute distances to “nearby” vertices
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FLAT Oracle
[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

compute distance summaries from ℓ ∈ L to all v ∈ V

using TRAP (BIS) for “faraway” (“nearby”) vertices

Query Algorithms

Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better

than FCA; practice: remarkable stretch guarantees

do
to
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HORN (Hierarchical ORacle for TD Networks)
Idea – [Kontogiannis, Wagner & Zaroliagis, 2016]
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HORN (Hierarchical ORacle for TD Networks)
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HORN (Hierarchical ORacle for TD Networks)
Preprocessing

Depending on its level, each landmark has its own coverage, a

given-size set of surrounding vertices for which it is informed

Exponentially decreasing sequence of landmark set sizes

Exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time

27 / 36



HORN (Hierarchical ORacle for TD Networks)
Preprocessing

Depending on its level, each landmark has its own coverage, a

given-size set of surrounding vertices for which it is informed

Exponentially decreasing sequence of landmark set sizes

Exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time

HORN Preprocessing Complexity

Appropriate construction of the hierarchy ensures subquadratic

preprocessing space and time O

(

n2−β+o(1)
)

; β ∈ (0, 1)
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HORN (Hierarchical ORacle for TD Networks)
Rationale of the hierarchy

level targeted DR Q-time coverage TRAP Ring
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destinations around them

2 The density of level-i landmarks is such that ALL queries of Dijkstra

rank ≤ Ni can be answered by using ONLY level-i landmarks

3 Fact: Running RQA at the appropriate level of the hierarchy would

yield a good approximation

4 Challenge: “Guess” the appropriate level; sublinearity on Ni (rather

than n) can then be achieved
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HORN (Hierarchical ORacle for TD Networks)
Hierarchical Query Algorithm (HQA)

level-1 landmark ℓ1,o

is uninformed

level-3 landmark ℓ3,o ,

although informed,

came too early

level-2 landmark ℓ2,o

is informed and

within the right

distance

uninformed

informed and in-time

informed but too early
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level-3 landmark ℓ3,o ,

although informed,

came too early

level-2 landmark ℓ2,o

is informed and

within the right

distance

∴ RQA will use only

level-(≥ 2) landmarks

from now on
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Summary of Time-Dependent Distance Oracles
[Kontogiannis, Wagner & Zaroliagis, 2016]

preprocessing query recursion budget (depth) r

[KZ, 2014] K ∗ · n2−β+o(1) nδ+o(1) r ∈ O(1)

TRAPONLY n2−β+o(1) nδ+o(1) r ≈ δ
α
− 1

FLAT n2−β+o(1) nδ+o(1) r ≈ 2δ
α
− 1

HORN n2−β+o(1) ≈ Γδ+o(1) r ≈ 2δ
α
− 1

HORN: hierarchical version of FLAT

Γ: Dijsktra rank

T = nα; α, β, δ ∈ (0, 1)

Stretch of all query algorithms: 1 + ε · (ε/ψ)r+1

(ε/ψ)r+1−1
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Experimental Evaluation

Berlin (n = 480K , m = 1135K )

Algorithm |L | Query (ms) Rel. Error (%)

TDD – 110.02 0

FLAT 2K 0.081 0.771

CFLAT 4K (1) 0.075 0.521

CFLAT 16K (4) 0.151 0.022

Germany (n = 4690K , m = 11183K )

Algorithm |L | Query (ms) Rel. Error (%)

TDD – 1190.8 0

FLAT 2K 1.269 1.444

CFLAT 4K (1) 0.588 0.791

CFLAT 4K (2) 1.242 0.206

Rel. error 1%⇒ extra delay of 36 sec / 1 hour of optimal travel time
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Distance Oracle: Practical Issues
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Distance Oracle: Practical Issues
Google Maps, Tuesday 15:45
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Future Work

Explore new landmark sets

Improve space through new compression schemes

Exploit algorithmic parallelism to further reduce preprocessing time
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