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Highly dynamic networks

Ex:

How changes are perceived?

- Faults and Failures?

- Nature of the system. Change is normal.

- Possibly partitioned network

Example of scenario
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Graph representations

Time-varying graphs (TVG)

G = (V ,E, T , ρ, ζ)

- T ⊆ N/R (lifetime)

- ρ : E × T → {0, 1} (presence fonction)

- ζ : E × T → N/R (latency function)
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the graph

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

C., Flocchini, Quattrociocchi, Int. J. of Parallel, Emergent and Distributed Systems, Vol. 27, Issue 5, 2012

(among others)
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Today: Covering problems

Three ways of redefining covering problems C., Mans, Mathieson, 2011

Ex: DOMINATINGSET
G1 G2 G3

Temporal
dominating set

Evolving
dominating set

Permanent
dominating set

→ How about infinite time? The relation must hold infinitely often!
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Classes of dynamic networks (C.,Flocchini,Quattrociocchi,Santoro, 2012)

What assumption for what problem?

(based on time-varying graphs)

→ ER ≡ all the edges of the footprint are recurrent
→ T CR ≡ temporal connectivity is recurrently achived

Building temporal covering structures?
→ ER: “easy”
→ T CR: this talk
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Exploiting regularities within T CR

T CR := Temporal connectivity is recurrently achieved (T CR := ∀t,G[t,+∞) ∈ T C)

Alternative characterization: T CR ≡ Eventual footprint connected Braud Santoni et al., 2016
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−→

→ Can be exploited in a distributed algorithm Kaaouachi et al., 2016

→ Robustness: New form of heredity asking that a property or solution holds in all connected spanning subgraphs

Ex: MINIMALDOMINATINGSET (MDS) and MAXIMALINDEPENDENTSET (MIS)
C., Dubois, Petit, Robson, 2017/18
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EX: MAXIMAL INDEPENDENT SETS

A maximal independent set (MIS) is a maximal (6= maximum) set of nodes,
none of which are neighbors.

(a) (b) (c) (d)

Which ones are robust?

→ Question: characterizing graphs/footprints in which
1. all MISs are robust: (RMIS∀)

2. at least one MIS is robust: (RMIS∃)

3. all MDSs are robust: (RMDS∀)

4. at least one MDS is robust: (RMDS∃)
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Overview of technical results

1. RMDS∀ = Sputniks

2. RMIS∀ = Complete bipartite ∪ Sputniks

3. RMDS∃ ) bipartite + test algo

4. RMIS∃ ) bipartite + test algo

Locality:
1. RMDS∀ andRMIS∀

→ Robust solutions can be computed locally!

2. RMIS∃

→ Robust solutions cannot be computed locally!

RMDS∀

RMIS∀

RMIS∃

RMDS∃

Local algo for robust MIS in Sputniks Lower bound on the non-locality of robust MIS



RMIS∀
Graphs in which all MISs are robust? (RMIS∀)

Lemma
Bipartite complete (BK) graphs ⊆ RMIS∀.

Def: A graph is a sputnik if and only if every node that belongs to a cycle also has an antenna (i.e. a
pendant neighbor).

Lemma
Sputniks ⊆ RMIS∀.

Theorem
RMIS∀ = Sputniks ∪ BK
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Local algorithm to find a RMIS in RMIS∀

State of the art (classical MIS)
I Lower bound: Ω(

√
log n/ log log n) [KMW04]

I Best algo: 2O(
√

log n) [PS96] (between log n and n)

I Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in RMIS∀?

N

P

F

P: pendant node
N: neighbor of a pendant node
F: other

=⇒ o(log n)
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Not local in general graphs! (i.e. Ω(n))

∃ Infinite family of graphs (Gk )k∈N, of diameter Θ(k) = Θ(n).
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Lemma: ∀k,Gk admits only two robust MISs M1 (in red) and M2 = V \ M1.

(1) Anonymous case (easy): Both extremities have same view up to distance Θ(n),
but they must decide differently.

(2) Identified networks: let L1,L2,L3 be disjoint labeling functions that assign identifiers to n/3
nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) L1·x·L2; (2)
L1·y·L3; (3) L2·z·L3, with x , y , and z arbitrary.

Unless using information within Ω(n) hops, βk and bk will decide identically in some cases,
whatever the algorithm.

→ Essentially as bad as collecting all information at one node and use offline algo.
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Centralized algorithm to find RMISs in general (in P)
Objective: Finds a RMIS if one exists, rejects otherwise.
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Polynomial-time algorithm to find RMISs (2)
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Děkuji !


