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Graph representations

Time-varying graphs (TVG)
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Variety of models and terminologies:
Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

C., Flocchini, Quattrociocchi, Int. J. of Parallel, Emergent and Distributed Systems, Vol. 27, Issue 5, 2012

(among others)
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Ex: ((ac, t1), (cd, t2), (de, t3)) with £ > t; and p(e;, ;) =1

(can be formulated with latency)

— Temporal connectivity (x ~~ x) Satisfied here? No, only 1 ~~ x.

= Foolprint (# underlying graph)
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Today: Covering problems

Three ways of redefining covering problems C., Mans, Mathieson, 2011
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Today: Covering problems
Three ways of redefining covering problems C., Mans, Mathieson, 2011

Ex: DOMINATINGSET G
1

L]
Temporal
dominating set
4
1

— How about infinite time? The relation must hold infinitely often!
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Classes of dynamic networks (C.,Flocchini,Quattrociocchi,Santoro, 2012)

What assumption for what problem?

Fastest broadcast Shortest broadcast

Foremost broadcast

Ring exploration
0 &xp Population

protocols

Speed up for Bounded “Static” “Static”

some problems broadcast broadcast routing
(by a factor T)

(based on time-varying graphs)
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What assumption for what problem?

recurrent KR \\9 finite
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(C., 2018)

— E™ = all the edges of the footprint are recurrent
— TC™ = temporal connectivity is recurrently achived

Building temporal covering structures?

— ER: “easy”
— TC™: this talk
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TCR .= Temporal connectivity is recurrently achieved (TCR = V1, Gt 400y € TC)
Alternative characterization: 7C’* = Eventual footprint connected Braud Santoni et al., 2016
e
c
0,1 U 2,5 b d

— Can be exploited in a distributed algorithm ~ Kaaouachi et al., 2016

— Robustness: New form of heredity asking that a property or solution holds in all connected spanning subgraphs

Ex: MINIMALDOMINATINGSET (MDS) and MAXIMALINDEPENDENTSET (MIS)
C., Dubois, Petit, Robson, 2017/18
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EX: MAXIMAL INDEPENDENT SETS

A maximal independent set (MIS) is a maximal (# maximum) set of nodes,
none of which are neighbors.

vy Y O

Which ones are robust?

— Question: characterizing graphs/footprints in which
. all MISs are robust: (RMZSY)

2. atleast one MIS is robust: (RMZS?)

3. all MDSs are robust: (RMDSY)

4. atleast one MDS is robust: (RMDS?)

—_



Overview of technical results

1. RMDS" = Sputniks

2. RMZS" = Complete bipartite U Sputniks
3. RMDS? D bipartite + test algo

4. RMIS? D bipartite + test algo

Locality:

1. RMDS" and RMZS”
— Robust solutions can be computed locally!

2. RMIS?

— Robust solutions cannot be computed locally! @

O OO <O

Local algo for robust MIS in Sputniks Lower bound on the non-locality of robust MIS
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Graphs in which all MISs are robust? (RMZS")

Lemma
Bipartite complete (BK) graphs C RMZS".

N/
Def: A graph is a sputnik if and only if every node that belongs to a cycle also has an antenna (i.e. a
pendant neighbor).
Lemma

Sputniks € RMZS".

Theorem
RMISY = Sputniks U BK



Local algorithm to find a RMIS in RMZS”

State of the art (classical MIS)
> Lower bound: Q(+/log n/ log log n) [KMW04]
> Best algo: 29(ve M) [psgE] (between log nand n)
> Best algo in trees: O(log n/ log log n) [BE10]

Can we solve the problem locally in RMZSY?
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Lemma: Vk, Gx admits only two robust MISs M; (in red) and M> = V \ M.

(1) Anonymous case (easy): Both extremities have same view up to distance ©(n),
but they must decide differently. O

(2) Identified networks: let L1, L2, L3 be disjoint labeling functions that assign identifiers to n/3
nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) £1-x-L5; (2)
L1-y-L3; () L2-z-L3, with X, y, and z arbitrary.

Unless using information within (n) hops, B¢ and by will decide identically in some cases,
whatever the algorithm.
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3 Infinite family of graphs (G )«en, of diameter ©(k) = ©(n).
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Lemma: Vk, Gx admits only two robust MISs M; (in red) and M> = V \ M.

(1) Anonymous case (easy): Both extremities have same view up to distance ©(n),
but they must decide differently. O

(2) Identified networks: let L1, L2, L3 be disjoint labeling functions that assign identifiers to n/3
nodes starting at one extremity (left or right). Let the whole graph be labeled either (1) L1-x-L2; (2)
L1-y-L3; () L2-z-L3, with X, y, and z arbitrary.

Unless using information within (n) hops, B¢ and by will decide identically in some cases,
whatever the algorithm. O

— Essentially as bad as collecting all information at one node and use offline algo.



Centralized algorithm to find RMISs in general (in P)

Objective: Finds a RMIS if one exists, rejects otherwise.

Decomposition into
biconnected components
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Polynomial-time algorithm to find RMISs (2)
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Tagging
Resulting RMIS
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