Computing Parameters of Sequence-based Dynamic Graphs

Ralf Klasing

LaBRI, CNRS, University of Bordeaux, France

**This is a joint work with Arnaud Casteigts, Yessin M. Neggaz, and Joseph G. Peters.

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

- How changes are perceived?
 - Faults and Failures?
 - Nature of the system
 - Change is normal

Dynamic Graphs

Dynamic Graphs

Dynamic graphs classes: [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

Temporal connectivity $\iff \forall u, v \in V, u \rightsquigarrow v.$

- **Temporal connectivity** $\iff \forall u, v \in V, u \rightsquigarrow v.$
- **Transitive closure** of the journeys: reachability over time [Bhadra and Ferreira, 2003]

 \mathcal{G} is temporally connected \Leftrightarrow Transitive closure \mathcal{G}^* is complete

5

- High-level strategies that work directly at the graph level
- Elementary graph-level operations

- High-level strategies that work directly at the graph level
- Elementary graph-level operations

Temporal-Diameter

- High-level strategies that work directly at the graph level
- Elementary graph-level operations

Temporal-Diameter

- High-level strategies that work directly at the graph level
- Elementary graph-level operations

Temporal-Diameter

TEMPORAL-DIAMETER

Transitive closures

Completeness test

TEMPORAL-DIAMETER

- Transitive closures
- Completeness test

Temporal-Diameter

- Transitive closures
- Completeness test

Temporal-Diameter

Finding the *temporal diameter* of a given dynamic graph \mathcal{G} , i.e. the smallest duration in which there exists a journey from any node to all other nodes.

Finding the smallest d such that every super node in row \mathcal{G}^d is a complete graph (i.e. every subsequence of length d is temporally connected).

- Transitive closures
- Completeness test
- Transitive closures concatenation

- Transitive closures
- Completeness test
- Transitive closures concatenation

Decision version (given d)

A ladder of length / costs / - 1 concatenation

Decision version (given d)

A ladder of length / costs / - 1 concatenation

Decision version (given d)

A ladder of length / costs / - 1 concatenation

- A ladder of length / costs / 1 concatenation
- Use left and right ladders

- A ladder of length / costs / 1 concatenation
- Use left and right ladders

- A ladder of length / costs / 1 concatenation
- Use left and right ladders

- A ladder of length / costs / 1 concatenation
- Use left and right ladders

- A ladder of length *l* costs *l* − 1 concatenation
- Use left and right ladders
- Any graph "between" two ladders (red graphs) can be computed by a single binary concatenation

- A ladder of length *l* costs *l* − 1 concatenation
- Use left and right ladders
- Any graph "between" two ladders (red graphs) can be computed by a single binary concatenation

- A ladder of length *l* costs *l* − 1 concatenation
- Use left and right ladders
- Any graph "between" two ladders (red graphs) can be computed by a single binary concatenation

Decision version (given d)

- A ladder of length *l* costs *l* − 1 concatenation
- Use left and right ladders
- Any graph "between" two ladders (red graphs) can be computed by a single binary concatenation

$O(\delta)$ elementary operations per row

7

Minimization version (find the temporal diameter d)

- Strategy: ascending walk
- The total length of the ladders is O(δ)
- At most O(δ) binary concatenation and completeness tests

- Strategy: ascending walk
- The total length of the ladders is O(δ)
- At most O(δ) binary concatenation and completeness tests

Disjointness property:
$$cat(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$$

- Strategy: ascending walk
- The total length of the ladders is O(δ)
- At most O(δ) binary concatenation and completeness tests

Disjointness property:
$$cat(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$$

Minimization version (find the temporal diameter d)

- Strategy: ascending walk
- The total length of the ladders is O(δ)
- At most O(δ) binary concatenation and completeness tests

Disjointness property:
$$cat(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$$

If $G_{(i,j)}$ is complete, then $G_{(i',j')}$ is complete, for all $i' \leq i$ and $j' \geq j$

- Strategy: ascending walk
- The total length of the ladders is O(δ)
- At most O(δ) binary concatenation and completeness tests

Disjointness property:
$$cat(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$$

If $G_{(i,j)}$ is complete, then $G_{(i',j')}$ is complete, for all $i' \le i$ and $j' \ge j$
Temporal-Diameter is solvable with $O(\delta)$ elementary operations

Online Algorithms

- The optimal algorithms can be adapted to an online setting
- The sequence of graphs $G_1, G_2, G_3, ...$ of \mathcal{G} is processed in the order of reception
- **Amortized cost of** O(1) elementary operations per graph received
- Dynamic version: consider only the recent history

Solve other problems using the same framework

Framework generalization

- Transitive closures concatenation
- Completeness test
- Transitive closure

Solve other problems using the same framework

Framework generalization

- Transitive closures concatenation
- Completeness test \rightarrow
- Transitive closure \rightarrow

Composition operation Test operation Super node

Solve other problems using the same framework

Minimization problems

Find the smallest value

Framework generalization

- Transitive closures concatenation
- Completeness test \rightarrow
- Transitive closure \rightarrow

Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find the smallest value			Find the largest value
Framewo	rk generalization		
	Transitive closures conca Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & \rightarrow \\ & \rightarrow \\ & \rightarrow \\ & \rightarrow \end{array}$	Composition operation Test operation Super node

Mini	mization problems	V.S	Maximization problems
Find tl	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures concar Completeness test Transitive closure	$\begin{array}{cc} \text{tenation} & -\\ \rightarrow \\ \rightarrow \end{array}$	 Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find	the smallest value		Find the largest value
Framewo	rk generalization		
2	Transitive closures conc Completeness test Transitive closure	atenation $\stackrel{-}{\rightarrow}$ $\stackrel{-}{\rightarrow}$	Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find	the smallest value		Find the largest value
Framewo	rk generalization		
	Transitive closures conc Completeness test Transitive closure	$ \begin{array}{c} \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	 Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find	the smallest value		Find the largest value
Framewo	rk generalization		
	Transitive closures conc Completeness test Transitive closure	$ \begin{array}{c} \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	 Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conca Completeness test Transitive closure	tenation $\stackrel{-}{\rightarrow}$	 Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & \rightarrow \\ & \rightarrow \\ & \rightarrow \\ & \rightarrow \end{array}$	Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & \rightarrow \\ & \rightarrow \\ & \rightarrow \\ & \rightarrow \end{array}$	Composition operation Test operation Super node

Mini	mization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
***	Transitive closures concate Completeness test Transitive closure	nation $\stackrel{-}{\rightarrow}$	 Composition operation Test operation Super node

Mini	mization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
***	Transitive closures concate Completeness test Transitive closure	nation $\stackrel{-}{\rightarrow}$	 Composition operation Test operation Super node

Mini	mization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
***	Transitive closures concate Completeness test Transitive closure	nation $\stackrel{-}{\rightarrow}$	 Composition operation Test operation Super node

Mini	mization problems	V.S	Maximization problems
Find tl	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures concar Completeness test Transitive closure	$\begin{array}{cc} \text{tenation} & -\\ \rightarrow \\ \rightarrow \end{array}$	 Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & -\\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	 Composition operation Test operation Super node

Mini	imization problems	V.S	Maximization problems
Find tl	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	atenation $\stackrel{-}{\rightarrow}$ $\stackrel{-}{\rightarrow}$	Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conca Completeness test Transitive closure	tenation $\stackrel{-}{\rightarrow}$	 Composition operation Test operation Super node

Mini	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & \rightarrow \\ & \rightarrow \\ & \rightarrow \\ & \rightarrow \end{array}$	Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & -\\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{cc} \text{atenation} & -\\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Composition operation Test operation Super node

Mini	imization problems	V.S	Maximization problems
Find t	he smallest value		Find the largest value
Framewor	k generalization		
	Transitive closures conc Completeness test Transitive closure	atenation $\stackrel{-}{\rightarrow}$ $\stackrel{-}{\rightarrow}$	Composition operation Test operation Super node

Min	imization problems	V.S	Maximization problems
Find t	the smallest value		Find the largest value
Framewo	rk generalization		
	Transitive closures conc Completeness test Transitive closure	$\begin{array}{c} \text{atenation} & \rightarrow \\ & \rightarrow \\ & \rightarrow \\ & \rightarrow \end{array}$	Composition operation Test operation Super node

Solve other problems using the same framework

Minimization problems

V.S

Maximization problems

Find the smallest value

Find the largest value

Solve other problems using the same framework

Minimization problems

Find the smallest value

V.S

Maximization problems

Find the largest value

Requirements

- test $(G_{(i,j)}) = true \Leftrightarrow \{G_i, G_{i+1}, \dots, G_j\}$ satisfies the property P
- The composition operation is associative
- Only minimization: If $test(G_{(i,j)}) = true$ then $test(G_{(i',j')}) = true, \forall i' \leq i, j' \geq j$
- Only maximization: If $test(G_{(i,j)}) = true$ then $test(G_{(i',j')}) = true, \forall i' \ge i, j' \le j$

Round-trip Temporal Connectivity

Round-trip Temporal Connectivity

A dynamic graph \mathcal{G} is round-trip temporal connected if and only if a back-and-forth journey exists from any node to all other nodes.

Round-trip Temporal Connectivity

Round-trip Temporal Connectivity

A dynamic graph ${\cal G}$ is round-trip temporal connected if and only if a back-and-forth journey exists from any node to all other nodes.

ROUND-TRIP-TEMPORAL-DIAMETER(minimization)

Finding the smallest duration in which there exists a back-and-forth journey from any node to all other nodes.

Round-trip Temporal Connectivity

Round-trip Temporal Connectivity

A dynamic graph ${\cal G}$ is round-trip temporal connectivity if and only if a back-and-forth journey exists from any node to all other nodes.

```
ROUND-TRIP-TEMPORAL-DIAMETER(minimization)
```

Finding the smallest duration in which there exists a back-and-forth journey from any node to all other nodes.

Super node: Round-trip transitive closure

Composition operation: Round-trip transitive closure concatenation

poral Connectivity **Test operation:** Round-trip completeness

Bounded Realization of the footprint

Time-bounded edge reappearance

A dynamic graph G has a time-bounded edge reappearance with a bound b if the time between two appearances of the same edge is at most b.

Bounded Realization of the footprint

Time-bounded edge reappearance

A dynamic graph G has a time-bounded edge reappearance with a bound *b* if the time between two appearances of the same edge is at most *b*.

BOUNDED-REALIZATION-OF-THE-FOOTPRINT(minimization)

Finding the smallest b such that in every subsequence of length b in the sequence G, all the edges of the footprint appear at least once.

Bounded Realization of the footprint

Time-bounded edge reappearance

A dynamic graph G has a time-bounded edge reappearance with a bound b if the time between two appearances of the same edge is at most b.

BOUNDED-REALIZATION-OF-THE-FOOTPRINT(minimization)

Finding the smallest b such that in every subsequence of length b in the sequence G, all the edges of the footprint appear at least once.

- Super node: Union graphs
- Composition operation: Union
- Test operation: Equality to the footprint

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-INTERVAL-CONNECTIVITY (maximization)

Finding the largest T for which the graph is T-interval connected.

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-INTERVAL-CONNECTIVITY (maximization)

Finding the largest T for which the graph is T-interval connected.

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-INTERVAL-CONNECTIVITY (maximization)

Finding the largest T for which the graph is T-interval connected.

$$\mathcal{G}^{3} \stackrel{\sim}{\rightarrowtail} \stackrel{\sim}{\leftarrow} \stackrel{\sim}{\rightarrow} \stackrel{\sim}{\rightarrow} \stackrel{\sim}{\leftarrow} \stackrel{\sim$$

Test operation: Connectivity test

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-INTERVAL-CONNECTIVITY (maximization)

Finding the largest T for which the graph is T-interval connected.

Definition: *T*-interval connectivity

A dynamic graph G is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-INTERVAL-CONNECTIVITY (maximization)

Finding the largest T for which the graph is T-interval connected.

Symmetric Problems

Symmetric Problems

A minimization or maximization problem is symmetric if: for all $i, j, i', j' \leq \delta$, $i \leq i' \leq j$, composition $(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$.

Symmetric Problems

Symmetric Problems

A minimization or maximization problem is symmetric if: for all $i, j, i', j' \leq \delta$, $i \leq i' \leq j$, composition $(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$.

Symmetric Problems

Symmetric Problems

A minimization or maximization problem is symmetric if: for all $i, j, i', j' \leq \delta$, $i \leq i' \leq j$, composition $(G_{(i,j)}, G_{(i',j')}) = G_{(i,j')}$.

e.g T-Interval-Connectivity and Bounded-Realization-of-the-Footprint

Row-Based Strategy

Symmetric problems (maximization)

Symmetric problems (maximization)

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row
- $O(\log \delta)$ rows

Symmetric problems (maximization) $O(\delta \log \delta)$ elementary operations

- $O(\delta)$ composition per row
- $O(\delta)$ tests per row
- $O(\log \delta)$ rows

Parallel Version

On EREW PRAM

Parallel Version

On EREW PRAM

Parallel Version

On EREW PRAM

Symmetric problems are solvable in O(log² δ) on an EREW PRAM with O(δ) processors

Conclusion

Conclusion

- High-level strategies for computing minimization and maximization parameters
- Algorithms that use only $O(\delta)$ elementary operations
- Parallel versions on PRAM (in Nick's class)
- Online algorithms with amortized cost of O(1) elementary operations per graph received
- Perspectives
 - How about other classes?
 - Generic Framework
 - What if the evolution of the dynamic graph is constrained?

Thank you !