On Robust Temporal Structures in Highly Dynamic Networks

Arnaud Casteigts

(LaBRI, University of Bordeaux)

J. work with Swan Dubois, Franck Petit, and John Michael Robson

https://arxiv.org/abs/1703.03190

AATG@ICALP 2018

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example of scenario

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example of scenario

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

Example of scenario

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example of scenario

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Possibly partitioned network

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example of scenario

Graph representations

Time-varying graphs (TVG)

$$\begin{aligned} \mathcal{G} &= (V, \mathcal{E}, \mathcal{T}, \rho, \zeta) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : \mathcal{E} \times \mathcal{T} \to \{0, 1\} \text{ (presence fonction)} \\ &- \zeta : \mathcal{E} \times \mathcal{T} \to \mathbb{N}/\mathbb{R} \text{ (latency function)} \end{aligned}$$

Another classical view $\mathcal{G} = G_0, G_1, \dots$

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

Graph representations

Time-varying graphs (TVG)

$$\begin{aligned} \mathcal{G} &= (V, E, \mathcal{T}, \rho, \zeta) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (presence fonction)} \\ &- \zeta : E \times \mathcal{T} \to \mathbb{N}/\mathbb{R} \text{ (latency function)} \end{aligned}$$

Another classical view $\mathcal{G} = G_0, G_1, \dots$

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

C., Flocchini, Quattrociocchi, Int. J. of Parallel, Emergent and Distributed Systems, Vol. 27, Issue 5, 2012
(among others)

Graph representations

Time-varying graphs (TVG)

 $\begin{aligned} \mathcal{G} &= (V, E, \mathcal{T}, \rho, \zeta) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (presence fonction)} \\ &- \zeta : E \times \mathcal{T} \to \mathbb{N}/\mathbb{R} \text{ (latency function)} \end{aligned}$

Another classical view $\mathcal{G} = G_0, G_1, \dots$

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

C., Flocchini, Quattrociocchi, Int. J. of Parallel, Emergent and Distributed Systems, Vol. 27, Issue 5, 2012 (among others)

⇒ Temporal path (a.k.a. Journey), e.g. $a \rightsquigarrow e$ Ex: ((ac, t_1), (cd, t_2), (de, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

(can be formulated with latency)

イロト イヨト イヨト

э

 $\implies \text{Temporal path (a.k.a. Journey), e.g. } a \rightsquigarrow e$ Ex: ((ac, t₁), (cd, t₂), (de, t₃)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

(can be formulated with latency)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

 \implies Temporal connectivity (* \rightsquigarrow *) Satisfied here?

⇒ Temporal path (a.k.a. Journey), e.g. $a \rightarrow e$ Ex: ((ac, t_1), (cd, t_2), (de, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

(can be formulated with latency)

・ロット (雪) (日) (日) (日)

 \implies Temporal connectivity (* \rightsquigarrow *) Satisfied here? No, only 1 \rightsquigarrow *.

 $\implies \text{Temporal path (a.k.a. Journey), e.g. } a \rightsquigarrow e$ Ex: $((ac, t_1), (cd, t_2), (de, t_3))$ with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

(can be formulated with latency)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

 \implies Temporal connectivity (* \rightsquigarrow *) Satisfied here? No, only 1 \rightsquigarrow *.

 \implies Footprint (\neq underlying graph)

Today: Covering problems

Three ways of redefining covering problems

C., Mans, Mathieson, 2011

Ex: DOMINATINGSET G_1 G_2 G_3 Temporal dominating set ۲ ۲ 6 Evolving dominating set ۲ ۲ ()Permanent dominating set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Today: Covering problems

Three ways of redefining covering problems

C., Mans, Mathieson, 2011

 \rightarrow How about infinite time? The relation must hold infinitely often!

・ロト・日本・日本・日本・日本・日本

Classes of dynamic networks

(C., Flocchini, Quattrociocchi, Santoro, 2012)

くロン くぼう くヨン くヨン

What assumption for what problem?

(based on time-varying graphs)

Classes of dynamic networks (C., Flocchini, Quattrociocchi, Santoro, 2012)

What assumption for what problem?

(C., 2018)

Classes of dynamic networks (C., Flocchini, Quattrociocchi, Santoro, 2012)

What assumption for what problem?

(C., 2018)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

 $\rightarrow \mathcal{E}^{\mathcal{R}} \equiv$ all the edges of the footprint are recurrent $\rightarrow \mathcal{TC}^{\mathcal{R}} \equiv$ temporal connectivity is recurrently achived

Classes of dynamic networks (C., Flocchini, Quattrociocchi, Santoro, 2012)

What assumption for what problem?

(C., 2018)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

 $\rightarrow \mathcal{E}^{\mathcal{R}} \equiv$ all the edges of the footprint are recurrent $\rightarrow \mathcal{TC}^{\mathcal{R}} \equiv$ temporal connectivity is recurrently achived

Building temporal covering structures?

 $\rightarrow \mathcal{E}^{\mathcal{R}}$: "easy" $\rightarrow \mathcal{TC}^{\mathcal{R}}$: this talk

Exploiting regularities within $\mathcal{TC}^{\mathcal{R}}$

 $\mathcal{TC}^{\mathcal{R}} := \text{Temporal connectivity is recurrently achieved} \qquad (\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t, +\infty)} \in \mathcal{TC})$

Exploiting regularities within $\mathcal{TC}^{\mathcal{R}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Exploiting regularities within $\mathcal{TC}^{\mathcal{R}}$

→ Robustness: New form of heredity asking that a property or solution holds in all connected spanning subgraphs

EX: MINIMALDOMINATINGSET (MDS) and MAXIMALINDEPENDENTSET (MIS)

C., Dubois, Petit, Robson, 2017/18

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

EX: MAXIMAL INDEPENDENT SETS

A maximal independent set (MIS) is a maximal (\neq maximum) set of nodes, none of which are neighbors.

EX: MAXIMAL INDEPENDENT SETS

A maximal independent set (MIS) is a maximal (\neq maximum) set of nodes, none of which are neighbors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Which ones are robust?

EX: MAXIMAL INDEPENDENT SETS

A maximal independent set (MIS) is a maximal (\neq maximum) set of nodes, none of which are neighbors.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Which ones are robust?

- \rightarrow Question: characterizing graphs/footprints in which
 - 1. all MISs are robust: $(\mathcal{RMIS}^{\forall})$
 - 2. at least one MIS is robust: $(\mathcal{RMIS}^{\exists})$
 - 3. all MDSs are robust: $(\mathcal{RMDS}^{\forall})$
 - 4. at least one MDS is robust: $(\mathcal{RMDS}^{\exists})$

Overview of technical results

1. \mathcal{RMDS}^{\forall} = Sputniks

- 2. \mathcal{RMIS}^{\forall} = Complete bipartite \cup Sputniks
- 3. $\mathcal{RMDS}^{\exists} \supseteq$ bipartite + test algo
- 4. $\mathcal{RMIS}^{\exists} \supseteq \text{bipartite} + \text{test algo}$

Locality:

- 1. \mathcal{RMDS}^{\forall} and \mathcal{RMIS}^{\forall}
 - \rightarrow Robust solutions can be computed locally!
- 2. \mathcal{RMIS}^{\exists}
 - → Robust solutions cannot be computed locally!

Local algo for robust MIS in Sputniks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lower bound on the non-locality of robust MIS

\mathcal{RMIS}^\forall

Graphs in which *all* MISs are robust? $(\mathcal{RMIS}^{\forall})$

\mathcal{RMIS}^\forall

Graphs in which *all* MISs are robust? (\mathcal{RMIS}^{\forall})

Lemma

Bipartite complete (\mathcal{BK}) graphs $\subseteq \mathcal{RMIS}^{\forall}$.

\mathcal{RMIS}^\forall

Graphs in which *all* MISs are robust? (\mathcal{RMIS}^{\forall})

Lemma

Bipartite complete (\mathcal{BK}) graphs $\subseteq \mathcal{RMIS}^{\forall}$.

Def: A graph is a sputnik if and only if every node that belongs to a cycle also has an antenna (*i.e.* a pendant neighbor).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Lemma Sputniks $\subseteq \mathcal{RMIS}^{\forall}$.

\mathcal{RMIS}^{\forall}

Graphs in which *all* MISs are robust? (\mathcal{RMIS}^{\forall})

Lemma

Bipartite complete (\mathcal{BK}) graphs $\subseteq \mathcal{RMIS}^{\forall}$.

Def: A graph is a sputnik if and only if every node that belongs to a cycle also has an antenna (*i.e.* a pendant neighbor).

Lemma Sputniks $\subseteq \mathcal{RMIS}^{\forall}$.

Theorem

 $\mathcal{RMIS}^{\forall} = \textit{Sputniks} \cup \mathcal{BK}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n}/\log \log n)$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between log *n* and *n*)
- Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in \mathcal{RMIS}^{\forall} ?

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n}/\log \log n)$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between log *n* and *n*)
- Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in \mathcal{RMIS}^{\forall} ?

- P: pendant node
- N: neighbor of a pendant node
- F: other

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n}/\log \log n)$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between log *n* and *n*)
- Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in \mathcal{RMIS}^{\forall} ?

- P: pendant node
- N: neighbor of a pendant node
- F: other

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n}/\log \log n)$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between log *n* and *n*)
- Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in \mathcal{RMIS}^{\forall} ?

- P: pendant node
- N: neighbor of a pendant node
- F: other

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n}/\log \log n)$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between log *n* and *n*)
- Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in \mathcal{RMIS}^{\forall} ?

- P: pendant node
- N: neighbor of a pendant node
- F: other

State of the art (classical MIS)

- Lower bound: $\Omega(\sqrt{\log n}/\log \log n)$ [KMW04]
- Best algo: $2^{O(\sqrt{\log n})}$ [PS96] (between log *n* and *n*)
- Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in \mathcal{RMIS}^{\forall} ?

- P: pendant node
- N: neighbor of a pendant node
- F: other

・ロット (雪) (日) (日) (日)

(i.e. Ω(*n*))

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

(i.e. Ω(*n*))

∃ Infinite family of graphs $(G_k)_{k \in \mathbb{N}}$, of diameter $\Theta(k) = \Theta(n)$.

(i.e. $\Omega(n)$)

∃ Infinite family of graphs $(G_k)_{k \in \mathbb{N}}$, of diameter $\Theta(k) = \Theta(n)$.

Lemma: $\forall k, G_k$ admits only two robust MISs M_1 (in red) and $M_2 = V \setminus M_1$.

(i.e. $\Omega(n)$)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

∃ Infinite family of graphs $(G_k)_{k \in \mathbb{N}}$, of diameter $\Theta(k) = \Theta(n)$.

Lemma: $\forall k, G_k$ admits only two robust MISs M_1 (in red) and $M_2 = V \setminus M_1$.

(1) Anonymous case (easy): Both extremities have same view up to distance $\Theta(n)$, but they must decide differently.

(i.e. $\Omega(n)$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

∃ Infinite family of graphs $(G_k)_{k \in \mathbb{N}}$, of diameter $\Theta(k) = \Theta(n)$.

Lemma: $\forall k, G_k$ admits only two robust MISs M_1 (in red) and $M_2 = V \setminus M_1$.

(1) Anonymous case (easy): Both extremities have same view up to distance $\Theta(n)$, but they must decide differently.

(2) Identified networks: let \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 be disjoint labeling functions that assign identifiers to n/3 nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) $\mathcal{L}_1 \cdot x \cdot \mathcal{L}_2$; (2) $\mathcal{L}_1 \cdot y \cdot \mathcal{L}_3$; (3) $\mathcal{L}_2 \cdot z \cdot \mathcal{L}_3$, with *x*, *y*, and *z* arbitrary.

Unless using information within $\Omega(n)$ hops, β_k and b_k will decide identically in some cases, whatever the algorithm.

(i.e. $\Omega(n)$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

∃ Infinite family of graphs $(G_k)_{k \in \mathbb{N}}$, of diameter $\Theta(k) = \Theta(n)$.

Lemma: $\forall k, G_k$ admits only two robust MISs M_1 (in red) and $M_2 = V \setminus M_1$.

(1) Anonymous case (easy): Both extremities have same view up to distance $\Theta(n)$, but they must decide differently.

(2) Identified networks: let \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 be disjoint labeling functions that assign identifiers to n/3 nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) $\mathcal{L}_1 \cdot x \cdot \mathcal{L}_2$; (2) $\mathcal{L}_1 \cdot y \cdot \mathcal{L}_3$; (3) $\mathcal{L}_2 \cdot z \cdot \mathcal{L}_3$, with *x*, *y*, and *z* arbitrary.

Unless using information within $\Omega(n)$ hops, β_k and b_k will decide identically in some cases, whatever the algorithm.

 \rightarrow Essentially as bad as collecting all information at one node and use offline algo.

Centralized algorithm to find RMISs in general (in P)

Objective: Finds a RMIS if one exists, rejects otherwise.

Polynomial-time algorithm to find RMISs (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Děkuji !