On Robust Temporal Structures in Highly Dynamic Networks

Arnaud Casteigts
(LaBRI, University of Bordeaux)

J. work with Swan Dubois, Franck Petit, and John Michael Robson
https://arxiv.org/abs/1703.03190

AATG@ICALP 2018

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

38

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

Highly dynamic networks

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

Graph representations

Time-varying graphs (TVG)
$\mathcal{G}=(V, E, \mathcal{T}, \rho, \zeta)$
$-\mathcal{T} \subseteq \mathbb{N} / \mathbb{R}$ (lifetime)
$-\rho: E \times \mathcal{T} \rightarrow\{0,1\}$ (presence fonction)
$-\zeta: E \times \mathcal{T} \rightarrow \mathbb{N} / \mathbb{R}$ (latency function)

Another classical view $\mathcal{G}=G_{0}, G_{1}, \ldots$

Variety of models and terminologies:
Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

Graph representations

Time-varying graphs (TVG)
$\mathcal{G}=(V, E, \mathcal{T}, \rho, \zeta)$
$-\mathcal{T} \subseteq \mathbb{N} / \mathbb{R}$ (lifetime)
$-\rho: E \times \mathcal{T} \rightarrow\{0,1\}$ (presence fonction)
$-\zeta: E \times \mathcal{T} \rightarrow \mathbb{N} / \mathbb{R}$ (latency function)

Another classical view $\mathcal{G}=G_{0}, G_{1}, \ldots$

Variety of models and terminologies:
Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

Graph representations

Time-varying graphs (TVG)
$\mathcal{G}=(V, E, \mathcal{T}, \rho, \zeta)$
$-\mathcal{T} \subseteq \mathbb{N} / \mathbb{R}$ (lifetime)
$-\rho: E \times \mathcal{T} \rightarrow\{0,1\}$ (presence fonction)
$-\zeta: E \times \mathcal{T} \rightarrow \mathbb{N} / \mathbb{R}$ (latency function)

Another classical view $\mathcal{G}=G_{0}, G_{1}, \ldots$

Variety of models and terminologies:
Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

Basic concepts

Basic concepts

\Longrightarrow Temporal path (a.k.a. Journey), e.g. $a \rightsquigarrow e$
Ex: $\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right)$ with $t_{i+1} \geq t_{i}$ and $\rho\left(e_{i}, t_{i}\right)=1$ (can be formulated with latency)

Basic concepts

\Longrightarrow Temporal path (a.k.a. Journey), e.g. $a \rightsquigarrow e$
Ex: $\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right)$ with $t_{i+1} \geq t_{i}$ and $\rho\left(e_{i}, t_{i}\right)=1$ (can be formulated with latency)
\Longrightarrow Temporal connectivity $(* \rightsquigarrow *)$ Satisfied here?

Basic concepts

\Longrightarrow Temporal path (a.k.a. Journey), e.g. $a \rightsquigarrow e$
Ex: $\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right)$ with $t_{i+1} \geq t_{i}$ and $\rho\left(e_{i}, t_{i}\right)=1$ (can be formulated with latency)
\Longrightarrow Temporal connectivity $(* \rightsquigarrow *)$ Satisfied here? No, only $1 \rightsquigarrow *$.

Basic concepts

\Longrightarrow Temporal path (a.k.a. Journey), e.g. $a \rightsquigarrow e$
Ex: $\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right)$ with $t_{i+1} \geq t_{i}$ and $\rho\left(e_{i}, t_{i}\right)=1$ (can be formulated with latency)
\Longrightarrow Temporal connectivity $(* \rightsquigarrow *)$ Satisfied here? No, only $1 \rightsquigarrow *$.
\Longrightarrow Footprint (\neq underlying graph)

Today: Covering problems

Three ways of redefining covering problems

Ex: DominatingSet

Temporal
dominating set

$$
G_{2}
$$

Today: Covering problems

Three ways of redefining covering problems

Ex: DominatingSet

Temporal
dominating set

G_{2}

\rightarrow How about infinite time? The relation must hold infinitely often!

Classes of dynamic networks

What assumption for what problem?

(based on time-varying graphs)

Classes of dynamic networks

What assumption for what problem?

(C., 2018)

Classes of dynamic networks

What assumption for what problem?

$\rightarrow \mathcal{E}^{\mathcal{R}} \equiv$ all the edges of the footprint are recurrent
$\rightarrow \mathcal{T} \mathcal{C}^{\mathcal{R}} \equiv$ temporal connectivity is recurrently achived

Classes of dynamic networks

What assumption for what problem?

$\rightarrow \mathcal{E}^{\mathcal{R}} \equiv$ all the edges of the footprint are recurrent
$\rightarrow \mathcal{T} \mathcal{C}^{\mathcal{R}} \equiv$ temporal connectivity is recurrently achived
Building temporal covering structures?
$\rightarrow \mathcal{E}^{\mathcal{R}}$: "easy"
$\rightarrow \mathcal{T} \mathcal{C}^{\mathcal{R}}$: this talk

Exploiting regularities within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T} \mathcal{C}^{\mathcal{R}}:=$ Temporal connectivity is recurrently achieved

$$
\left(\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}\right)
$$

Exploiting regularities within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ Temporal connectivity is recurrently achieved

$$
\left(\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T} \mathcal{C}\right)
$$

Alternative characterization: $\mathcal{T} \mathcal{C}^{\mathcal{R}} \equiv$ Eventual footprint connected

\rightarrow Can be exploited in a distributed algorithm Kaaouachi et al., 2016

Exploiting regularities within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ Temporal connectivity is recurrently achieved

$$
\left(\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T} \mathcal{C}\right)
$$

Alternative characterization: $\mathcal{T C ^ { \mathcal { R } }} \equiv$ Eventual footprint connected

\rightarrow Can be exploited in a distributed algorithm Kaaouachi et al., 2016
\rightarrow Robustness: New form of heredity asking that a property or solution holds in all connected spanning subgraphs

Ex: MinimalDominatingSet (MDS) and MaximalindependentSet (MIS)

Ex: Maximal Independent Sets

A maximal independent set (MIS) is a maximal (\neq maximum) set of nodes, none of which are neighbors.

(a)

(b)

(c)

(d)

Ex: Maximal Independent Sets

A maximal independent set (MIS) is a maximal (\neq maximum) set of nodes, none of which are neighbors.

(e)

(f)

(g)

(h)

Which ones are robust?

Ex: Maximal Independent Sets

A maximal independent set (MIS) is a maximal (\neq maximum) set of nodes, none of which are neighbors.

Which ones are robust?
\rightarrow Question: characterizing graphs/footprints in which

1. all MISs are robust: $\left(\mathcal{R M I S}^{\forall}\right)$
2. at least one MIS is robust: $\left(\mathcal{R M I S}^{\exists}\right)$
3. all MDSs are robust: $\left(\mathcal{R M D S}{ }^{\forall}\right)$
4. at least one MDS is robust: $\left(\mathcal{R M D S}^{\exists}\right)$

Overview of technical results

1. $\mathcal{R M D S}^{\forall}=$ Sputniks
2. $\mathcal{R M I S}^{\forall}=$ Complete bipartite \cup Sputniks
3. $\mathcal{R M D S}^{\exists} \supsetneq$ bipartite + test algo
4. $\mathcal{R M I S}^{\exists} \supsetneq$ bipartite + test algo

Locality:

1. $\mathcal{R M D S} \mathcal{S}^{\forall}$ and $\mathcal{R} \mathcal{M} \mathcal{I S}^{\forall}$
\rightarrow Robust solutions can be computed locally!
2. $\mathcal{R M} \mathcal{I S}^{\exists}$
\rightarrow Robust solutions cannot be computed locally!

Local algo for robust MIS in Sputniks
Lower bound on the non-locality of robust MIS

Graphs in which all MISs are robust? $\left(\mathcal{R} \mathcal{M I S}{ }^{\forall}\right)$

Graphs in which all MISs are robust? $\left(\mathcal{R} \mathcal{M I S}{ }^{\forall}\right)$

Lemma

Bipartite complete $(\mathcal{B K})$ graphs $\subseteq \mathcal{R} \mathcal{M} \mathcal{I S}^{\forall}$.

$\mathcal{R M I S}{ }^{\forall}$

Graphs in which all MISs are robust? $\left(\mathcal{R} \mathcal{M I S}{ }^{\forall}\right)$

Lemma

Bipartite complete $(\mathcal{B K})$ graphs $\subseteq \mathcal{R} \mathcal{M} \mathcal{I S}^{\forall}$.

Def: A graph is a sputnik if and only if every node that belongs to a cycle also has an antenna (i.e. a pendant neighbor).
Lemma
Sputniks $\subseteq \mathcal{R} \mathcal{M} \mathcal{I S}^{\forall}$.

$\mathcal{R M I S}{ }^{\forall}$

Graphs in which all MISs are robust? $\left(\mathcal{R} \mathcal{M I S}{ }^{\forall}\right)$

Lemma

Bipartite complete $(\mathcal{B K})$ graphs $\subseteq \mathcal{R} \mathcal{M} \mathcal{I S}^{\forall}$.

Def: A graph is a sputnik if and only if every node that belongs to a cycle also has an antenna (i.e. a pendant neighbor).
Lemma
Sputniks $\subseteq \mathcal{R} \mathcal{M} \mathcal{I S}^{\forall}$.

Theorem

$\mathcal{R} \mathcal{M I S}{ }^{\forall}=$ Sputniks $\cup \mathcal{B K}$

Local algorithm to find a RMIS in $\mathcal{R} \mathcal{M I S}{ }^{\forall}$

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between $\log n$ and n)
- Best algo in trees: $O(\log n / \log \log n)$ [BE10]

Can we solve the problem locally in $\mathcal{R} \mathcal{M I} \mathcal{S}^{\forall}$?

Local algorithm to find a RMIS in $\mathcal{R} \mathcal{M I S}^{\forall}$

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [KMW04]

Best algo: $2^{O(\sqrt{\log n})}[$ PS96] (between $\log n$ and n)

- Best algo in trees: $O(\log n / \log \log n)$ [BE10]

Can we solve the problem locally in $\mathcal{R} \mathcal{M I S}{ }^{\forall}$?

P : pendant node
N : neighbor of a pendant node
F : other

Local algorithm to find a RMIS in $\mathcal{R} \mathcal{M I S}^{\forall}$

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [KMW04]

Best algo: $2^{O(\sqrt{\log n})}[$ PS96] (between $\log n$ and n)

- Best algo in trees: $O(\log n / \log \log n)$ [BE10]

Can we solve the problem locally in $\mathcal{R} \mathcal{M I S}{ }^{\forall}$?

P : pendant node
N : neighbor of a pendant node
F : other

Local algorithm to find a RMIS in $\mathcal{R} \mathcal{M I S}^{\forall}$

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}[$ PS96] (between $\log n$ and n)
- Best algo in trees: $O(\log n / \log \log n)$ [BE10]

Can we solve the problem locally in $\mathcal{R} \mathcal{M I S}{ }^{\forall}$?

P : pendant node
N : neighbor of a pendant node
F : other

Local algorithm to find a RMIS in $\mathcal{R} \mathcal{M I S}^{\forall}$

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}[$ PS96] (between $\log n$ and n)
- Best algo in trees: $O(\log n / \log \log n)$ [BE10]

Can we solve the problem locally in $\mathcal{R} \mathcal{M I S}{ }^{\forall}$?

P : pendant node
N : neighbor of a pendant node
F : other

Local algorithm to find a RMIS in $\mathcal{R} \mathcal{M I S}^{\forall}$

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}[$ PS96] (between $\log n$ and n)
- Best algo in trees: $O(\log n / \log \log n)$ [BE10]

Can we solve the problem locally in $\mathcal{R} \mathcal{M I S}{ }^{\forall}$?

P : pendant node
N : neighbor of a pendant node
F : other

$$
\Longrightarrow o(\log n)
$$

Not local in general graphs!
(i.e. $\Omega(n)$)

Not local in general graphs!

\exists Infinite family of graphs $\left(G_{k}\right)_{k \in \mathbb{N}}$, of diameter $\Theta(k)=\Theta(n)$.

Not local in general graphs!

\exists Infinite family of graphs $\left(G_{k}\right)_{k \in \mathbb{N}}$, of diameter $\Theta(k)=\Theta(n)$.

Lemma: $\forall k, G_{k}$ admits only two robust MISs M_{1} (in red) and $M_{2}=V \backslash M_{1}$.

Not local in general graphs!

\exists Infinite family of graphs $\left(G_{k}\right)_{k \in \mathbb{N}}$, of diameter $\Theta(k)=\Theta(n)$.

Lemma: $\forall k, G_{k}$ admits only two robust MISs M_{1} (in red) and $M_{2}=V \backslash M_{1}$.
(1) Anonymous case (easy): Both extremities have same view up to distance $\Theta(n)$, but they must decide differently.

Not local in general graphs!

\exists Infinite family of graphs $\left(G_{k}\right)_{k \in \mathbb{N}}$, of diameter $\Theta(k)=\Theta(n)$.

Lemma: $\forall k, G_{k}$ admits only two robust MISs M_{1} (in red) and $M_{2}=V \backslash M_{1}$.
(1) Anonymous case (easy): Both extremities have same view up to distance $\Theta(n)$, but they must decide differently.
(2) Identified networks: let $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ be disjoint labeling functions that assign identifiers to $n / 3$ nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) $\mathcal{L}_{1} \cdot x \cdot \mathcal{L}_{2}$; (2) $\mathcal{L}_{1} \cdot y \cdot \mathcal{L}_{3} ;(3) \mathcal{L}_{2} \cdot z \cdot \mathcal{L}_{3}$, with x, y, and z arbitrary.

Unless using information within $\Omega(n)$ hops, β_{k} and b_{k} will decide identically in some cases, whatever the algorithm.

Not local in general graphs!

\exists Infinite family of graphs $\left(G_{k}\right)_{k \in \mathbb{N}}$, of diameter $\Theta(k)=\Theta(n)$.

Lemma: $\forall k, G_{k}$ admits only two robust MISs M_{1} (in red) and $M_{2}=V \backslash M_{1}$.
(1) Anonymous case (easy): Both extremities have same view up to distance $\Theta(n)$, but they must decide differently.
(2) Identified networks: let $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ be disjoint labeling functions that assign identifiers to $n / 3$ nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) $\mathcal{L}_{1} \cdot x \cdot \mathcal{L}_{2}$; (2) $\mathcal{L}_{1} \cdot y \cdot \mathcal{L}_{3} ;(3) \mathcal{L}_{2} \cdot z \cdot \mathcal{L}_{3}$, with x, y, and z arbitrary.

Unless using information within $\Omega(n)$ hops, β_{k} and b_{k} will decide identically in some cases, whatever the algorithm.
\rightarrow Essentially as bad as collecting all information at one node and use offline algo.

Centralized algorithm to find RMISs in general (in P)

Objective: Finds a RMIS if one exists, rejects otherwise.

Polynomial-time algorithm to find RMISs (2)

Děkuji !

